.97B

2000RWKAA. . 36. .

Revista Mezicana de Astronomia y Astrofisica, 36, 97-112 (2000)

THE PARAMETERS OF GALACTIC KINEMATICS DETERMINED FROM
TOTAL LEAST SQUARES

R. L. Branham, Jr.

Centro Regional de Investigaciones Cientificas y Tecnolégicas, Argentina
Received 1999 August 3; accepted 2000 April 24

RESUMEN

Los problemas de la cineméatica Galactica generalmente se han resuelto usan-
do el método de minimos cuadrados, pero éste puede calcular resultados sesgados
porque minimos cuadrados asumen que hay error inicamente en las observaciones,
no en las ecuaciones de condicién. Pero éstas, sin embargo, a menudo incorporan
error, por lo menos en algunas de las columnas de la matriz de las ecuaciones.
Minimos cuadrados totales representan una herramienta matemdtica idénea para
justamente esta clase de problema. En este trabajo se emplea el método, o mejor
dicho un mezcla de minimos cuadrados ordinarios-totales, con mas de 100,000 estre-
llas tomadas del catalégo Hipparcos para calcular doce pardmetros de la cinemaética
Galéctica: nueve componentes del tensor de deformacién, relacionadas con enti-
dades como las constantes A y B de Oort, el término K, el tensor de rotacién
GalActico y las componentes del movimiento solar. Se obtienen valores razonables
para todas las incégnitas, demostrando asi que datos astrométricos de alta calidad y
un método adecuado de reduccién de los datos producen buenos resultados cuando
en el pasado esto ha sido dificil o imposible.

ABSTRACT

Problems of Galactic kinematics have usually been solved by the method of
least squares, but this may lead to biased results because least squares assume that
error resides only in the observations, not in the equations of condition. The latter,
however, generally incorporate error, at least in some of the columns of the data
matrix. Total least squares represents the ideal mathematical tool for just this sort
of problem. In this paper, the method, or better stated a mixed total-ordinary least
squares method, is applied to over 100,000 stars taken from the Hipparcos catalog
to calculate twelve parameters of Galactic kinematics: the nine components of the
deformation tensor, related to such quantities as the Oort A and B parameters, the
K term, Galactic vorticity, and the Solar motion. Reasonable values for all of these
is obtained, showing that high quality astrometric data and an adequate reduction
method can produce good results for global solutions when in the past this proved
difficult or impossible.

Key Words: GALAXY: FUNDAMENTAL PARAMETERS — GALAXY:
KINEMATICS AND DYNAMICS — METHODS: DATA
ANALYSIS

1. INTRODUCTION

In a previous publication, I have shown how the mathematical technique known as total least squares (TLS)
is an ideal tool for work with Galactic kinematics (Branham 1998). That publication, however, based on stars
taken from the Yale Bright Star catalog (BSC5), merely shows the power of TLS and was not intended as a
contribution to the determination of the parameters of Galactic kinematics. Now that the Hipparcos catalog
(ESA 1997) has been published, to use the new parallaxes for a genuine determination of these parameters seems
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indicated. TLS also seems indicated as the relevant reduction technique. I will not explain the fundamentals
of the method because these have been detailed in the previous publication and also in others (Branham 1995,
1997) but will merely summarize the salient features.

We have a linear system with m equations of condition and n unknowns. Let A be the matrix of the
equations of condition (also called data matrix), of size m x n, x an n-vector of the solution, and d an m-vector
of the observations

A-z=d. (1)

If error exists only in d the problem is one of ordinary least squares (OLS). But if A also contains error, the
problem is one of TLS. Because of this error equation (1) is inconsistent: no single vector z will satisfy all of
the equations of condition. TLS proposes as the solution the vector z that minimizes the Frobenius norm of
the error in A and d. If we denote this error by AA and Ad then we seek

|| AA: Ad||r = min, (2)

where F' denotes the Frobenius norm and the colon indicates that Ad is appended as an additional column to
AA. Golub & Van Loan (1980) show that the minimization implied by equation (2) is achieved by calculating
a vector z that solves

(AT - A—o%Dzx = AT -4, (3)

where I is the unit matrix and ¢? is the smallest eigenvalue of the matrix (A4 : d)T-(AT : d). Golub & Van Loan
(1980) actually obtain the solution by us of the singular value decomposition (SVD) rather than eigenvalues,
but unless A is poorly conditioned, equation (3) calculates the solution with less memory and fewer operations
(Branham 1989).

If some of the columns of A are error-free, the problem becomes one of mixed TLS and least squares, TLS-
LS. For a discussion of the theory behind TLS-LS, see Van Huffel & Vandewalle (1991). For a brief description
of the technique to employ let k of the columns of A be error-free. Permute the columns of A so that its first
k columns are these error-free columns. Then the TLS-LS solution is given by

0 0

_ (AT 4 _ 2
z=(A"A-o0 [0 I

l )T1AT -, (4)

where I,,_ refers to the (n—k) x (n—k) identity matrix. What about ¢2? Form the matrix B = [4 : d]T-[4 : d]
and partition it so that
Bi1 B
B = ,
< By B2 )

where By1, of size k x k, corresponds to error-free columns of [A : d], Bsi, of size k X (n—k+1), and Bys, of size
(n—k+1)x k and equal to BY,, a mixture of error-free and error columns, and Bjs, of size (n—k+1) x (n—k+1),
to pure error columns. o2 is the smallest eigenvalue of Byy — By ~Bl_11 - Bys, the Schur complement of By; in B.

Equations (3) and (4) show that the solution changes when o changes. Because o varies according to the
scaling of the data matrix, a TLS or mixed TLS-LS solution, unlike an OLS solution, depends on how the data
matrix is scaled. I have found that column scaling or both row and column scaling, but seldom row scaling
alone, of A works well. No scaling at all performs poorly.

However, the solution is computed, OLS, TLS, or mixed TLS-LS, the covariance matrix, by permitting
the calculation of mean errors and correlations, constitutes vital additional information to the solution. See
Branham (1999) for a method for calculating the covariance matrix.

2. TLS AND GALACTIC KINEMATICS

Galactic kinematics represents one area where mixed TLS-LS should be ideal. To see why, let us look at
typical equations of condition. Use the Ogorodnikov-Milne model, truncated after the first order in Taylor
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series expansions for the velocity of the centroid of a group of stars, which is valid for distances up to about
1 kpc (Ogorodnikov 1965). Distances will be measured in parsecs, proper motions in milli-arc-sec (mas) per
year, and radial velocities in kilometers per second. Let Ry be the centroid’s distance to the Galactic center, 7
the distance from the center of the centroid (the Sun) to a star, V the velocity of the centroid at distance R,
and V4, the reflex solar motion, its velocity at distance Ry. Then from elementary calculus we have

V=W+D-r, 5)
where D is the displacement tensor of partial derivatives evaluated at Ry
OoVy [0z 0OV,/dy 0OV,/0z Uz Uy Uy

D=| 0V,/ox 0OV,/oy 0V,/0z Vg Uy Uy |- (6)
ov,/0z OV,[/0y 0V,/0z We wy w,

R=Ry

Equation (5) involves a total of twelve unknowns, the three components of the reflex solar motion and the
nine components of the displacement tensor.

That the Ogorodnikov-Milne model should be adequate becomes manifest upon looking at the distribution
of the parallaxes from the Hipparcos catalog. Of the 118,310 parallaxes, 113,710 are nonnegative. The negative
parallaxes were excluded in this study. Of the positive parallaxes, only 6300 (5.6%) are smaller than 1 milli-arc-
second, and these have a median error of 1.11 = 20 mas. Because 1 mas corresponds with a distance of 1 kpc,
the vast majority of the stars are at distances that comply with the assumptions of the Ogorodnikov-Milne
model, and the remainder have such large errors that it becomes difficult to say what their true distances are.
This, however, is a situation where TLS, by taking account of the error in the equations of condition, seems
indicated as the reduction technique.

The displacement tensor D may be decomposed into the sum of a symmetric tensor S, the strain tensor,

511 Si12  Siz Uy %(uy + ’Um) %(uz + wz)
S = So1 S22 Sas = %(’Uy + vg) Uy %(wy +v;) s (7
S31 S32 Ss3 F(uz +wg) 3wy +vs) w,
and an antisymmetric tensor {2, the rotation tensor,
0 —w, wy 0 Suy —vg)  (us —ws)
Q=1 w, 0 —w; | =] —3(uy—ws) 0 v —wy) |- (8)
—wy Wy 0 —2(u —wg) —1(v. —wy) 0

From these two tensors various quantities usually associated with Galactic kinematics, such as the Oort A
and B constants, may be derived once certain assumptions are made.

To convert equations (5) to (8) into a form more suitable for computation, use Galactic coordinates (I, b)
for positions, set the distance r = 1/, where 7 is the trigonometric parallax from the Hipparcos catalog, and
define the direction cosines

o coslcosb g —sinl Qs —coslsinb
B | =1| sinlcosb |;]| B | = cos! ;1 B2 | = | —sinlsind |. 9)
¥ sinb " 0 Yo cosb

The equations may be expressed, if (X, Y, Z) denotes the components of the reflex solar velocity, as equations
of condition in radial velocity, 7, proper motion in Galactic longitude, u;, and proper motion in Galactic
latitude, pyp
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r= %(azuz + aﬁuy + ayu, + afug + ﬁzvy + ﬂ')"Uz + aywsz + ,B'wa + ’)’2102)

10
—aX - BY —~Z; (10
secb 5 2
Ky = T(—aﬁum — FPuy — Byu, + o’vg + afuy + ayv,) + an X + AY + 1 Z; (11)
—sech. , 9 2 2
Ky = = [a Yug + Otﬂ’)’uy + oy u, + afyvy + B7yvy + ByTvs +
a(y? = Dwg + B(Y? = Dwy —v(@® + B2w,] + a2 X + BY + 722, (12)

where k represents a conversion constant with value 4.74047 km s~! yr. Notice that not all of the unknowns
in equations (10) to (12) are independent: in equation (10) only nine of the unknowns are independent; in
equation (12) eleven are independent, and equation (11) includes none of the unknowns wg, wy, or w,. Thus,
if one were to use the equations separately, it would not be possible to solve for all of the unknowns in a given
equation. But this stricture no longer applies if the equations are used together, when all of the unknowns
become independent.

The presence of the parallax 7 on the right-hand-side, not merely in the data on the left-hand-side, consti-
tutes an important consideration for solving in equations (10) to (12), which therefore, represents a situation
where the assumptions of OLS become invalid. The errors of parallax measurements are substantial, typically
23% of the value itself. (This percentage comes from the median parallax and median parallax error in the
Hipparcos catalog). Thus, in the equations of condition the coeflicients of u, — w, incorporate significant error
whereas the coefficients of X,Y, Z are basically error-free. To solve equations (10) to (12) one should use mixed
TLS-LS rather than OLS or even pure TLS. But before the equations can be solved by mixed TLS-LS they
should be recast to avoid a Lutz-Kelker effect. Smith & Eichhorn (1996), moreover, have demonstrated that
the distances to stars have an error distribution that is skewed and the direction of whose bias depends on
the size of the standard deviation relative to the true value. To avoid these difficulties one should, therefore,
multiply egs. (10) to (12) by 7 to transfer the error from the denominator. Then the error-free unknowns
become u; — w, and the error unknowns X,Y, Z. The transformed equations are

mr = (azuz + aﬁuy + ayuz + afvg + ﬂQUy + IB’)’vz + aywz + /87wy + 72“}2)

13

—maX —7BY —nyZ; (13)

kmpy = sech(—afu, — ﬁzuy - Byu, + vy + afuy + ayv,) + o X + 1Y + 1 Z; (14)
Ky = — secb[a®yug + aByuy + ayu, + afyv, + BPyvy + By 0,

a(y? = Dwe + B(Y* — Dwy —v(® + B w.] + maa X + 7Y + 772 Z. (15)

3. A GLOBAL SOLUTION?

Although equations (13) to (15) can be used conjointly, should they be? In an important study, dated
but still useful, Clube (1972) recommends against such a procedure. Because of observational error, as well
as cosmic error dispersion (correlations caused by the velocity ellipsoid, for example), the variances in the
equations are large, and one should make simplifying assumptions in S. Many, such as van de Kamp (1967),
feel that, because of different systematic errors in each class of equation of condition, the equations should be
solved separately. But Clube’s recommendations were made when the observational data base exhibited relative
paucity compared with the avalanche of data streaming in from such endeavors as the Hipparcos catalog. Nor
was TLS, the original paper for which was only published in 1980, available as the reduction method. And
although van de Kamp’s suggestion merits consideration, it fails to take into account a significant aspect of
the conjoint use of equations (13) to (15): the correct mathematical modeling of the relationships among the
unknowns. Although wg, wy, w, do not appear in equation (14), their influence will nevertheless be felt in that
equation by the coupling caused by the solar velocity and some of the other unknowns, common to all of the
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equations. When the equations of condition are accumulated, either by forming normal equations of by use of
orthogonal transformations, the resulting matrix becomes what is referred to in sparse matrix terminology as
“doubly-bordered block diagonal”. Performing separate solutions from the radial velocities, the proper motion
in longitude, the proper motion in latitude, and subsequently statistically combining them, assumes that the
borders are null, a demonstrably incorrect assumption; see Branham (1992a) for further discussion. Only a
global solution for all of the parameters correctly models the underlying geometrical relationships. Rather than
worry about systematic errors, it is more important to start the reduction with a valid mathematical model.

There also exists substantial feeling that solutions should only be performed on subsets of the data, such as
spectrum-luminosity groups, for the putative reason that each subgroup exhibits different kinematical behavior.
But the substantive reason arises from in the past using only OLS as the reduction technique. Because OLS
assumes that the equations of condition are error-free, significant bias in the solution is only avoided by dividing
the stars into groups of the same spectrum-luminosity class where the parallax is about the same for all of the
stars in the group. To quote Smart (1967): “Indeed, progress can be made by assuming, for example, that the
parallaxes are distributed closely around a value... which we may describe as a mean parallaz.” Stars of the
same spectrum-luminosity class follow closely this assumption. But when stars are grouped to give solutions
for the various parameters, such as the Oort constants, and the solutions then statistically combined to yield
a final value, one assumes, once again erroneously, the statistical independence of the subgroups. This usually
invalid assumption nevertheless ameliorates partially, but only partially, the nefarious effects of the errors in
the parallaxes.

That calculating solutions from subsets of the data, and then subsequently statistically combining them,
constitutes at times a dubious procedure is manifested in the results from a previous study of mine, dealing
with celestial mechanics rather than Galactic kinematics (Branham 1979). That study used 20,288 observations
of five minor planets to estimate a number of parameters, including a possible equinox motion, AE, of the
FK4 fundamental system. When only 19th century observations were used, I found AF = 1.”237+1.”013, and
20th century observations gave AE = 1.”251 + 0.”469. One would infer by the normal statistical combination
of independent quantities that AE = 1.”249 & 1.”7226. But a combined solution with all of the observations
actually gave AF = 0.”784 + 0."208.

It remains most likely true that kinematically different behavior does exist among different spectrum-
luminosity groups, although Kurth (1967) feels that the assertion merits more rigorous statistical proof, but
as a first step one should show that mixed TLS-LS yields reasonable results when applied globally to all of
the data. Several advantages accrue to such a procedure: 1) because the distances run the gamut from that
of Proxima Centauri to over 1 kpc, local variations should be smoothed over; 2) because of adequate all-sky
coverage it should be possible to decouple the double wave in Galactic longitude in the proper motions and
radial velocities caused by differential Galactic rotation from the single wave caused by the solar motion. (This
consideration may not appear particularly relevant because the unknowns actually solved for in this paper do
not include ezplicit sin 2] and cos 2 terms, but would become very relevant if one were to use the Oort-Lindblad
rather than the Ogorodnikov-Milne model); 3) the greater distances for many of the proper motions assure
that random motions do not dominate the genuine proper motions; 4) spectrum-luminosity groups are an
idealization resulting from histogramming continuous properties into discrete groups, whereas a global solution
treats the astrophysical properties as continuous; 5) one proceeds from a firm mathematical basis, the correct
reduction model.

4. MIXED TLS-LS AND THE HIPPARCOS DATA

To apply equations (13)-(15) to Galactic kinematics, I used stars from the Hipparcos catalog, with its
113,710 stars with nonzero parallax. These stars have a median parallax of 4.790 mas, with a median error of
1.090 mas. This corresponds to a median distance of 209 pc with a variation, according to the median error,
from 170 pc to 279 pc. Figure 1 shows the distribution of distances out to 1 kpc. The equations of condition,
equations (13)—(15), were accumulated to form the system of equation (4) by the procedure given in Branham
(1992b). Columns of the data matrix were scaled by the Euclidean norms of the same columns. No OLS
solution was undertaken because I have shown previously (see Branham 1998) that OLS leads to poor, even
wretched, results when used with Galactic kinematics and to calculate an OLS solution seems otiose.
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Fig. 1. Distribution of distances from Hipparcos catalog.

One may question whether column scaling alone is sufficient; the error in the distance, after all, increases
with increasing distance. Perhaps the equations of condition should be weighted by a factor such as the
parallax divided by the error of the parallax? In fact, such a weighting leads to worse results, probably
because the high weight given to nearby stars with the lowest relative parallax errors leads to the solution
being dominated by local irregularities. By “worse” I mean nonsense values for many of the unknowns, such
as A =390 km s~! kpc™!, B = 245 km s™! kpc™!, K = —111 km s™! kpc™!. The condition number of the
equations of condition also increases to 387.

I tried and rejected another possible weighting scheme: remove from further consideration stars whose
weight as defined in the previous paragraph is less than unity. These stars have an error in parallax larger than
the parallax itself. With this criterion 3286 stars were rejected. But, perhaps surprisingly, the solution becomes,
once again, unacceptable. The condition number increases to 387 (the equality of the condition number with
that from the solution with the previous weighting scheme must be a fluke), and the values found for A, B, and
K, among others, are once again nonsense. I can only speculate why this happens, but feel that the clue lies in
the increased condition number, indicating that significant information has been excluded from the solution.
The median distance of the Hipparcos stars is 209 pc, the median distance of the 3286 rejected stars is 704 pc,
albeit with considerable error in the distance. The rejected stars, therefore, constitute a sample where local
irregularities have little influence, but Galactic kinematic effects are pronounced, and their exclusion becomes
pernicious.

Because I found no acceptable weighting scheme, each equation of condition entered with unit weight. It is
interesting that TLS handles stars with large parallax error, such as those of the previous paragraph, with no
difficulty and calculates an acceptable solution.

Not all of the data from the Hipparcos catalog can be accepted. Known multiple stars, flagged in the
catalog, contaminate the proper motion by confusing orbital motion with genuine proper motion and should
be excluded, and some of the Hipparcos solutions for the astrometric data in the catalog are substandard
(x? > 3), also flagged in the catalog, and should likewise be excluded. Stars belonging to the Gould belt
should also be excluded because they will hardly share the same kinematics as those belonging to the Galactic
belt. The next sections discuss how the Gould belt stars were excluded. Upon doing this I remain with 98,269
proper motions in each coordinate (the proper motions are transformed from right ascension and declination
to Galactic latitude and longitude by use of the standard expressions). Table 1 shows the breakdown of the
observations according to spectral type.
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TABLE 1

BREAKDOWN OF THE OBSERVATIONS BY
SPECTRAL TYPE

Spec. Type Percent. Spec. Type Percent.

0 0.09 M 4.26

B 4.87 R 0.06

A 16.17 N 0.03

F 22.10 S 0.01

G 20.18 C 0.12

K 29.62 Other 2.49
TABLE 2

SINGULAR VALUE ANALYSIS OF EQUATIONS OF CONDITION

Unknown Singular Percent.
Value
Ug 3583.64 32.34
Uy 3170.61 28.63
Uy 3110.01 28.08
Vg 53.45 0.48
vy 178.49 1.61
v, 169.53 1.53
Wy 166.17 1.50
Wy 140.83 1.27
w, 135.08 1.22
X 132.59 1.21
Y 117.00 1.07
Z 116.40 1.06

The Hipparcos catalog itself, being one of astrometric data, does not contain the radial velocities needed
in equation (13). To fill this lacuna I took radial velocities from the Wilson catalog (Nagy 1991) and from
the Barbier-Brossat-Petit catalog (1994), which yielded 8613 radial velocities. There are far fewer radial
velocities than proper motions, but their inclusion seems warranted because, although numerically inferior,
they nevertheless represent a large number compared with what was used in many pioneering studies on
Galactic kinematics and, furthermore, introduce no new unknowns into the system. That their inclusion is not
deleterious can be seen by calculating the singular values of the 205,151 equations of condition, before scaling,
(98,269 in Galactic longitude, 98,269 in Galactic latitude, and 8613 in radial velocity), which shows that all of
the unknowns are well determined and that the condition number of the linear system, 67.0, is low; see Table 2.

5. SELECTION OF GOULD BELT STARS

Stars belonging to the Gould belt should be excluded because they will hardly share the same kinematic
properties as the Galactic belt stars. It is usually felt that only the bright OB stars belong to the Gould
belt, although some authors, such as Fresneau et al. (1996), present evidence that other spectral types may
also pertain to the belt. To check which spectral types are likely candidates for inclusion in the Gould belt, I
performed a standard test, the runs test (Wonnacott & Wonnacott 1972), for randomness in Galactic latitude.
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One assumes that Galactic belt stars will be randomly distributed in b whereas the Gould belt stars will not.
The runs test showed that spectral classes A-M are indeed randomly distributed, at least roughly. (Perfect
concordance cannot be expected because of possible selection effects). Table 3 shows that the OB stars, on the
other hand, show a clear break in randomness near visual magnitude 6.5.

The procedure I followed to identify the Gould belts stars is similar to that of Stothers & Frogel (1974):
pass a plane through the bright OB stars and another through the fainter OB stars. An individual star is
considered a Gould belt star if it is closer to the former. The procedure is iterated. I also applied a criterion in
distance: a star has to be nearer than 500 pc to be a possible Gould belt candidate. After the final iteration
3630 OB stars were classified as Gould belt and 4914 as Galactic belt. Figure 2 shows the Gould belt plane,
with a noticeable inclination with respect to the Galactic plane. After this final iteration the Gould belt stars
exhibited 890 runs out of an expected 1815, whereas the Galactic belt stars exhibited 2266 runs out of an
expected 2457. Although there are fewer runs than expected, the discrepancy is far less than with the stars
classified as Gould belt. Furthermore, Miyamoto & Zi (1998) present evidence that Galactic belt OB stars
exterior to the Sun are inclined slightly with respect to the Galactic plane. Thus, perfect randomness may be
unachievable. It thus appears as if the classification regarding Gould belt versus Galactic belt appears sound.
The | and b values found for the pole of the Gould belt, I = 211.°785, b = 79.°755, although different from
those of the pole calculated for the Galactic belt, [ = 4.°752, b = 88.°789, are nevertheless, not too close to
the values that Gould originally found, [ = 201°, b = 72°. Gould, however, considered only bright stars. My
solution includes in the Gould belt fainter OB stars: of the 3630 Gould belt OB stars the median m,, is 7.55
versus 8.02 for the Galactic belt; likewise, the maximum magnitude is 0.18 versus 0.98. The runs test shows
that the discrimination between Gould and Galactic belt OB stars is reasonably firm. The 3630 Gould belt
OB stars were excluded from further consideration. The final conclusions, however, are fairly insensitive to the
inclusion or exclusion of the Gould belt OB stars, as I found by experimentation.

6. OUTLIERS

TLS is even more sensitive to outliers than is OLS. Before reliable solutions can be calculated, therefore, a
criterion for outlier rejection must be developed. But this is tricky because most outlier rejection criteria, such
as Pierce’s (Branham 1990) assume a normal distribution for the residuals. But are the residuals normally
distributed? In many instances, no. To examine the distribution I decided to calculate a first solution from a
norm minimization procedure far less influenced by outliers than the normal distribution, the L; criterion. But
because of error in the equations of condition one cannot use the standard L; algorithm, given in Branham
(1990), which, like OLS, assumes that the data matrix is error-free. One may, however, calculate an orthogonal
L; solution by a norm minimization technique:

TABLE 3
RUNS TEST FOR DIFFERENT SPECTRAL TYPES

Spec. Type Expected Actual
Runs Runs

OB (m, < 6.5) 704 285
OB (m, > 6.5) 3,568 3,217
A 7,946 7,982

F 10,927 10,847

G 10,043 9,833

K 14,945 14,248

M 2,168 2,173
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Fig. 2. Plane defined by Gould Belt OB Stars.

| A-z—dlh

V1+2L-zp

where 7 is the solution and 2L -z g refers to the scalar product of the unknowns corresponding to error columns in
A (the unknowns for the solar velocity). For the theory behind equation (16) see Spath & Watson (1987). Upon
calculating a solution from equation (16) and examining the residuals, I find that they represent a distribution,
shown in Figure 3, far from the normal, a narrower, more heavy tailed distribution. Use of Pierce’s criterion,
therefore, seems unjustified, and I chose to use five times the mean absolute deviation (MAD) as the cutoff
for an acceptable residual. Use of the MAD rather than the mean error of unit weight, o(1), seems indicated
because of the behavior of the distribution. This criterion eliminated 3.57% of the equations, a modest trim
although higher than what would be given by Pierce’s criterion, 0.1%. This amount of trim is lower than
what some feel is reasonable for long-tailed, Cauchy type distributions, where a 10% to even 25% trim would
be acceptable —see Stigler (1977). Miyamoto & Séma (1993), for example, use, depending on the solution, a
trim of from 12% to 18%. Stigler, however, finds that, in general, extreme trimming gives results no better, or
even worse, than more moderate trimming. Here, moreover, part of the long tail undoubtedly comes from high
velocity stars, genuine data rather than outliers. About 3400 of the stars should be high velocity. The trim
selected will eliminate about 100 of these, statistically insignificant given the total number of observations, but
will also eliminate genuine outliers. A higher trim would eliminate most of the high velocity stars, difficult to
justify on statistical or any other criteria.

But such a sparse trim as that given by Pierce’s criterion can hardly be justified either, as can be seen by
looking at a plot of the sorted absolute values of the residuals, Figure 4. The spike caused by the heavy tails of
Fig. 3 is more than noticeable. Although high-velocity stars undoubtedly contribute to the spike, a nefarious
effect is also likely at work: spurious proper motions. Because they are based on a short time span, about three
years, the Hipparcos proper motions can confuse orbital motion of unknown long period multiple stars with a
genuine proper motion. These stars will not be flagged as multiple in the catalog. Wielen et al. (1999) have
given a name, “cosmic error”, to this phenomenon. That cosmic error is probably present and can be inferred
if we compare the spike in Fig. 4 with that in Fig. 2 of Branham (1998), based on the Yale Bright Star Catalog,
where the spike is still present, but is much less pronounced. Confirming evidence comes from a comparison
between the Astrographic Reference Star Catalog (ACRS) (Corbin, Urbain, & Warren 1991) proper motions
and the Hipparcos proper motions. Although the ACRS proper motions, incorporate mean errors of the order
of 4-5 mas yr~! compared with Hipparcos’s 1 mas yr—!, they also cover a time span ten times longer and

= min, (16)
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Fig. 3. Distribution of the residuals.
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Fig. 4. Sorted absolute value of the residuals.
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should, therefore, be less influenced by cosmic error. By using the BD and CoD numbers in both catalogs, I
found 79% of the Hipparcos stars in the ACRS. Although the median difference in Galactic longitude of the
stars in common is only —0.06 mas, some large differences occur, such as the maximum difference of 6187 mas;
in Galactic latitude the corresponding numbers are 0.37 mas and 1380 mas. To minimize the cosmic error one
should therefore use a reasonable, but not excessive, trim.

Correlation

160 - -

T AR AR

100 [,

0 0.2 0.4 0.6 0.8 1.0
Frequency

Power (O) with error (A,v) at 95% confidence level

Fig. 6. Spectral analysis of the residuals.

7. THE SOLUTIONS

I calculated various solutions, but will only show, in Tables 4 and 5, the ones accepted. The mean errors
come from the procedure that Branham (1999) gives for a covariance matrix for TLS; although that procedure
also allows for heteroscedastic data, the data here are purely homoscedastic. The 12 x 12 correlation matrix
is too large to exhibit as a table and is shown instead as the surface plot in Figure 5. Only three correlations,
aside from the 100% correlation of each variable with itself, exceed the 50% level (the three peaks in the plot):
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64.0% between u, and u;; 66.2% between u, and X; and 67.3% between u, and v,. None of these correlations,
although significant, is high, nor is the condition number of the data matrix, 67.0 for the unscaled matrix and
2.71 for the column-scaled matrix, unreasonable. Thus, all of the unknowns appear well determined.

Not only well determined. but the residuals from this solution show no systematic tendencies, such as what
might be caused by the velocity ellipsoid, although they hardly represent a normal distribution. This most
likely occurs because the equations of condition are weighted by 7, thus eliminating correlations caused by the
velocity ellipsoid. Statistics on the residuals, see Table 6, show significant deviations from a normal distribution.

The actual distribution is longer-tailed, as measured by Hogg’s Q factor, than the normal, somewhat skewed,
and much more peaked (leptokurtic), as measured by the kurtosis, than the normal. Although the residuals
differ from a normal distribution, they are random, as determined from the standard runs test given in most
statistics texts. Out of 197,835 residuals, there are slightly more runs, 100,309, than expected, 98,918, but
not so overwhelmingly more as to exhibit systematic tendencies. Spectral analysis of the residuals, shown in
Figure 6, reveals no systematic tendencies nor indication of possible periodicities, as is confirmed by a x? test
with 95% confidence interval.

If we assume that the motion in a system is parallel to the z-plane, then w, = w, = w, = 0. If, furthermore,
the plane z = 0 is a plane of symmetry, then one can find. expressions for the Oort A and B constants and for
a K term (Ogorodnikov 1965)

A = (uy +v2)/2; (17)
C' = (us —vy)/2; (18)
B = (-uy +v)/2; (19)
K = (ug +vy)/2. (20)
The Oort constant A follows upon defining
A" = Acos?2l;
C' = ~Asin2l, (21)

where [; is the direction defining the longitude of the Galactic center. From equation (21) we have

A=1/A12+CIZ’

b= %arctan(—C’/A’). (22)

The solar velocity, So, comes from (S2 + S2 + S2)1/2. The K term of equation (20) is more complicated
than representing simply a constant offset in the equations of condition for radial velocity with units of km
s™1; here its units are mas km s™!, a variable that gives a constant value when multiplied by the distance to
a star, and it appears in both the equation of condition for radial velocity and for proper motion in Galactic
latitude.

Table 5 shows various quantities, and their mean errors, deduced from equations (6), (17) to (22). Rices’s
procedure (1902) calculates the mean errors from the mean errors in Table 4 and the covariance matrix; for
the unknowns assumed independent, So, A, and [;, the covariances are set to zero.

8. DISCUSSION

Both Tables 4 and 5 give reasonable results. [; differs not greatly from the accepted direction to the
center of the Galaxy. The solar velocity is in the range 20-30 km s~ found by others, and the direction of
the solar motion lies towards [ = 61.°69, b = 18.°1, similar to what others have determined. Miyamoto &
Séma (1993), using K and M giants, find I = 59.°7, b = 23.°8. My previous study (Branham 1998) gave
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TABLE 4
THE SOLUTION FOR TWELVE UNKNOWNS

Unknown Value and Mean Error
(mas km s1)
Uy .76921D+01 £ .11549D+01
Uy .21677D+02 £ .61578D+00
U, —.10260D+02 + .76412D+00
Vg —.26808D+00 + .64333D+00
Uy .50096D+01 £ .11542D+01
v, .39386D+00 £ .76382D+00
Wy —.57461D+00 £ .58568D+00
Wy —.16640D+01 + .56081D+00
w, .37461D+01 + .11670D+01
X —.10300D+02 + .60561D—01
Y —.19125D+02 + .54771D—-01
Z —.70920D+01 + .44763D—-01
a(1) 0.10897 mas km s~!
Nr. Obsns. 197,835
TABLE 5

SOLUTION FOR OTHER UNKNOWS

Unknown Value and Mean Error Unknown Value and Mean Error
So 22.850 £ 0.055 km s~! K 6.351 £ 0.809 km s~! kpc~!
A 10.788 £ 0.495 km s~ ! kpc™! Wa —0.118 £ 0.104 mas yr~!
B —~10.973 £ 0.488 km s~ ! kpc™! wy —1.124 + 0.141 mas yr~!
I —3.°571 £+ 0.°805 W, ~2.314 + 0.092 mas yr—!
TABLE 6

STATISTICS OF THE RESIDUALS (REAL, UPPER; NORMAL, LOWER)

Median Residual Mean Residual Q Factor Skewness Kurtosis

(mas km s1) (mas km s™1)
—0.46195e-05 —0.56257e-05 0.4190 —0.0846 5.6857
0.0 0.0 2.54 0.0 0.0
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[ =63.°3, b = 26.°3. The A and B constants also lie in range given by other determinations, although their
near equality is somewhat surprising. This, however, may be a consequence of the greater distances to which
the trigonometric parallaxes now reach. Kerr & Lynden-Bell (1986), who surveyed the various determinations
that lead to the IAU recommended values of 14 km s~ kpc™* for A and —12 km s™! kpc™! for B, remark
that equal values of 13 and —13 km s~! kpc~! become more consistent witha flat rotation curve for the Galaxy
given by radioastronomical observations, made at greater distances than optical observations. A and B yield
a Galactic rotational velocity near the Sun of Vp = 185 km s~ if we take the distance to the Galactic center
Ry as 8.5 kpc. Although lower than the IAU recommended 220 & 20 km s~?, this also agrees with what some
others have found. My 1998 study (Branham 1998), for example, although containing only 5% of the stars of
the present study, but also a mixture of spectral and luminosity classes, found V3 = 171 km s~!, and Miyamoto
& Séma (1993) in a solution based on only K and M giants determine 177 km s~!. Zhu & Yang (1999), on
the other hand, also using K and M giants, find Vy = 249.6 km s~!. This study and Zhu and Yang’s use
Hipparcos proper motions, my previous study and Miyamoto and Séma’s systems are based on the FK5; the
dispersion from 171 through 249.6 km s~! permits no easy association of results versus the reference system or
spectrum-luminosity class.

The waters are further muddied by Miyamoto & Zi’s study (1998), which used only Hipparcos proper motions
of OB stars and found Vy = 268.7 km s~!, also disagreeing with the IAU recommendation but in the other
direction and 84 km s™! higher than the value found in this study. Because Miyamoto and Zi use only OB stars
some discrepancy with my value determined from a mixture of all of the spectral types is inevitable, but the
size of the difference is surprising. And because we both use Hipparcos proper motions the reason that they give
for the disparity between their value and the IAU recommendation, differences in the proper motion system
between the Hipparcos catalog and ground-based catalogs, becomes inapplicable. Nor can the discrepancy be
attributed easily to trimming the data. Unlike Miyamoto & Séma (1993), Miyamoto and Zi use a parsimonious
trimming philosophy similar to mine that rejects only 2.4% of the stars. Although I incorporate radial velocities
and they do not, it is difficult to see how an 84 km s~! difference can be explained by an addition of 4% of
equations of condition corresponding to radial velocity to the total number of equations of condition. One
possibility for explaining the discrepancy arises from the formation of the equations of condition: they include
stars out to a distance of 3 kpc, three times the effective upper limit of the distances I use, but is it legitimate
to employ Miyamoto and Zi’s equation (1), a first-order Taylor expansion, at such large distances? Would it
not be advisable to use second-order expansions beyond 1 kpc? They refer to solving the equations of condition
by “generalized least squares”. Are they using the term in the sense in which it is used in numerical analysis,
where “generalized least squares” (GLS) means calculating a least squares solution by incorporation of a given
covariance matrix of the observations? (See Bjorck (1996) for further discussion). If so, the calculated GLS
solution depends on the given covariance matrix. It would be useful to know what this covariance matrix
is. But if they merely use “generalized least squares” as a euphemism for least squares, then is it legitimate
to apply least squares to a problem where the distances vary from 0.1 kpc to 3 kpc? Although they use
spectroscopic parallaxes, which do not exhibit the feature of increasing error in the distance as the distance
increases, although as explained previously this feature does not seem to derail TLS, the equations of condition
will still contain at least some error. Would it not be preferable to use TLS? The resolution of the conundrum
of why the values of Vj vary so much among different studies undoubtedly lies in the careful consideration of
these, and other, questions, a far from trivial undertaking.

The K term, if evaluated at the median distance of the Hipparcos parallaxes, yields 1.33 km s~!, again
reasonable considering that the term has been found significant only for early stars (5.3 km s~! for O and B
stars and 1.4 km s™* for A stars). Given that 21% of the stars are O, B, and A one can hardly complain about
the value determined.

The z component of the rotation vector w is the same as the B constant and needs no further comment. w,
and wy, subject to various interpretations in terms of an equinox motion, corrections to lunisolar and planetary
precession, and others, although small still exceed the supposed limits of the inertiality of the Hipparcos system,
+ 0.25 mas yr~!. But the results give what they give. That a value close to 1 mas yr~! seems not merely a
fluke is reinforced upon our doing a slightly different solution. One way of simplifying the tensor S, used in
many studies, assumes that the diagonal elements are zero. Given the singular values from the data matrix
for the data presented in this paper, such an assumption scarcely merits credibility and renders nugatory
any solution based on it. But if we should nevertheless make the assumption, then we would obtain the
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values (without showing mean errors) for the unknowns that can be determined without the diagonal elements:
So = 22.860 km s7!; A = 12479 km s~ ! kpc™!; B = w, = —11.027 km s~ kpc™!; w, = —0.149 mas yr—!;
wy = —1.101 mas yr~!. The solar motion remains nearly the same, Vp increases to 200 km s, still lower
than the IAU recommendation, the near equality between A and B disappears, and w, and w, remain nearly
the same. Thus, with or without the diagonal elements the rotation tensor leads to rotations higher than the
supposed stability limit of the Hipparcos system. This may be a consequence of remaining cosmic error in the
proper motions. To test the supposition one could combine the Hipparcos proper motions with those from a
ground based system, by using Wielen et al’s procedure (1999) for example. That is, however, a nontrivial
task and best left for further research. One cannot, however, exclude entirely the possibility of higher stability
limits for the Hipparcos system than those published. Pinsonneault et al. (1998), for example, give evidence
for systematic errors in the Hipparcos parallaxes at the 1 mas level, higher than what one would infer from the
catalog description.

9. CONCLUSIONS

The Hipparcos parallaxes and proper motions, along with ancillary radial velocities, yield acceptable values
for the parameters of Galactic kinematics when one uses the Ogorodnikov-Milne model and reduces the data
with mixed TLS-LS. All of the unknowns are well determined as measured by their singular values. Only the x
and y components of the rotation tensor appear slightly anomalous, although this may be caused by remaining
cosmic error in the proper motion system.

Future research should investigate the components of the rotation tensor by combining the Hipparcos proper
with ground-based proper motions and should also look into possible differences caused by different spectrum-
luminosity groups. Because the Hipparcos catalog does not include luminosity classes, although it does incor-
porate spectral classification, that information would have to come from another source, perhaps the SKYMAP
Catalog, electronic address fttp://adc.gsfc.nasa.gov/pub/adc/archive/catalogs/5/5102. Both of these endeav-
ors, including ground-based proper motions and luminosity classes, represent nontrivial extensions of the work
presented here.

I would like to dedicate this article to the memory of a colleague, friend, and a great astrometrist, Dr.
Heinrich K. (”"Heinz”) Eichhorn.
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