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RESUMEN

Los errores asociados con un espejo primario segmentado limitan la calidad de
imagen alcanzable con aquellos telescopios que los utilicen. Es necesario derivar los
efectos de los errores propios de la segmentacién en la calidad de imagen, de forma
que se puedan elaborar presupuestos de errores realistas para dichos telescopios. La
mayor parte de los errores de segmentacién son el desalineado y pistén de los seg-
mentos, asi como los errores de figura. En este trabajo el efecto de la segmentacién
en la calidad de imagen se estudia analiticamente considerando un telescopio con
un espejo primario formado por dos anillos. Derivamos expresiones aproximadas
para la MTF y CIR (cociente de intensidad central) siguiendo la técnica descrita
por Dierickx (1992). Mediante simulaciones numéricas se prueba que los resultados
pueden aplicarse a telescopios con esquemas de segmentacion realistas, con errores
de pistén de hasta =~ 80nm.

ABSTRACT

The errors associated with a segmented primary mirror limit the image quality
obtainable with those astronomical telescopes which employ them. It is necessary
to derive the effects of segmentation errors on image quality in order to determine
realistic error budgets for such telescopes. The main segmentation errors are mis-
alignment and piston of the segments as well as figure errors. Here, the effect of
segmentation on image quality is studied analytically by considering a two-ring
telescope. Approximate expressions for the MTF and CIR (Central Intensity Ra-
tio) are derived following the technique described by Dierickx (1992). It is found
by numerical simulation that the results may be applied to telescopes with realistic
segmentation schemes for piston errors up to &~ 80nm.

Key words: METHOD: ANALYTICAL — TELESCOPES

1. INTRODUCTION

Modern observational astronomy demands telescopes with ever-increasing collecting areas. At the same
time, it is required that these telescopes have superb image quality, in order not to degrade the excellent seeing
conditions which frequently occur at mountaintop observatories. The 8m-class telescopes currently under
construction appear to be at the limit of monolithic mirror technology. In order to construct larger telescopes,
it will be necessary to employ segmented mirrors. Indeed, the largest telescopes in the world already employ
segmented primary mirrors (Nelson & Gillingham 1994; Sebring & Ramsey 1996). There are also plans for
future very large segmented telescopes (Ardeberg et al. 1996) It is therefore of great interest to determine the.
image quality degradation caused by segment misalignment. :
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The final image quality of a telescope depends on a large number of factors including aberrations inherent in
the optical configuration and aberrations due to misalignment of the secondary mirror. The errors which are
specific to a segmented telescope are those due to errors in the positioning of the segments. Each segment has
three axial degrees of freedom; two degrees of rotation (tip and tilt) and axial position (piston). The lateral
degrees of freedom of the segment are normally fixed to the primary mirror cell, but any errors in the lateral
position give rise to figure errors. The segments will also undergo figure errors due to gravitational or thermal
instabilities (as is the case with monolithic mirrors). Active optics may be used to control these errors, but the
degree of control will be limited by noise and drift in the measurements of segment positions.

The image quality of astronomical telescopes is usually specified by demanding that the image width in
the best seeing conditions be degraded by a small amount (e.g., 10%). The ‘width’ may be specified either
as a full-width at half-maximum (FWHM) or the encircled energy diameter (EED) (D50 or D80). Another
approach, different from these angular criteria, is to use the central intensity ratio (CIR), defined as the ratio
between the peak of the image and that which would be obtained by an equivalent perfect telescope in the
same seeing conditions. The usual design approach is to estimate the errors associated with each component
of the telescope, and add them in quadrature. It should not be taken for granted that this approach is valid in
the case of segmentation errors.

In order to analyze the effect of segmentation errors on the telescope modulation transfer function (MTF)
we have developed analytical expressions for the simple case of a two-ring mirror (§ 2). We then examine their
effect on image quality parameters (§ 3). The expressions are verified by numerical simulations and applied to
a telescope with hexagonal segmentation.

2. SEGMENTED MIRROR MTF

The Modulation Transfer Function (MTF) and its Fourier Transform, the Point Spread Function (PSF),
can be considered as fundamental measures of image quality. The MTF has the advantage that the complete
system MTF is given by the product of the MTFs of the components of the system.

The MTF of a telescope in a vacuum, M. (v), is given by the autocorrelation of the complex pupil trans-
mittance Y(r)

M) = gy [ XX (4 v, (1)

where v is the normalized spatial frequency, r is the position in the pupil normalized to the radius of the pupil,

€ the linear obscuration ratio and S the clear aperture. The complex transmittance inside the pupil, Y(r), is
defined by

T(r) = exp(ikA(r)) , (2)

where A(r) is the wavefront aberration function and k = 2r/A.
Dierickx (1992) derives an expression for the MTF of an annular monolithic telescope assuming axisymmet-
rical wavefront errors, and employing a Taylor expansion of the MTF about spatial frequency zero;

ltheI +V_2d2MteI +£d3Mtel
I dv |, 2! dv? |,_, 3 df

Mtel(y) ~ Mtel(o) + (3)

v=0

It will be seen in § 3 that for long-exposure imaging, the effect of atmospheric turbulence is to drastically
reduce the spatial cut-off frequency, and therefore an expansion about spatial frequency zero, will provide a
good approximation for the MTF of the combined telescope-atmosphere system.

In order to investigate the effect of segmentation we assume a telescope with a primary mirror made up of
two independent rings, with the boundary between the rings at radius py, and a linear obscuration ratio, ¢. In
this case the wavefront aberration function will be:

_ [ Aulp) if e<p<Lopr,
A()_{Az(/’) i opr<p<l “

This choice of segmentation has the advantage of maintaining an axisymmetrical pupil, thus allowing the
PSF to be calculated analytically using a Hankel transform (§ 3). This characterization of the pupil function
allows us to simulate several types of wavefront errors; we refer to those errors specific to each ring as local
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errors, while global errors are those which are continuous across the boundary between the rings (when there
are no piston errors). This model supposes that the main effect of piston errors on image quality does not
depend on where the piston errors occur; it will be shown using numerical simulations that in the case of a
mirror made up of several segments, the rms piston error has the same effect as a single piston error in the two
ring model (up to a certain value of piston error).

As a segmented pupil is employed, care must be taken in performing the pupil autocorrelation in order to
properly handle the discontinuities in the pupil. In the case of a two-ring mirror, the integration in equation (1)
can be divided into three zones. The first and third zones correspond to the regions where the first ring is
correlated with the first ring of the shifted mirror, and where the second ring is correlated with the second ring
of the shifted mirror, respectively. The second zone corresponds to the region where the first ring is correlated
with the second ring of the shifted mirror.

For the monolithic case, Dierickx (1992) finds that aberrations have no effect on the first-order derivative of
the MTF. However, in the presence of wavefront piston errors we find the following expression

dMia(v)

B 4 (1 e+ 201[1 — cos(k(As(pr) — Azm))l) | (5)

v=o  T(1—€?)

This expression reduces to Dierickx’s when the wavefront aberration function of the two rings is the same
at the boundary (Ai(pr) = Aa(pr)). However, its validity is limited to € < p; < 1, since when p; = ¢ or
p1 = 1, the pupil autocorrelation integral contains two zones instead of three, and the third term of expression
(5) disappears. This will be true for all derivatives of the MTF, and from here on, terms containing p; go to
zero when p; = € or py=1. We will refer to the difference 7 = (A1(pr) — Az(pr)) as the piston error. This
includes not only pure piston errors but also those due the segments having different figure errors.

The second-order derivative term in the absence of discontinuities is

k2

d?> Mo (v 1
EMralv) =412 / A”(p)pdp , (6)

dv?

v=0

i.e., is proportional to the mean squared wavefront slope error (A'(p) = uAdpﬁl). In the presence of piston errors
we find

dthel(I/)
dv?

4kpr

= —4¢% —
7 1—¢2

v=0

[A1(pr) — As(pr))sin(kr) (7)

where

2 k? o b
o= e ([ a%owdo+ [ aBodp) ®)
(1 —€ ) € PI
The second order effect of piston errors is zero if there are no figure errors. The discontinuity in the mirror
has the same diffractive effect as the inner and outer edges of a monolithic mirror and like these, does not have
a second order effect on the MTF. If there are figure errors, then the effect of piston is approximately linear
(for small values of piston), and depends on the slope of the figure error at the boundary between the rings.
Finally, the third-order derivative is found to be given by

d3Mtez(V)
dv3

4 1 2
0:m<l+g+p—l[l—cos(k‘r)]

+88° (<AL (0 + pr(AL(on)) + pr (A (o0 + (A1)
2Pk (pr))? + AL (pr)Ng(or) + (Ab(pr)) cos(k)
— K84 or) = Ag(or)]sin(kr)

20 kAl or) — A4 sin(kr)) | (9)

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.57B

2000RWKAA. . 36. .

60 BELLO, DEVANEY, & CASTRO

0.0025 :
I R First Order

« 0.0020 | oo Third Order s
£ - _
LU 1 :
L = 200,300nm ]
L 0.0015( |
= i :
[ i ]
5 0.0010F .100,400nm i
© i . ]
D - ]
< ? :
0.0005[- .

k - S 200300nm o S ]
e 1004000m T T ]
0.0000——=mmemimemao 'l L1 R R et e CL ] L
0.00 0.02 0.04 0.06 0.08 0.10

Normalized Spatial Frequency

Fig. 1. Absolute MTF error between the simulated and predicted MTF for a two ring mirror for several values of piston
errors. The numbers beside the curves indicate the values of piston rms error at the wavefront. The effect of 100nm
and 200nm of piston error is found to be the same as the effect of 400nm and 300nm piston error, respectively. This is
due to the symmetry of the effect around A/2 (250nm).

The apparent singularity in equation (9) for € = 0 is due to the fact that the derivation assumes ¢ > v. If
this is not the case, then the integration limits have to be changed as the first ring does not intersect the first
ring of the shifted mirror if € < v, and in this case the terms containing ¢ disappear.

The expressions derived above have been checked by comparing with the results of numerical simulations
of a two-ring mirror. In the simulations, the PSF is calculated by taking the squared modulus of the Fourier
Transform of the simulated pupil function, and the MTF is obtained as the Fourier Transform of the PSF. This
is faster than numerically computing the autocorrelation of the pupil function. Figure 1 shows the difference
between the predicted and simulated MTF. In this figure we compare the simulation with the theoretical
predictions for the MTF when the segments have piston errors alone. The difference is seen to be very small,
indicating very good agreement between theoretical predictions and simulations.

3. IMAGE QUALITY WITH A SEGMENTED MIRROR

The quality of astronomical images may be measured using several parameters, including FWHM, EED
(encircled energy diameter) (usually 50% [D50] and 80% [D80]) and the Central Intensity Ratio (CIR). For a
seeing limited image, D50 = 1.08 FWHM, and D80 = 1.89 FWHM. It is usually required that a telescope does
not degrade the best seeing conditions by more than a small amount (usually 10%) at visible wavelengths. The
severity of this requirement depends strongly on the choice of image quality parameter. However, it appears
that the D80 and the CIR parameters are the more useful since they determine the signal-to-noise ratio in the
final image (Dierickx 1992).

We now assess the image quality parameters for the two-ring telescope model in the presence of atmospheric
seeing. The results apply only to long-exposure images, i.e., to images recorded with exposure times much
longer than the coherence time of atmospheric turbulence. The effect of seeing on the long-exposure image
may be determined by multiplying the telescope MTF by an atmospheric MTF. If the seeing has Kolmogorov
statistics then the atinospheric MTF is given by

MT Fatmo(v) = exp[—<§o>%1 : (10)
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where

Vg = To
°~ 910X

cycles/radian ,

A is the wavelength of observation and rg is the Fried parameter (Fried 1994). This parameter corresponds to a
cut-off frequency introduced by the atmospheric turbulence. In the presence of seeing characterized by ro, the
angular resolution of a telescope of infinite diameter would be the same as that of a telescope of diameter 7.
For the simulations and theoretical calculations we have employed A = 500nm and ry = 0.2516m (corresponding
to a seeing value of 0.4 arcsec). For a telescope of diameter 10m, the corresponding cut-off frequency is 0.0146
times the diffraction-limited value.

As already stated, the PSF can be obtained by taking a Fourier Transform of the MTF. Since the MTF
is axially symmetric, the two-dimensional Fourier Transform can be replaced by a one-dimensional Hankel
Transform,

PSF(r) =8 / M) T2y (11)

where Jo is the zero-order Bessel function, r the image radius in units of A\/D and M(v) = MTF(V)ta X
MTF(V)atmo. For ( = D/rq sufficiently large (¢ > 20), the integration can be extended to the interval from 0
to oo since M (v) converges rapidly to zero. It is then possible to establish a series approximation for the PSF,
as described by Dierickx (1992). The encircled energy can also be determined by numerical integration of this
analytical expression for the PSF.

We have derived the PSF and encircled energy as series approximations for our two-ring model. In the
case of the CIR it is possible to find an analytical expression. Using the series expansion for the PSF and the
definition of the CIR we can develop a third-order approximation. The expression is quite long for local errors;
here we present the expression for global figure errors and piston errors alone

CIR=1- ‘4_[2PIbOC - i](1 — cos(kT)) + 20

8 3¢pr 8
16d, PN gy 32do , ) ‘
~3ncp A @)+ (N W)T - gl (A (pr)) (1 — cos(k))] (12)

where we define,

1 2do

B=C1—-)- c (4bo — @)] ; (13)

(1-¢)

and by = 0.483197, co = 0.306969, dy = 0.235430.

The formula for the CIR may be understood by identifying each term individually; the first term comes
from the first and third order expansion of the piston error alone, the second is a second order expansion of
the figure errors and is independent of piston errors. The third term arises from the third-order expansion of
the figure errors. The fourth comes from the third-order expansion of both piston and figure errors, and is
non-zero only when both piston and figure errors are non-zero.

The cross terms in the formula imply that there are some cross eftects between different errors at the mirror.
It is, therefore, not true in general that piston errors and figure errors can be added quadratically in order
to find the final effect on the image. It has been suggested (Dierickx 1994) that the effective CIR due to the

combination of different errors may be found by combining CIRs due to each error, CIR,,, according to the
formula

CIR~1-)Y (1-CIR,). (14)

However, this formula will not be valid when the cross-terms are important. This is shown in Figure 2
where we show the CIR corresponding to a combination of defocus and piston error. Crosses represent the
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Fig. 2. The central intensity ratio (CIR) as a function of wavefront piston and defocus errors for a 36-segment mirror.
The crosses represent the data obtained from simulations when both defocus and piston errors are present, and the
continuous line represents an estimation for the CIR employing equation (14). It can be seen that the prediction from

equation (14) is rather pessimistic in this case and cross-terms between aberrations can have an important contribution
to the CIR value.

results obtained from simulations when both aberrations are present. The continuous line represents the CIR
obtained by application of equation (14).

When there are only piston errors, the formula for the CIR, reduces to the simple expresion:

CIR=1- af[l — cos(kT)], (15)
where
_ 4 _ o
o= ﬂ_ﬂ[meoC 3(/)1] , (16)

which depends only on the radius of the discontinuity, p;, and the ratio between the diameter of the telescope
and rg.

The values for the CIR calculated numerically for a two-ring telescope have been compared with those
obtained from the theoretical approximation, with D = 10m, p; = 0.5 in an atmosphere characterized by
ro=0.2516m at A = (.5um. The results are shown in Figure 3. The agreement is seen to be quite good. The
non-monotonic behaviour seen in this figure is due to the symmetry of the problem around A/2. When the
wavefront piston error 7, is equal to a whole wavelength, the situation is indistinguishable from having zero
wavefront piston error, and the CIR is therefore unity.

Analytical expressions or series approximations cannot be obtained for the parameters based on angular
criteria, FWHM, D50 and D80. As theoretical predictions for their values we have employed values interpolated
from the series expansions for the PSF and encircled energy. We find that in the case of piston errors alone,
they depend on the piston errors in the same way as the CIR, i.e., (FWHM, D50, D80) o v + §(1 — cos(kT)).
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Fig. 3. The central intensity ratio (CIR) as a function of wavefront piston errors for a two ring mirror. The squares
represent the simulated data and the theoretical prediction is given by the dashed line.
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Fig. 4. The 80% encircled energy diameter (D80) as a function of wavefront piston errors () for a two ring mirror. The
squares represent the simulated data and a fit of the form D80 = g + v(1 — cos(kr)) is given by the dashed line, where
B and v are parameters of the fit.
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Fig. 5. The central intensity ratio (CIR) as a function of wavefront piston errors () for a 36-segment mirror. The
crosses represent the simulated data and the dashed line represents the fit to the expression: CIR = 1 — o/[1 — cos(k7)]
(o' is the parameter of the fit), for piston errors less than 80nm.
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Fig. 6. The full width half maximum (FWHM) as a function of wavefront piston errors (r) for a 36-segment mirror. The
crosses represent the simulated data and the dashed line represents the fit to the expression: FWHM = ,6‘ 'r[l cos(kT)],
for piston errors less than 80nm, where § and v are parameters of the fit.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.57B

2000RWKAA. . 36. .

THE EFFECT OF PISTON ERRORS ON THE IMAGE OF SEGMENTED MIRROR TELESCOPES 65

wf
g | /M% |
S 0.82]- ﬁ 1
c% I {F% 4
5 0.80 **** J
l xf&* |

Wavefront Piston Error (nm)

Fig. 7. The 80% encircled energy diameter (D80) as a function of wavefront piston errors (7) for a 36-segment mirror. The
crosses represent the simulated data and the dashed line represents the fit to the expression: D80 = 8 — 4[1 — cos(k7)],
for piston errors less than 80nm, where § and v are parameters of the fit.

Figure 4 shows the behaviour of the D80 parameter when there are piston errors alone, and a fit of the form
¥+ 6(1 — cos(kT)) for these values.
We have carried out simulations of a mirror made up of 36 hexagonal segments in order to check that the

- results of our simple model are useful for more realistic geometries. The geometry is the same as that employed

in the Keck telescopes. Figure b shows the results obtained from simulations where the only error introduced is
piston errors in the individual segments. The dashed line shows a fit of the form 1 — &/[1 — cos(kT)], as derived
from our model. The agreement is seen to be quite good for piston errors below a2 80nm. Beyond this value,
our mode] would predict an increase in CIR, but the large number of randomly pistoned segments in the more
realistic geometry prevents this from happening. Nevertheless, phasing techniques such as those employed at
the Keck telescopes allow large segmented telescopes to operate in the regime of validity of our approximation.

4. CONCLUSIONS

We have analyzed the effect of segmentation errors using a two-ring mirror, obtaining approximations for
the MTF, PSF, encircled energy and the CIR. When the only error is piston, the effect is similar to the effect
of diffraction at the inner and outer edges of the pupil, and appears in first and third order expansions of the
MTF. Figure errors alone appear in second order. If both piston and figure errors are present then cross-terms
arise due to the effective piston error introduced between the segments by the figure errors.

These results have been compared with those obtained from simulations, and show very good agreement.

The functional dependence of the image quality parameters (CIR, FWHM, D50, D80) on piston and figure
errors has been established, and we find a dependence of the form v + 6(1 — cos(kr)) for piston errors. When
piston and figure errors are combined, the image quality parameters show a cross-term contribution from both
types of errors.

These results have been applied to segmented mirrors with hexagonal segmentation; for a mirror composed
of 36 hexagonal segments the functional form of the effect of piston errors in the image quality parameters
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(CIR, FWHM, D50, D80) is found to be the same as for a two-ring telescope for piston errors less than ~ 80nm
when A = 500nm, (Figures 5, 6, and 7). The combined effect of having a parameter dependence of the form
v + 8(1 — cos(kT)) together with having a large number of segments and thus of discontinuities, causes the
image quality parameters to reach a constant lower limit. However, for large piston errors the defocus of the
segments will cause the CIR and the other image quality parameters to degrade further.
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