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RESUMEN

Utilizando los trabajos realizados por Prieto y Docobo sobre el problema de
dos cuerpos con pérdida isotrópica de masa en cada una de sus componentes, de
acuerdo con la ley Eddington-Jeans, se estudia el comportamiento evolutivo de los
elementos orbitales correspondientes a los sistemas binarios γ Persei y α Centauri.

ABSTRACT

Prieto and Docobo’s approach to the two-body problem with isotropic mass
loss is used to study the dynamical evolution of the orbital elements of the binaries
γ Persei and α Centauri under the assumption that mass losses obey the Eddington-
Jeans law, with separate parameters for each component of the binaries.
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1. INTRODUCTION

Analytical solutions of the two-body problem for masses that vary in accordance with the Eddington-Jeans
law ṁ = −αmn (Eddington 1924; Jeans 1924) have recently been obtained:

a) for m as the total mass of the system (Prieto & Docobo 1997a).

b) With separate α and n for each of the two components (Prieto & Docobo 1997b).

Here we apply the solution obtained in case b) to γ Persei and α Centauri.

2. METHOD

We consider a two-body system in which mass losses by the two bodies conform to the laws

ṁ1 = −αm1
n ,

ṁ2 = −βm2
p .

(1)

The Hamiltonian function is

F = −
1

2

m1
2 + m2

2 + 2m1m2

L2
+

ṁ1 + ṁ2

m1 + m2

Le sinE . (2)
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180 LING, MAGDALENA, & PRIETO

and the equations of motion

d`

dt
=

∂F

∂L
;

dg

dt
=

∂F

∂G

dL

dt
= −

∂F

∂`
;

dG

dt
= −

∂F

∂g
= 0 .

(3)

where L, G, `, and g are the Dalaunay variables (Prieto & Docobo 1997a). On expanding m1(t) and m2(t) as
Taylor series in the neighbourhood of an initial time t = t0 the Hamiltonian can be written in powers of two
small parameters ε1 and ε2 (the dimensionless equivalents of α and β); this series can be truncated at any
desired order, and the resulting equations of motion can then be integrated analytically; specifically, a method
based on Lie transformations is used to obtain a generating function W = ε1W

1 +ε2W
2 affording the canonical

transformation from the variable set (L, G, `, g) to another, more manageable, set (L∗, G∗, `∗, g∗). L∗, G∗, g∗

are constants and `∗ is quadratic in t.
For our present purposes it suffices to expand the Hamiltonian up to first order in ε1 and ε2 because the

terms of higher order are negligible (Prieto & Docobo 1997b). We therefore write

F = F0 + ε2F01 + ε1F10 = −
(m10 + m20)

2

2L2
+

+ ε1

[

(

mn+1

10 + mn
10m20

)

L2
(t − t0) −

L e mn
10 sinE

m10 + m20

]

+ ε2





(

m
p+1

20 + m
p
20m10

)

L2
(t − t0) −

L e m
p
20 sinE

m10 + m20





(4)

where m10, m20 are the values of m1 and m2 in the initial instant t0.
Under these conditions and with the equations of the biparametric method (Prieto & Docobo 1997b) we

can obtain W 1 and W 2

W 1 =
L∗4e∗mn

10 cosE∗

(m10 + m20)
3

(

1 −
e∗ cosE∗

2

)

,

W 2 =
L∗4e∗m

p
20 cosE∗

(m10 + m20)
3

(

1 −
e∗ cosE∗

2

)

.

(5)

For given values m10, m20, P0, T0, e0, a0, and ω0 of the masses and orbital elements of the system at time t0
the solution is unique and can be used to calculate (L∗, G∗, `∗, g∗) for any time t. The variables (L, G, `, g) are
then given by

L = L∗ −
∂W

∂`∗
,

G = G∗ −
∂W

∂g∗
,

` = `∗ +
∂W

∂L∗
,

g = g∗ +
∂W

∂G∗
,

(6)

and the equation for `∗ is

`∗ = A∗
0 + A∗

1t + A∗
2t

2 , (7)



©
 C

o
p

yr
ig

ht
 2

00
1:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o
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where

A∗
1 =

(m10 + m20)
2 + 2(m10 + m20)t0(ε1m

n
10 + ε2m

p
20)

L∗3
,

A∗
2 = −

(m10 + m20)(ε1m
n+1

10 + ε2m
p
20m10)

m10L∗3
,

(8)

and A∗
0 is an integration constant. Finally, the orbital elements follow

P = 2π

√

a3

m
,

T = t −
l

2π

√

m

a3
,

e =

√

1 −
G2

L2
,

a =
L2

m
,

ω = g ,

(9)

m being the total mass of the system.

3. APPLICATIONS

We have applied the above approach to the well-known binary stars, γ Persei and α Centauri. There is
abundant physical and dynamical information for these stars (in particular, the masses of their components are
known with great precision because both are spectro-interferometric binaries), but they differ widely in their
characteristics, γ Persei comprising a G giant and an early A star on the main sequence, and α Centauri two
components of solar type.

3.1. γ Persei

γ Persei (WDS 03048+5330, HD 18925, HIP 14328) is a spectro-interferometric and photometric double
star for which visual orbits have been published by McAlister (1982), Popper & McAlister (1987), and Pourboix
(1999). The most reliable orbital elements are those of Pourboix, which were accordingly used as the initial
values of the orbital elements in this work (Table 1). The initial masses of each component listed in Table 1
were calculated using Pourboix’s orbit and a spectroscopic orbit also published by Popper & McAlister (1987).
Physical parameters calculated using Allende & Lambert’s (1999) procedure are shown in Table 2 together
with the trigonometric parallax π given by Hipparcos (ESA 1997).
As mass loss laws we used:

ṁ1 = −1.0617× 10−9m3.5
1 ,

ṁ2 = −1.4701× 10−11m4
2 ,

(10)

where m1 and m2 are the masses of the A and the B component, respectively.
The values of α and β of equation (1) were obtained from the relation

log(−Ṁ) = −1.01 + 1.96 log

(

L

L�

)

− 3.54 log(Teff) . (11)

This relation is based on Waldron’s empirical correlations (Waldron 1985), which are valid for stars for
which, as in the case of γ Persei,
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182 LING, MAGDALENA, & PRIETO

Fig. 1. Variation of perturbed period, P .
For a better visualization we plot the quantity
P ’=(P−14.7651)×104 on the y-axis.

Fig. 2. Variation of perturbed time of periastron pas-
sage, T .

Fig. 3. Variation of perturbed eccentricity, e. For
a better visualization we plot the quantity e’=(e-
0.7849999)×108 on the y-axis.

Fig. 4. Variation of perturbed semimajor axis, a.
For a better visualization we plot the quantity a’=(a-
0.144)×104 on the y-axis.
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PERTURBATIONS BY MASS LOSS . . . 183

TABLE 1

ORBITAL ELEMENTS AND MASSES
(γ PERSEI)

P0(years) = 14.6

T0(Besselian year) = 1991.08

e0 = 0.785

a0(
′′) = 0.144

i0(
◦) = 90.9

Ω0(
◦) = 244.1

ω0(
◦) = 170.0

mass A (M�) = 2.7

mass B (M�) = 1.65

TABLE 2

PHYSICAL PARAMETERS (γ PERSEI)

A Star B Star

Spectral Type G8III A3V

Absolute Magnitude −1.23 0.01

Teff (◦K) 4885 7895

L(L�) 97.724 288.403

π(Hipparcos) 0′′01272

TABLE 3

ORBITAL ELEMENTS AND MASSES
(α CENTAURI)

P0(years) = 79.9

T0(Besselian year) = 1955.59

e0 = 0.519

a0(
′′) = 17.59

i0(
◦) = 79.23

Ω0(
◦) = 204.82

ω0(
◦) = 231.8

mass A (M�) = 1.16

mass B (M�) = 0.97

TABLE 4

PHYSICAL PARAMETERS (α CENTAURI)

A Star B Star

Spectral Type G2V K1V

Absolute Magnitude 4.327 5.667

Teff (◦K) 5830 5255

L(L�) 1.532 2.021

π(Hipparcos) 0′′74212

3.2 ≤ log(Teff ) ≤ 4.8 ,

and

2.0 ≤ log

(

L

L�

)

≤ 6.5 ,

(Valls-Gabaud 1988). The exponents n and p were obtained by interpolation of the data in Eddington’s Table I
(Eddington 1924), which Eddington calculated using the empirical expression

L = c m7/5 (1 − b)
3/2

2.114/5 Teff
4/5 , (12)

where (1 − b) = 0.00309 m2 2.114 b4 and c is an observational constant.
With the above initial values and parameters, the method sketched in the previous section was used to

calculate the time-dependence of the orbital elements over 100,000 years. Figures 1 to 5 show the evolution of
the orbital elements over the last 100 time units which would correspond to about 150 years (see figure captions
for the scaling of the y-axes).

3.2. α Centauri

Orbits for our nearest double star (WDS 14396–6050, HD 128620, HIP 71683) have been calculated by
Finsen (1926), Wielen (1962), Heintz (1982), and Purboix, Neuforge-Verheecke, & Noels (1999). For the initial
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184 LING, MAGDALENA, & PRIETO

Fig. 5. Variation of perturbed longitude of periastron,
ω. For a better visualization, we plot the quantity
ω’=(ω−169.999999999) × 1010 on the y-axis.

Fig. 6. Variation of perturbed period, P . For a better
visualization we plot the quantity P ’=(P−79.9)×106

on the y-axis.

Fig. 7. Variation of perturbed time of periastron pas-
sage, T .

Fig. 8. Variation of perturbed eccentricity, e.
For a better visualization we plot the quantity
e’=(e−0.519)×1013 on the y-axis.
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PERTURBATIONS BY MASS LOSS . . . 185

Fig. 9. Variation of perturbed semimajor axis,
a. For a better visualization we plot the quantity
a’=(a−17.59)×107 on the y-axis.

Fig. 10. Variation of perturbed longitude of perias-
tron, ω. For a better visualization we plot the quantity
ω’=(ω−231.799999)×107 on the y-axis.

values of the orbital elements we have again used Pourboix et al.’s solution, which is based on visual and
spectroscopic data and exhibits best overall fit to the complete set of observations; these elements are listed in
Table 3 together with the corresponding initial masses. Physical parameters published by Neuforge-Verheecke
& Magain (1997) are listed in Table 4 together with the Hipparcos parallax.

The mass loss laws considered in this case were:

ṁ1 = −0.350141× 10−14m4
1 ,

ṁ2 = −0.350141× 10−14m2.7
2 ,

(13)

where the values of α and β are both equal to the value corresponding to solar mass loss (Schatzman & Praderie
1993), but the exponents n and p were obtained in the same way as for γ Persei. As for γ Persei, calculations
were carried out for a 100,000 year time interval, but since the orbital period of α Centauri is greater than that
of γ Persei, we show in Figures 6 to 10 the variation of the elements over the last 1000 time units, corresponding
to about 1300 years (see figure captions for the scaling of the y-axes).

4. CONCLUSIONS

In spite of the wide physical and dynamical differences between γ Persei and α Centauri, the overall
behaviour of their orbital elements is similar: the period, semiaxis major, and periastron epoch exhibit secular
behaviour (these trends continue throughout the 100,000 year interval studied) while the eccentricity and the
argument of periastron vary periodically (some periodic variation is also superimposed on the linear trends
of the period and semiaxis major of α Centauri). In all cases, however, the rates of variation are very small
especially in the case of α Centauri which has the smaller mass loss.

All these calculations were carried out on a FUJITSU vectorial computer model VPP300 in the Supercom-
putation Center of Galicia (CESGA).

We wish to thank C. Allende for data supplied to us. This work was supported by the Xunta de Galicia
(Spain) under project PGIDT-99-PX-124301B.
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