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RESUMEN

En los sistemas de corrección por medio de óptica adaptativa utilizados en
aplicaciones astronómicas, las medidas del centroide de una imagen se utilizan am-
pliamente. En observaciones reales, estas medidas son afectadas por el centelleo,
por lo que la reconstrucción del frente de onda contiene errores debido al efecto
del centelleo. En este art́ıculo, investigamos la influencia del centelleo en la deter-
minación del centroide de una imagen por medio de simulaciones numéricas. La
comparación de resultados para los casos de propagación vertical y horizontal mues-
tra que no hay una fuerte dependencia de la estructura detallada del perfil de C2

n.
Mostramos resultados de esta dependencia a través de dos parámetros integrados
del C2

n: la intensidad de la turbulencia (parámetro de Fried) y el nivel del centelleo
(varianza del logaritmo de la amplitud).

ABSTRACT

Image centroid measurements are the most used information in astronomical
adaptive optics systems for the wavefront reconstruction. However, because in real
observations these measurements are affected by scintillations, the reconstructed
wavefront always contains some errors related to the scintillation effect. In this
paper we investigate the influence of scintillations on the image centroid by means
of computer simulations. The simulations have been performed for the case of weak-
turbulence conditions for both varying and constant C2

n profile. The comparison
of the results shows that there is no strong dependence on the form of the C2

n

profile: rather the magnitude of the effect is determined mainly by two integral
parameters of a C2

n profile: the integral turbulence strength (Fried parameter) and
the scintillation level (intensity variance).

Key Words: ATMOSPHERIC EFFECTS — INSTRUMENTATION:

ADAPTIVE OPTICS — METHODS: NUMERICAL

1. INTRODUCTION

Image centroid measurements are often used in Hartmann-like wavefront sensors for a reconstruction of
turbulence-induced phase distortions (Voitsekhovich, Gubin, & Mikulich 1988; Rigaut et al. 1991; Jiang et al.
1993; Li, Xian, & Jiang 1993; Colucci et al. 1994; Rigaut, Ellerbroek, & Northcott 1997; Voitsekhovich 1996).
This approach is applied to both fundamental research on atmospheric turbulence and for practical purposes
(such as atmospheric adaptive optics) as well. The method is quite popular in applications because it provides
a direct and simple relation between the measurements and phase gradients: it is assumed that the phase gra-
dient averaged over the subaperture of a Hartmann mask is proportional to the corresponding image centroid
offset. However, this simple relationship is only valid in the limit in which the effect of amplitude fluctua-
tions (scintillations) is not important. It is widely accepted (Roddier 1981) that, under the weak-turbulence
conditions, the effect of scintillations on the image centroid is negligible but this assumption has never been
supported by quantitative calculations.
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194 VOITSEKHOVICH, SÁNCHEZ, & ORLOV

In this paper we calculate the magnitude of the scintillation effect using computer simulations. The simula-
tions are based on the recently proposed method of random wave vectors (RWV) (Kouznetsov, Voitsekhovich,
& Ortega-Mart́ınez 1997; Voitsekhovich et al. 1999) that allows us to simulate the amplitude and phase samples
with the desired statistics and cross-statistics.

2. DEFINITION OF THE SCINTILLATION-INDUCED ERROR.

Let the wave Ψ (ρ) pass through a thin lens of diameter d and focal length f . The image centroid ρc of the
image formed by this wave at the lens focal plane can be written as (Tatarski 1969):

ρc = {xc, yc} = −
f

k

∫

Gd

d2
ρ exp {2χ (ρ)}∇S (ρ)

∫

Gd

d2
ρ exp {2χ (ρ)}

, (1)

where xc, yc denote the Cartesian coordinates of the image centroid, χ (ρ) and S (ρ) are the log-amplitude
and the phase of the wave Ψ, respectively, k is the wavenumber, and Gd denotes the integration over the lens
aperture.

However, in experiments related to phase reconstruction from centroid measurements (for example,
Hartmann-like wavefront sensors) it is always assumed that the effect of amplitude fluctuations on the im-
age centroid is negligible. Mathematically this assumption can be written as

ρ
′

c
=

{

x
′

c
, y

′

c

}

= −
f

kΣ

∫

Gd

d2
ρ ∇S (ρ) , (2)

where Σ denotes the lens area.
Since in the problems related to propagation through the atmospheric turbulence the quantities ρc and ρ

′

c

are random, we can define the relative error σ of image centroid measurements associated with scintillations as

σ =
1

2









√

〈

(xc − x′

c
)
2
〉

√

〈x2
c
〉

+

√

〈

(yc − y′

c
)
2
〉

√

〈y2
c
〉









. (3)

From the physical point of view, the error σ shows how big is the relative contribution of the scintillations to
the image centroid offset. In what follows we calculate this error as a function of the turbulence conditions and
lens size by means of computer simulations.

3. SIMULATION METHOD

In this paper, we restrict our attention to the propagation of the initially plane wave through weak turbu-
lence. Under these conditions we can use the method of random wave vectors (Kouznetsov et al. 1997) (RWV)
that allows us to simulate the phase and log-amplitude samples with desired statistics and cross-statistics. We
present below only a short description of RWV method, while the corresponding detailed derivations can be
found in Kouznetsov et al. (1997).

The phase S (ρ) and log-amplitude χ (ρ) samples at the aperture are simulated as

S (ρ) =
M
∑

m=1

F (pm) cos (pm · ρ + ϕm) ,

χ (ρ) =
M
∑

m=1

G (pm) cos (pm · ρ + ϕm + ψm) ,

(4)

where ρ is the 2-D position vector at the aperture plane, M denotes the number of harmonics used in the
simulation, pm is the 2-D random wave vector, pm is the modulus of the vector pm.

The following statistical restrictions are imposed on the parameters in equation (4).
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(i) The moduli pm and the orientations θm of the vectors pm, and the quantities ϕm and ψm, are considered
to be statistically independent quantities.

(ii) θm and ϕm are distributed uniformly inside the range [−π, π].
With the conditions (i) and (ii) in hand, equation (4) allows a direct physical interpretation. The statistical
independence of the ϕm and their uniform distribution inside the range [−π, π] restrict the consideration to
homogeneous processes only. Then by imposing a random uniform distribution inside the range [−π, π] for
the orientations θm of the vectors pm only the isotropic processes are chosen from the class of homogenous
ones. So, with these two restrictions, we simulate S and χ as isotropic random functions that correspond to
the existing theory of atmospheric turbulence.

Furthermore, we choose the joint probability density function of the pm, F (pm), G (pm), ϕm and ψm so as
to make the simulated spectra W s

S , W s
χ , and cross-spectrum W s

χS coincident with the corresponding theoretical
ones WS , Wχ, and WχS .

Using the above conditions, one can express the quantities in equation (4) in terms of theoretical spectra
as follows [see Kouznetsov et al. (1997) for detailed derivations]:

The amplitudes F and G

F (p) =

√

WS (p)

πMΩ (p)
, G (p) =

√

Wχ (p)

πMΩ (p)
. (5)

We note that there is a misprint in equation (11) of Kouznetsov et al. (1997): the factor 2 has to be removed
from the denominators in expressions for the functions F and G.

The probability density function (PDF) Ω (p) is:

Ω (p) = 1/
(

2πp2 log(K2/K1)
)

, (6)

where [K1,K2] is the interval within which the p are generated.
The joint PDF η (ψ, p) of ψ and p is:

η (ψ, p) =
1

2
√

πα (p)
exp

(

−
ψ2

4α (p)

)

, α (p) = log

√

WS (p)Wχ (p)

WSχ (p)
. (7)

For the weak-turbulence conditions the theoretical spectra follow from the Rytov solution of the parabolic
equation as (Tatarski 1969):

WS(p) = 0.651Φn(p)

∫

dz C2

n(z)
[

1 + cos
( z

k
p2

)]

Wχ(p) = 0.651Φn(p)

∫

dz C2

n(z)
[

1 − cos
( z

k
p2

)]

WχS(p) = 0.651Φn(p)

∫

dz C2

n(z) sin
(z

k
p2

)

,

(8)

where Φn is the refractive-index spectrum, C2

n (z) the profile of the refractive-index structure constant, and the
integration is performed along the propagation path.

The step-by-step description of the simulation procedure can be found in Kouznetsov et al. (1997)

4. SIMULATION RESULTS

Using equations 1 to 3 and the samples simulated by the RWV method, we estimate the relative error σ
defined by equation (3). The present simulation is performed for the case of Kolmogorov turbulence Φn (p) =
p−11/3. The main simulation parameters are chosen as follows: the frequency limits: K1 = 10−3 m−1, K2 =
103 m−1, the number of harmonics: M = 100.

The frequency limits have been chosen after a set of preliminary simulations which has shown that a
subsequent decrease of K1 and increase of K2 does not significantly affect the final results. The number of
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Fig. 1. Relative error σ versus the ratio of lens diameter d to the Fried parameter r0. Vertical propagation (Hufnagel
C

2

n
profile).

harmonics has been chosen in the same way. The number of samples used for the statistical averaging in
equation (3) is equal to 1000. The simulations are performed for two propagation cases which are of interest
for applications: varying C2

n (vertical path) and constant C2

n (horizontal path).
For the calculations with varying C2

n we use the Hufnagel model of C2

n (z) that is given by Hufnagel (1974):

C2

n (z) = C0r
−5/3

0
k−2

[

(

z

z0

)10

exp

(

−
z

z1

)

+ exp

(

−
z

z2

)

]

, (9)

where r0 is the Fried parameter, k is the wavenumber, C0 = 1.027×10−3 m−1, z0 = 4.632×103 m, z1 = 103 m,
z2 = 1.5 × 103 m.

The expressions for the spectra WS , Wχ, and WχS corresponding to this model can be found in Kouznetsov
et al. (1997). The simulation results are shown in Figure 1, where the relative error is plotted versus the ratio
of lens diameter d to the Fried parameter r0. Additionally, we indicate in the graph the magnitudes of the
wavelength λ, the Fried parameter r0 and the standard of log-amplitude σχ.

For horizontal propagation, C2

n (z) is constant, i.e., C2

n (z) = C2

n. The theoretical spectra are expressed as

WS(p) = 1.544 r
−5/3

0
p−11/3

[

1 +
k

p2L
sin

(

p2L

k

)]

Wχ(p) = 1.544 r
−5/3

0
p−11/3

[

1 −
k

p2L
sin

(

p2L

k

)]

WχS(p) = 1.544 r
−5/3

0
p−11/3

k

p2L

[

1 − cos

(

p2L

k

)]

,

(10)
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Fig. 2. Relative error σ versus the ratio of lens diameter d to the Fried parameter r0. Horizontal propagation (constant
C

2

n
).

where L is the propagation length, and r0 = 1.68
(

k2C2

nL
)

−3/5

.

The simulation results for the horizontal path are shown in Figure 2. As in the case of the vertical path, we
plot the relative error versus the ratio of lens diameter to the Fried parameter. For the comparison purposes,
we chose the propagation length so that it allows us to keep the same magnitudes of σχ as in the case of vertical
propagation.

As one can see from Figs. 1 and 2, the error initially grows up to some maximum magnitude, and then
it tends slowly to some asymptotic level. This behavior may have the following explanation. As it follows
from equations (1–3), three different scales are involved in the problem: the amplitude correlation length, the
phase gradient-amplitude cross-correlation length, and the phase gradient correlation length. Initially, when
the aperture size is small compared to the correlation length of amplitude fluctuations, the main contribution
to the error comes from the linear components of amplitude and phase gradient which give a nearly linear
increase of the error. Then, when the aperture size becomes bigger that the amplitude correlation length, but
still remains small compared to the phase gradient-amplitude cross-correlation length, the non-linear terms of
the amplitude expansion start to contribute more and more to the error. In this part of the plot the error
grows more slowly and in a non-linear way. The error reaches its maximum magnitude when the aperture size
is of the order of the phase gradient-amplitude cross-correlation length. And finally, when the aperture size
becomes bigger than the phase gradient-amplitude cross-correlation length, the main contribution to the error
comes from the aperture zones which have sizes comparable to the phase gradient-amplitude cross-correlation
length. In this part of the plot one can observe that the error tends slowly to its asymptotic value.

Comparing Fig. 1 and Fig. 2, one can notice that there is no big difference in the magnitude of the effect
for the two propagation cases. This means that the magnitude of the effect does not strongly depend on the
detailed structure of C2

n profile: rather this magnitude is determined mainly by two integral parameters of a C2

n

profile: the integral turbulence strength (Fried parameter) and the scintillation level (log-amplitude variance).
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5. CONCLUSIONS

We have estimated how scintillations affect measurements of the image centroid in an adaptive optics
system. The results obtained show that, under weak-turbulence conditions, the magnitude of this effect does
not exceed 15%. Weak-turbulence condition occur for the majority of conventional astronomical observations
because outside of these conditions the turbulence affects the image quality so strongly that the extraction
of astronomically-valuable information becomes practically impossible. According to the classical definition
(Tatarski 1969), weak-turbulence conditions occur while the log-amplitude variance σ2

χ ∼
< 0.3. However, based

on recent investigations (Voitsekhovich, Kouznetsov, & Morozov 1998), it is also possible to define weak-
turbulence conditions in another way. It has been shown (Voitsekhovich et al. 1998) that when weak-turbulence
conditions are violated, a qualitatively different phenomenon appears: turbulence-induced phase dislocations.
The phase dislocation is a special type of phase distortion where phase singularities with vortices occur. These
singularities affect the observed image in a special way and they cannot be corrected by conventional adaptive
optics methods. So, weak-turbulence conditions may be defined as the conditions under which the phase
dislocations have not yet appeared (Voitsekhovich et al. 1998).

It has been shown in this paper that the magnitude of the scintillation effect on the image centroid increases
with increasing turbulence strength. So, one can expect that under strong-turbulence conditions the influence
of scintillations on the image centroid can be considerable and that, after a certain turbulence strength, it can
make the phase reconstruction from image centroid measurements impossible.

The magnitude of the effect has been estimated for two propagation cases: the constant C2

n (horizontal
propagation) and C2

n varying along a propagation path (vertical propagation). The comparison of the results
has shown that there is some difference between two cases, but that it is rather small. Because the two
considered C2

n profiles represent two limiting propagation cases, it is possible to conclude that the magnitude of
the effect depends mainly on two integral parameters of a C2

n profile: the Fried parameter and the log-amplitude
variance, rather than on the detailed structure of the C2

n profile.
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