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RESUMEN

La magnitud de las fluctuaciones de temperatura (t2) que se necesitan para
explicar las incoherencias observadas entre las metalicidades inferidas por las ĺıneas
de recombinación o por las ĺıneas prohibidas, no pueden alcanzarse con modelos al
equilibrio y estacionarios en el tiempo. Por otra parte, si la fuente ionizante fuera
variable, las fluctuaciones de temperaturas t2 seŕıan mucho mayores. Investigamos
la respuesta temporal de la estructura en ionización y temperatura de una nebulosa
fotoionizada por una fuenta variable periódica. Estudiamos como el valor medio
asimptótico,

〈
t2

〉
, se comporta en función del periódo y amplitud de las variaciones

de la fuente. Encontramos que las fluctuaciones de temperatura se producen sola-
mente en la parte externa de la nebulosa, cerca del frente de ionización, dentro de
un espesor geométrico correspondiente al 8–20% del tamaño de la capa ionizada.
Concluimos que la amplitud de variación de la estrella excitadora que se requiere
para conseguir un

〈
t2

〉
= 0.025 (como en la nebulosa de Orión) es excesivamente

grande. La variabilidad de la fuente ionizante no es por lo tanto un mecanismo
viable para explicar los valores observados de t2. Llegamos a conclusiones similares
cuando estudiamos la variabilidad temporal que resulta de sombras intermitentes
detrás de condensaciones de gas opacas. Encontramos que nebulosas fotoionizadas
son en promedio menos masivas pero algo más calientes en el caso de fuentes vari-
ables ćıclicas.

ABSTRACT

The magnitude of the temperature fluctuations (t2) required to explain the
observed inconsistencies between metallicities inferred from recombination lines and
from forbidden lines cannot be attained by steady-state equilibrium photoioniza-
tion models. If, on the other hand, the nebular ionizing source were variable,
the temperature fluctuations t2 would be significantly larger. We investigate the
time-dependent response of the nebular ionization and temperature structure when
photoionized by a periodically varying source. We study how the asymptotic mean
value,

〈
t2

〉
, behaves as a function of the period or amplitude of the source variabil-

ity. We find that the temperature fluctuations occur only in the outer section of
the nebula, close to the ionization front, within a zone corresponding to 8–20% of
the ionized layer’s thickness. We conclude that the amplitude of the exciting star
variations required to achieve a

〈
t2

〉
= 0.025 (as in the Orion nebula) is unaccept-

ably large. Source variability is therefore not a viable mechanism to explain the
observed values of t2. We reach a similar conclusion from studies of the temporal
variability resulting from intermittent shadows behind opaque condensations. We
find that photoionized nebulae are on average less massive but somewhat hotter in
the case of cyclically variable ionizing sources.
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56 BINETTE ET AL.

1. INTRODUCTION

The presence of temperature fluctuations in pho-
toionized nebulae has been a matter of debate since
the pioneering work of Peimbert (1967). Observa-
tional evidence has since accumulated in favor of his
analysis of the problem of nebular temperatures. For
instance, the temperatures of H II regions and plan-
etary nebulae are observed to be significantly lower
when derived using recombination lines rather than
from forbidden line ratios (see review by Peimbert,
Luridiana, & Torres-Peimbert 1995).

The work of Kingdon & Ferland (1995) and Pérez
(1997) has shown that the amplitude of the fluctu-
ations in hydrostatic photoionization calculations is
much smaller than required to explain the observed
differences between forbidden and recombination line
temperatures. Possible causes for the fluctuations in-
clude metallicity inhomogeneities (Torres-Peimbert,
Peimbert, & Peña 1990; Kingdon & Ferland 1998;
Liu et al. 2000), photoionization by small dust grains
Stasińska & Szczerba 2001), and shock heating due
to stellar wind or even supernovae in the case of giant
H II regions (Luridiana, Peimbert, & Leitherer 1999).
The inclusion of temperature fluctuations in a theo-
retical framework has so far been tentative (Luridi-
ana, Cerviño, & Binette 2001; Binette & Luridiana
2000; Binette, Luridiana, & Henney 2001) given our
lack of knowledge about their possible cause.

In this paper, we investigate how temporal vari-
ability in ionization structure due to an intrinsically
variable ionizing source or to intermittent shadows
behind opaque condensations can affect the temper-
ature structure and induce substantial temperature
fluctuations. We also address the question whether a
variable ionizing continuum with a fixed duty cycle
would lead to a nebula that is on average warmer
and less massive.

2. CALCULATIONS

2.1. Intrinsic Variability of the Ionizing Source

Resolution of the ionizing radiation transfer in
the case of a variable source implies a sufficiently
high temporal resolution in order to follow the pro-
gression of ionizing photon fronts across the nebula.
The atomic timescales on the other hand are much
longer, and a lot of computation time is spent in
the actual transfer while not much is occurring in
terms of changes in ionization or temperature. For
this reason, in the building of the new code yguana

we simplified the atomic physics in order to derive
the desired results within reasonable computation ef-
forts. Our goal was to give precedence to a rigorous

treatment of the transfer, and not to detailed atomic
physics. The Courant condition, for instance, was
rigorously satisfied in all the calculations (eq. B21
in § B.2.1 of Appendix B).

One of the simplifications introduced in yguana

is that only Hydrogen is considered in the integra-
tion of the nebular opacity, which is a valid approx-
imation for H II regions. Furthermore, we consider
a monochromatic transfer with all ionizing photons
having the same energy. This simplification implies
that the hardening of the ionizing radiation with
depth is not considered. The expected shallow ra-
dial temperature gradient will therefore be absent
from our calculations. This is a minor shortcoming of
yguana, since the level of temperature fluctuations
caused by non-equilibrium ionization largely exceeds
that produced by the temperature gradient alone
(cf. § 2.4). In effect, non-equilibrium photoioniza-
tion within the IF, which we compute accurately, far
exceeds the larger increase due to continuum hard-
ening at large depths. The various effects introduced
by UV source variability on a photoinized nebula will
all be accurately tracked and made obvious by com-
paring our time-dependent nebula to either the time-
averaged nebula or to the steady-state constant-UV
reference nebula.

The cooling by metals was approximated in
yguana by a fit we made to the cooling function
using mappings ic (Ferruit et al. 1997) [cf. Ap-
pendix A]. Collisional excitation and ionization of
H I (and their effect on cooling) are calculated ex-
plicitly, since they can become important within the
ionization front (IF). The time-dependent ionization
balance of H, the photoheating coefficients, and the
equation of state are described in Appendix A while
the practical implementation of the time-dependent
transfer equations are presented in Appendix B. Our
main goal is to study the effect on the temperature
fluctuations measured à la Peimbert as a result of
having a variable ionizing source. Our model as-
sumes a hydrostatic distribution of gas.

2.2. Mean Temperature T̄0, t2 , and Ū

Following Peimbert (1967), we define the mean
nebular temperature, T̄0, as follows

T̄0(H
+) =

∫

V

nenH+T dV
∫

V

nenH+ dV

, (1)

where ne is the electron density, nH+ the H II den-
sity, T the electron temperature and V the volume
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TIME-DEPENDENT PHOTOIONIZATION 57

over which the integration is carried out. The rms
amplitude t of the temperature fluctuations is given
by

t2(H+) =

∫

V

nenH+(T − T̄0)
2 dV

T̄ 2
0

∫

V

nenH+ dV

. (2)

We have replaced nH+ by ne in the above expres-
sions, since we do not consider explicitly He in the
calculations. n will denote the total H density.

We cannot compute t2 for other ions, since we
consider in detail only the ionization of H. We will
drop the label H+ in the following discussion unless
required by the context.

In the case of a variable source, both global quan-
tities t2 and T0 vary with time. The above ex-
pressions define therefore, instantaneous values for
a particular time in the source temporal evolution.
Even if the transfer of information concerning nH+ ,
nH0 or T from any position inside the nebula has
a finite speed, we do not find it necessary to con-
sider this effect explicitly, since we are not consider-
ing any particular external observer. Furthermore,
our derivation of various characteristic quantities (la-
beled “asymptotic”) will be done by integrating over
a few full periods of the source variability. This has
the effect of washing out any phase differences intro-
duced by placing a real observer at any particular
external location.

Let us define further useful quantities to be used
later. One is the varying ionizing source photon lu-
minosity, QH. Time-averaged quantities will carry
brackets 〈〉 such as in 〈QH〉, the time-averaged pho-
ton luminosity. Since we adopt a spherical geometry
and consider the source point-like, the global ioniza-
tion parameter is defined as

Ū =

∫

V

ε2n2
e

ϕ

cn
dV

∫

V

ε2n2
e dV

=

∫ Rs

r0

ε2n2
e

〈QH〉

4πr2c n
4πr2 dr

∫ Rs

r0

ε2n2
e 4πr2 dr

,

(3)
where ϕ is the local ionizing flux (disregarding opac-
ity), τH the opacity due to H photoionization, Rs the
outer nebular radius, r the distance from the central
source, r0 the radius of the inner cavity devoid of gas,
ε the volume filling factor, and c the speed of light.
(This definition contemplates the possibility that ε
and the total density n may vary with radius).

2.3. Results for Periodic Sources (Model A)

Our main goal is to derive the characteristic
〈
t2

〉

of a nebula submitted to a variable ionizing source.

The general problem is excessively vast since there
are numerous scenarios about possible variability be-
haviors. The perspective taken in this Paper is that
of a Fourier analysis in which we restrict ourselves
to the exploration of periodic sources and analyze
the nebular response as a function of the frequency
and amplitude of the source variability. In concrete
terms, we have narrowed the problem to deriving the
asymptotic

〈
t2

〉
for a source varying at a predeter-

mined frequency. We define the asymptotic
〈
t2

〉
as

the averaged value over at least three full periods of
the source. This has the advantage of avoiding a def-
inition that depends on the initial conditions or on a
particular ill-defined moment in the source history.
Typically, calculations will extend to only five peri-
ods since we found that asymptotic values in most
cases do not change by adding more cycles.

A varying source generates two types of response
in the nebular structure: a progressing IF when the
source increases in intensity and a recombination
front (RF) when the source decreases. These two
phases are not symmetric. For instance, an IF has
a finite velocity given by VIF ' ϕ/nH0 < c, where
ϕ is the ionizing photon flux. Let us define y as the
neutral fraction of H. The ionization fraction (1− y)
within the IF can increase at a rate which is much
shorter than the recombination timescale. An RF,
on the other hand, propagates at speed c, since a
RF is initiated following propagation of the signal
that the source is decreasing (although the neutral
H fraction y within the front will increase only on
timescales given by recombination).

To illustrate these two phases, we will use
yguana to study in detail the case of source vary-
ing like a square-wave5 with a period Π equal to
the recombination timescale τrec = (αBne)

−1, where
αB is the recombination coefficient rate to excited
states of H. The amplitude of the variability is ±20%
(A = 0.20) and the duty cycle is ∆ = 0.5. The ad-
vantage of the square-wave is that it will more clearly
reveal the changes caused by either type of fronts on
certain nebular quantities. We will assume an ion-
izing photon luminosity of 〈QH〉 = 1051 s−1 and a
nebula of constant density n = 200 cm−3 with a vol-
ume filling factor of ε = 0.01 and an inner cavity
r0 surrounding the source of 30% of the estimated
Strömgren radius, that is, of size r0 = 4.0× 1019 cm.
The initial physical conditions of the gas were given
by the usual condition of steady-state thermal and
ionization equilibrium, throughout the whole neb-

5We will use primes to denote models that assume a sine-

wave (rather than square-wave) variability, e.g., Model A′′ in
§ 2.7.
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58 BINETTE ET AL.

Fig. 1. Behavior of nebular volume-weighted quantities (solid lines) as a function of time τ for Model A. (a) t2. (b) Net
cooling relative to the mean heating energy radiated by the source Λnet/ 〈Γheat〉 [with 〈Γheat〉 = h(ν−ν0) 〈QH〉]. (c) The
mean electron temperature T̄0/Teq. (d) The mass of ionized gas M/Meq. In each panel, the long-dashed line across
the last three cycles represents the running mean of the plotted quantity. The asymptotic values referred to in the text
(e.g.

〈
T̄0

〉
,
〈
t2

〉
) correspond to the rightmost value along the long-dashed line. The square-wave dotted-line in a is the

normalized photon luminosity of the ionizing source as a function of time, QH(τ)/ 〈QH〉 (to be read on the upper right
y-axis). The variability is characterized by an amplitude A = 0.2, a period Π = τrec and a duty cycle ∆ = 0.5.

ula, for a source luminosity 〈QH〉. The equilib-
rium temperature within the nebula turns out to
be Teq = 5260 K and the recombination and cool-
ing timescales within the fully ionized part of the
nebula are τrec = 1.1× 1010 s and τcool = 1.6× 109 s,
respectively (the cooling timescale is 7 times shorter
than τrec). The ionization parameter (equation 3) of
the initial equilibrium model is Ū = 0.0022. This set
of parameters defines our Model A.

The results of the time-dependent calculations as
a function of time τ for the first five periods are
shown in Figure 1. The dotted line in Fig. 1a il-
lustrates the behavior of the ionizing flux relative

to the mean value (to be read on the upper right
y-axis of Fig. 1a). In all panels, the continuous line
corresponds to the behavior of the instantaneous val-
ues integrated over the whole nebula, while the long-
dashed line represents the cumulative running mean,
which was calculated at the onset of the third vari-
ability cycle. We define asymptotic values as the
last value of the running mean (after the 5th cy-
cle is completed). The impact on the nebula of the
progression of the IF or the recession of the RF are
clearly visible in Fig. 1d, which is a plot of the mass
of ionized gas normalized to the initial equilibrium
value. Notice that the total ionized mass of the neb-
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TIME-DEPENDENT PHOTOIONIZATION 59

Fig. 2. Internal structure of the nebula as a function of geometrical depth for Model A (cf. § 2.3) assuming a square-wave

variability of amplitude A = 0.20. (a) The neutral fraction y of H. (b) The local temperature T . The long-dashed
line represents the initial equilibrium model. The 10 solid lines correspond to the ionization and thermal structure at
equally spaced time intervals during the last full cycle shown in Fig. 1a.

ula somewhat shrinks with time. Fig. 1c shows the
behavior of the average nebular temperature with
time, T̄0(τ), normalized again to the initial equilib-
rium value Teq. Fig. 1b shows the behavior of the
net integrated cooling rate of the nebula normalized
to the the total heating available due to absorption
of all ionizing photons (this ratio cannot exceed the
interval ±1). With steady-state equilibrium, the net
cooling is zero. Fig. 1b reveals how the nebula as a
whole heats up during the IF phase and cools down
during the RF phase. Finally, Fig. 1a illustrates the
behavior of t2 as a function of time. Its (asymptotic)
average value is

〈
t2

〉
= 0.074.

2.4. Neglecting the Temperature Gradient

Ignoring the hardening of the UV radiation with
depth results in an isothermal nebula lacking the
usual outward gradient in Teq. This has the ad-
vantage that t2 computed with yguana is deter-
mined by source variability alone. The effect of ig-
noring the shallow Teq gradient is negligible in most
cases. In fact, using mappings ic, we find that
the constant-UV steady-state Model A is character-

ized6 by a t2steady = 0.0026, which is generally very
small in comparison with the values derived for the
variable sources studied below. The true t2, which
would include UV hardening, cannot be far off from
the following estimate t2true ≈ t2steady +

〈
t2

〉
, where

〈
t2

〉
corresponds to the time-averaged fluctuation

amplitudes computed using yguana. We recall that
〈
t2

〉
= 0.074 for Model A with A = 0.2.

2.5. The Internal Nebular Structure

The changes taking place within the spherical
nebula of Model A occur mostly within the exter-
nal parts, that is, within the outer 25%, which cor-
responds nonetheless to half the photoionized vol-
ume. This becomes apparent in Figure 2 where
the H neutral fraction, y, and the local tempera-
ture are plotted as a function of nebular geometrical
depth r − r0. The long-dashed line represents the
initial equilibrium model. The lack of any slope in
the equilibrium temperature curve (dashed-line) in

6The values of t2(O+2) computed by mappings ic in the
constant-UV case for Models A and B are 0.0021 and 0.0047,
respectively.
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60 BINETTE ET AL.

Fig. 3. Internal structure of the nebula as a function of geometrical depth for Model B (cf. § 2.6) assuming a square-wave

variability of amplitude A = 0.10. (a) The neutral fraction y of H. (b) The local temperature T . The long-dashed
line represents the initial equilibrium model. The 10 solid lines correspond to the ionization and thermal structure at
equally spaced time intervals during the last full cycle.

Fig. 2b is the result of not considering the harden-
ing of ionization radiation with depth (the transfer
in yguana is monochromatic, but see § 2.4). The
10 solid lines correspond to the ionization and ther-
mal structure at equally spaced time intervals dur-
ing the last (fifth) variability cycle (see last cycle in
Fig. 1a). The IF phase corresponds to the 5 curves
below the dashed-line in Fig. 2a while the other 5
curves correspond to the RF phase. During the RF
phase, the neutral fraction lies above the dashed-line
equilibrium curve (except near the transition to neu-
tral gas, where y ∼ 1). The progression of the IF is
characterized by a sharp temperature pulse above
the equilibrium value, which is spatially resolved in
yguana (see Fig. 2b). This IF is sufficiently hot to
cause a rise in the mean temperature (averaged over
the whole nebula) as seen in Fig. 1c. Because the
selected source period is rather long, being equal to
τrec, most of the inner nebula has time to adjust its
ionization while the source varies. This is shown by
the coincidence of most curves for geometrical depths
r − r0 < 6 × 1019 cm, as they lie (and superimpose)
either below or above the equilibrium y dashed-line
model in Fig. 2a.

Interestingly, the temporal changes in the neutral
fraction y with time for depths r − r0 ≤ 5× 1019 cm
do not cause any appreciable changes in the gas tem-
perature (see Fig. 2b). The reason is that during
the IF or RF phase, the neutral fraction y in that
zone evolves quickly toward the appropriate equilib-
rium (but small) value yeq over a timescale of or-
der ∼ 0.5yeqτrec, which is much shorter than τrec

(because yeq < 0.01 in that zone). Hence, non-
equilibrium heating is too short-lived in that inner
zone for the temperature to change appreciably.

2.6. Varying the Ionization Parameter Ū (Model B)

The work of Campbell (1988) indicates that the
ionization parameter7 in H II galaxies ranges from
0.0014 to 0.025. Hence Model A (Ū = 0.0022) is
probably representative of nebulae8 at the low Ū
end. We have explored the behavior of

〈
t2

〉
when

7The definition of Ū of Campbell (1988) is slightly differ-
ent, which causes the values quoted by her to be 50% higher
than those one would derive using eq. (3).

8Models of different densities, filling factors and source lu-
minosities but whose product of n× ε2 × 〈QH〉 is the same as
well as the ratio r0/R0

S, where R0
S is the Strömgren radius in
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TIME-DEPENDENT PHOTOIONIZATION 61

the ionization parameter is varied. This was done
by setting the filling factor ε to unity and computing
models which were characterized by different cavity
sizes. By varying r0 in the interval 2.5 × 1019 ≤
r0 ≤ 1.5× 1020 cm, we explored the following range
0.018–0.0006 in Ū (we assumed a source variability of
A = 0.05 with the other parameters such as n, ∆, Π,
〈QH〉 the same as in Model A). What we found was
that

〈
t2

〉
increased approximately as Ū1/2 within the

above range.
We also studied the properties of nebulae that

reflect more closely the geometrical particularities of
the Orion nebulae, that is a model consisting of a
thin sheet of ionized gas at a much higher ionization
parameter. For instance, the Orion model of Bald-
win et al. (1991) is characterized by a slab geometry
with an ionization parameter of 0.03. We reproduced
similar characteristics by using r0 = 2 × 1019 cm
and by setting the filling factor ε to unity. With
〈QH〉 = 1051 s−1 and a density n = 200 cm−3,
the thickness of the ionized layer turns out to be
7.1× 1018 cm, that is, only 26% of the final Ström-
gren radius. The ionization parameter (equation 3)
of the initial equilibrium model is Ū = 0.024. This
set of parameters defines our Model B.

In Figure 3, we show the internal temperature
and ionization structure of Model B for a variability
amplitude of A = 0.10. This model is characterized9

by an asymptotic
〈
t2

〉
of 0.053. Overall, Models B

and A share many similarities. For instance, the bulk
of the variability in T or y occurs near the outer IF.

2.7. Sensitivity to the Period Π

Using a square wave variability type, we have
illustrated the principal effects taking place within
a nebula submitted to a periodic ionizing source.
Two very important parameters affect the nebular
response and the behavior of

〈
t2

〉
: the variability

period Π and the amplitude of the variations A. We
will analyze in turn the role played by each, adopting
the same parameters as in Model A but with a sine-
wave variability function (1 + A sin 2πτ/Π) rather
than a square wave. We will refer to this modified
model as Model A′′. We have verified that sine-wave
models10 with amplitude 1.4A closely match the

〈
t2

〉

the cavity-less case (R0
S = [3 〈QH〉 /4πn2εᾱB]1/3), are homol-

ogous and can therefore, be expected to yield the same
〈
t2

〉

values under similar variability conditions [i.e., variations of
similar amplitude A and period Π (in τrec units)].

9Using mappings ic, we find that the constant-UV steady-
state Model B is characterized by t2

steady
= 0.01 (see § 2.4).

10The values of
〈
t2

〉
for models A′′ and B′′ in the sine-

wave case with Π = 1τrec and A = 0.1 are 0.023 and 0.039,
respectively. For A = 0.2, it is 0.055 and 0.078, respectively.

from square-wave models with amplitude A. All pe-
riods will be expressed in units of the recombination
time, which is the natural unit for the problem at
hand.

Our results for Model A′′, assuming an ampli-
tude A = 0.1, show a very steep dependence with
frequency, as illustrated in Figure 4.

〈
t2

〉
increases

as ∝ Π2.2 up to Π ' 1τrec and then peaks near
1.6τrec. The short period regime becomes progres-
sively ill-defined in our calculations. For instance,
the asymptotic value of

〈
t2

〉
at Π = 0.1 requires up

to 10 cycles, because the mean values keep evolving
well beyond 5 cycles. If radiation hardening at large
depths had been considered,

〈
t2

〉
would lie above the

t2steady = 0.0026 floor computed by mappings ic (see
§ 2.4). This would alter the curve in Fig. 4 only in
the short period domain Π ∼

< 0.4.
The main conclusion is that a nebula acts as a

low-pass filter with only the relatively ‘slow’ source
variations causing important temperature fluctua-
tions. Clearly, Π ∼

> 0.7 is the frequency domain that
favors the largest values of

〈
t2

〉
.

2.8. Sensitivity to the Amplitude A

Let us now vary the amplitude (up to the max-
imum, which is A = 1 in the case of a sine-wave),
adopting the same sine-wave variability with Π = 1.
The results are shown in Figure 5a. The larger the
amplitude, the higher

〈
t2

〉
, as one would expect. In

the case of Model A′′, there is, first a regime of faster
increase (∝ A1.8) of

〈
t2

〉
, followed by one of slower

increase (∝ A1.1) above A = 0.1. For Model B′′, the
increase is ∝ A1.1 everywhere. The basic result from
this plot is that an observed t2obs. ' 0.02 would re-
quire a substantial variability amplitude of 0.09 and
0.05 from the source for Models A′′ and B′′, respec-
tively11, which is unacceptably high for O stars, as
discussed in § 3.1.

An interesting phenomenon that occurs with
variable ionizing sources is that the mass of ionized
gas shrinks as

〈
t2

〉
increases. For instance, for A =

0.40 in Model A′′, the ionized mass is reduced to 91%
of that of the initial steady-state equilibrium model.
The reason is simple if we recall that temperature
fluctuations (Peimbert 1967) in the case of a process
like recombination, which is weighted towards lower
temperatures (∝ T−0.85), will lead to a higher effi-
ciency of the recombination rate, hence to a lower
mass of ionized gas in the nebula for a given mean

11However, since in Model B′′, t2
steady

= 0.01 (§ 2.6), an am-

plitude of A = 0.03 would suffice in reproducing fluctuations
at the level

〈
t2

〉
' 0.01 = 0.02 − t2

steady
(see § 2.4).
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Fig. 4. Behavior of the asymptotic
〈
t2

〉
as a function

of the period Π for a sine-wave variability of amplitude
A = 0.1 (Model A′′). In the interval 0.2 ≤ Π ≤ 1,

〈
t2

〉

increases steeply as Π2.2.

ionizing flux. (The time-averaged luminosity of all
recombination lines, however, remains the same).
Note finally the tendency of the mean temperature
〈
T̄0

〉
to increase, at large amplitudes, slightly above

the equilibrium value, as a result of the photoheating
energy being absorbed more efficiently during the IF
phase. The dotted line shows the approximate be-
havior expected for the ionized mass using the func-
tion 〈M〉 /Meq ' (1 + 0.5α(α− 1)

〈
t2

〉
)1/α

〈
T̄0

〉
/Teq

with α = −0.85 (adapted from equation 5 in Binette
& Luridiana 2000). This expression becomes invalid
above

〈
t2

〉
> 0.2.

3. DISCUSSION

3.1. Intrinsic Source Variability

We have shown that variations of the ionizing lu-
minosity can produce appreciable temperature fluc-
tuations across the nebula. However, a careful analy-
sis of our results leads us to believe that the proposed
mechanism for generating fluctuations is not viable.
For instance, to reproduce a t2obs. = 0.025 as in the
Orion nebula (Esteban et al. 1998) would require re-
producing

〈
t2

〉
= 0.015 = 0.025−t2steady. This occurs

with Model B′′ (more appropriate to Orion) when
A = 0.04, that is, it requires a variability of ±4% of
the ionizing luminosity of the exciting star θ1 Ori C
(HD 37022), assuming Π ' 1. Such variability of

Fig. 5. (a) Behavior of
〈
t2

〉
as a function of the am-

plitude of the sine-wave variations of QH. (b) Behavior
of

〈
T̄0

〉
/Teq (curves ≥ 1) and 〈M〉 /Meq (curves ≤ 1)

as a function of the amplitude of the sine-wave varia-
tions. Model A′′ and B′′ are represented using solid and
dashed lines, respectively. The dotted line represents the
equation (1 + 0.7863

〈
t2

〉
)−1.177

〈
T̄0

〉
/Teq (see § 2.8) us-

ing values from Model A′′. Model B′′ was not computed
beyond A = 0.4.

QH would imply variations of order ±250K in the
stellar atmosphere (derived from mappings ic using
T∗ = 39, 500K). In the optical domain, the contin-
uum variations would be a lot less, about ±1% in
amplitude (∆mB = 0.02 min-to-max). Furthermore,
these estimates are based on a variability timescale
very close to the recombination timescale, which is
of order 20 years for Orion (ne ∼ 5000 cm−3); oth-
erwise, if it were shorter, it would require variation
amplitudes a lot larger (cf. Fig. 4) in order to re-
produce t2obs. = 0.025 (i.e.,

〈
t2

〉
= 0.015). Although

θ1 Ori C has shown evidence of variability in the stel-
lar He II absorption line (Conti 1972; Walborn 1981);
and of a periodicity of 15 days in the Hα equivalent
width (Stahl et al. 1993), no photometric variations
of the continuum on timescales from days to years
have been reported (van Genderen et al. 1989).

H II regions powered by Luminous Blue Variable
(LBV) stars such as the Carina nebula are poten-
tial candidates for finding a cause and effect rela-
tion between t2 and variability. One would expect
t2 to be significantly larger in nebulae excited by
LBV stars. Unfortunately, we have no information
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at hand about t2 in the Carina nebula for the pur-
pose of comparison.

A general and compelling argument against
source variability as the main cause of the fluc-
tuations is that for metal lines like C III]λλ1909,
[O III]λ5007, the bulk of their luminosity occurs at
a nebular depth such that y < 10−1.7, the fluctua-
tions in temperature (due to variability) are negli-
gible in that inner zone of the nebula despite sub-
stantial changes in y, as shown in Fig. 2b. This
means that

〈
t2(O+2)

〉
would be much smaller than

〈
t2(H+)

〉
calculated with model B′′ and A = 0.04.

(Even larger values of A would lead to insignificant
values of

〈
t2(O+2)

〉
). In this particular model, it

can be shown using mappings ic that 90% of [O III]
flux is emitted in the inner regions where no fluctua-
tions occur due to variability, as illustrated in Fig. 3b.
Therefore, our models based on the variability of QH,
cannot realistically reproduce the large observed t2obs.

deduced from intermediate excitation emission lines.

3.2. Variable Shadows from Moving Opaque
Condensations

There are other mechanisms than variable stars
that can produce a transient variability in the prop-
agating ionizing flux. For instance, the displacement
of dense neutral condensations in planetary nebu-
lae or H II regions (proplyds) can introduce tempo-
ral variations in the ionization structure. Within the
shadow behind these opaque condensations, the gas
is either neutral or partly ionized by the diffused field
from the surrounding nebula. If these condensations
of lateral size D had a tangential velocity compo-
nent V (distinct from the nebular gas), the tangen-
tial displacement of the shadow inside the nebula
would produce effects similar to that of an ionizing
source, which is switched off, then on again, gener-
ating in turns an RF and IF, respectively. The im-
portant timescales in this problem are τrec and τcross,
the crossover timescale (τcross = D/V ) of the shadow
over a distance given by the diameter of the opaque
eclipsing condensation. We expect that the effect on
the shadowed region would be strongest when τcross

becomes comparable to τrec, since it would first in-
duce a strong temperature drop and substantial re-
combination followed by the propagation of hot IF
after the “eclipse” has ended. On the global scale of
the nebula, these shadowed regions would cause tem-
perature fluctuations similar to those calculated for
a star that is briefly turned off. Whether the tem-
perature fluctuations would be felt over the whole
nebula would depend on how many such shadowed
regions fill the nebular volume.

TABLE 1

FLUCTUATIONS FROM INTERMITENTLY
SHADOWED IONIZED REGIONS

Π ∆a Π × ∆
〈
t2

〉

10 0.025 0.25 0.042

5 0.05 0.25 0.081

2.5 0.1 0.25 0.15

1.25 0.2 0.25 0.23

10 0.1 1.0 0.063

10 0.05 0.5 0.045

10 0.025 0.25 0.042

10 0.0125 0.125 0.021

10 0.00625 0.0625 0.013

aFraction of cycle during which the ionizing flux is
turned off.

As an estimate of the t2 expected in that case, we
ran models in which the source was turned off dur-
ing a time (Π × ∆) τrec where Π is the period of the
off-on cycle in units of the recombination timescale
and ∆ is the fraction of the cycle during which the
source is off. The idea behind using periodicity to
approach this problem is that in this way we can
crudely estimate the nebular fluctuations due to the
shadows by associating ∆ to the shadowed fraction,
that is, to the effective covering factor of the source
due to all the neutral condensations present. To a
first order, this approach is validated by models for
which we kept Π × ∆ = 0.25 constant, since we find
that

〈
t2

〉
∝ ∆, at least when ∆ is small (see first 4

models in Table 1). A sequence of models in which
we change Π×∆ is also given in Table 1. Note that
since the amplitude of the variations is extreme in
the case of an on-off variability type, we expect that
〈
t2(O+2)

〉
would be substantial as well12. For the

optimal regime where Π × ∆ ' 1, a covering factor
of 4% is required for the proplyds if we aim to reach
t2obs. = 0.025. Since these models were computed for
a low value of Ū , we can estimate that

〈
t2

〉
would be

higher by a factor of about three, since
〈
t2

〉
∝ Ū1/2

as discussed in § 2.6. Hence, maybe a covering factor
as low as 1% would suffice. However, the fraction of
the Orion nebula volume shadowed by proplyds is
estimated to be only 0.1% (William Henney: pri-

12This is indirectly confirmed by the LINER model of Er-
acleous, Livio, & Binette (1995) who found a significantly
higher [O III] λ4363/[O III] λ5007 temperature sensitive ratio
in their time-dependent model as a result of the very large
variability amplitudes of their source.
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vate communication), which therefore rules out this
mechanism.

4. CONCLUSIONS

Our time-dependent models rule out the possibil-
ity that the ionizing source variability be the cause
of the variations, since OB stars are not known to
vary at the required 15% level (of QH). Further-
more, even if they did,

〈
t2(O+2)

〉
would still be

much smaller than our computed
〈
t2(H+)

〉
, making

the observed values (cf. Luridiana et al. 1999; Este-
ban et al. 1998) even more unattainable. As for the
model of shadow crossings by opaque condensations,
it requires a space density of proplyds a factor ten
beyond that estimated by observations.

An interesting and general result about cyclically
variable ionizing sources is that the nebula becomes
“on average” less massive but somewhat hotter. De-
spite the fluctuating size and temperature of the neb-
ula, the time-averaged luminosity of all recombina-
tion lines remains the same as for the steady-state
case. This is also the case for the time-averaged en-
ergy radiated through all the forbidden lines as com-
pared to the steady-state case (individual forbidden
line ratios must in general come out different since
the nebula is hotter).

The work of LB was supported by the CONACyT
grant 32139-E. PF acknowledges support from the
Région Rhône-Alpes. The comments received from
William Henney about proplyds were particularly
useful. We thank Jane Arthur for her contribution
during the workshop on 3D-hydro in Mexico City
(February 1999) during which the codes yguana and
yguazu were written. We are also indebted to AR
who generously funded this event.

APPENDICES

A. YGUANA: THE EQUATIONS

In this Appendix, we describe the set of equa-
tions used to follow R-type ionization fronts within
a spherical nebula photoionized by a variable source.
The new code, hereafter called yguana, has been
written in Fortran 77 and will be made accessible to
researchers upon request.

We consider the problem of photoionization of a
thick spherical gas shell by a central, time-varying
source. We make the following simplifying assump-
tions concerning the source and the gas distribution.

• The ionizing radiation from the central source is
taken to be monochromatic at a frequency ν >
ν0 (see value in Table 2) where hν0= 13.6 eV is
the ionization potential of hydrogen. The cen-
tral source is considered point-like (i.e., its char-
acteristic size is much smaller than the inner ra-
dius of the gas shell).

• For the purpose of radiation transfer, the gas
shell consists only of hydrogen. The gas density
is static in time and its value is either a constant
or a function of radius.

• The atomic physics is simplified along the lines
developed in A.2 and A.3. All essential physi-
cal processes are considered (e.g., approximate
cooling by metals), although the estimation of
their rates is limited to first order approxima-
tions.

Given these assumptions, all variables of the
problem depend only on the radius from the central
source (spherical symmetry) and on the time.

A.1. Time-Dependent Transfer Equation

The time-dependent equation of transfer for
monochromatic ionizing radiation, and for a spher-
ically symmetric problem is (in spherical coordi-
nates):

1

c

∂F(r, t)

∂t
+

1

r2

∂
(
r2F(r, t)

)

∂r
= −κ(r, t) , (A4)

where F(r,t) is the ionizing photon flux (photons s−1

cm−2) at a radius r from the central source (cm) and
at the time t (s), κ(r, t) is the local opacity at ν (pho-
tons s−1 cm−3), and c is the speed of light (cm s−1).
We have ignored the scattering of the ionizing radi-
ation by dust and the generation of the diffuse field,
which would have introduced ‘local’ source terms in
equation (A4).

For a pure hydrogen medium and monochromatic
radiation, the opacity yields the relation:

κ(r, t) = a(ν) ε nH(r)
(
1 − f(r, t)

)
F(r, t) , (A5)

where a(ν) is photoionization cross section of hydro-
gen at ν (cm2), ε is the filling factor of the shell
(assumed uniform and static), nH(r) is the hydrogen
number density (cm−3), and f(r,t) is the ionization
fraction of the hydrogen. The following relation has
been used to compute a as a function of ν:

a(ν) = 6.3 × 10−18

(
ν

ν0

)
−3

cm2 , (A6)
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where the value of ν is chosen according to the type
of ionizing source and is listed in Table 2. ν0 is the
H ionizing threshold. A monochromatic treatment
implies that the progressive hardening of the ioniz-
ing radiation (and hence of the temperature) away
from the central source cannot be taken into account.
Furthermore, in the inner region of planetary nebu-
lae and AGN, heating by photoionization of He+ is
substantial and leads to higher temperatures; this ef-
fect cannot be taken into account in our simplified
pure hydrogen nebula.

A.2. Time-Dependent Ionization Balance of
Hydrogen

To solve the transfer equation (A4), we need to
know the ionization fraction f(r,t) of the hydrogen,
and, therefore, to solve the ionization balance of hy-
drogen. The ionization fraction yields the following
equation:

∂f(r, t)

∂t
= a(ν)

(
1 − f(r, t)

)
F(r, t)

︸ ︷︷ ︸

photoionization

+ γ(T ) nH(r) f(r, t)
(
1 − f(r, t)

)

︸ ︷︷ ︸

collisional ionization

− αB(T ) nH(r) f2(r, t)
︸ ︷︷ ︸

recombination

,
(A7)

where T (r, t) is the temperature of the gas (K), γ(T )
is the collisional ionization coefficient (s−1 cm3), and
αB(T ) is the recombination rate to excited states of
hydrogen (s−1 cm3). We implicitly assume the on-
the-spot approximation in our calculations. The fol-
lowing analytical relations have been used to com-
pute γ and αB as a function of T:

γ(T ) = exp
[

A + B ×
(
T/104 K

)
−1

]

s−1 cm3,

(A8)
with A = −19 and B = −16, and

αB(T ) = 2.6 × 10−13

(
T

104 K

)
−0.85

s−1 cm3. (A9)

A.3. Time-Dependent Energy Balance

The third major equation describing our system
is the energy balance equation for the gas:

∂P (r, t)

∂t
= −

2

3
Λ(r, t), (A10)

TABLE 2

PARAMETERS FOR THE RADIATIVE
COOLING CURVEa AND THE VALUE OF ν

Environment A B hν (eV)

H II region 3.8 4.0 20b

Planetary nebula 4.0 3.5 40c

Active nucleus 4.2 3.0 43d

aA and B are in units of 10−24 erg s−1 cm3.
bStellar atmosphere of temperature 40,000K.
cBlack body of temperature 150,000K.
dPower law of index −1.3 truncated at 1 keV.

where P is the gas pressure (dyne cm−2) and Λ is the
net cooling rate per unit of volume (erg s−1 cm−3).
Λ yields the relation:

Λ(r, t) = L(T ) n2
H(r) f2(r, t)

︸ ︷︷ ︸

radiative cooling

+ hν0 γ(T ) n2
H(r) f(r, t)

(
1 − f(r, t)

)

︸ ︷︷ ︸

cooling due to collisional ionization of H

+ hν0 q(T ) n2
H(r) f(r, t)

(
1 − f(r, t)

)

︸ ︷︷ ︸

cooling due to collisional excitation of H

− a(ν) h(ν − ν0) nH(r)
(
1 − f(r, t)

)
F(r, t)

︸ ︷︷ ︸

heating due to photoionization of H

,

(A11)

where h is the Planck constant (6.63 × 10−27 erg s).
The coefficients L(T ), γ(T ), q(T ) and a(ν) are given
in eq. (A12), (A8), (A13), and (A6), respectively.

In order to have a realistic energy balance for the
gas, the radiative cooling term includes the losses
due to metals. L(T) has been computed using the
following relation, which is an analytical fit to the
cooling function obtained for a photoionized gas us-
ing mappings ic and assuming solar metallicities:

L(T ) = A + B

(
T

104 K

)2.5

erg s−1 cm3, (A12)

where the values of A, B depend on the type of envi-
ronment. Three sets of values are listed in Table 2.

This radiative cooling term applies only to a fully
ionized medium. We do not take into account how
this term varies with the ionization parameter al-
though we consider separately the cooling due to ex-
citation or ionization of H0, which can be significant
across ionization fronts. To compute the net cool-
ing rate we therefore added to eq. (A11) the cool-
ing terms due to both collisional ionization and col-
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lisional excitation of hydrogen as well as the heat-
ing term due to photoionization of hydrogen. The
collisional excitation rate q(T ) yields the following
relation [similar to eq. (A8)]:

q(T ) = exp
[

C + D ×
(
T/104 K

)
−1

]

s−1 cm3 ,

(A13)
with C = −18 and D = −11. The determination
of the constants A, B, C and D is based on the
coefficients found in Osterbrock (1989).

A.4. Equation of State

In order to close our system of equations, we need
to express the equation of state of the gas. We have
used the perfect gas equation of state:

P (r, t) =
(
1 + f(r, t)

)
nH(r) k T (r, t) , (A14)

where k is the Boltzmann’s constant (1.38 ×
10−16 ergK−1). From eq. (A10) and (A14), we can
derive the equation for the temperature:

∂T (r, t)

∂t
=

1

k nH(r)
(
1 + f(r, t)

)

×

[

−
2

3
Λnet(r, t) − nH(r) k T (r, t)

∂f(r, t)

∂t

]

.

(A15)

Together, equations (A4), (A7) and (A15) form a
closed system of equations.

B. YGUANA: THE ALGORITHM

In this Appendix, we describe the practical im-
plementation of a code to solve the set of equations
described in Appendix A.

B.1. Boundary Conditions

To solve the problem, we need to define a set
of boundary conditions. First, we have to assume
initial (i.e., at t = 0 s) temperature and ionization
structures for the whole shell (i.e., from its inner ra-
dius, Rin, to its outer radius, Rout), as well as the
corresponding, initial distribution of ionizing radia-
tion:

∀r, Rin ≤ r ≤ Rout







f(r, 0) = f0(r),

T (r, 0) = T0(r),

F(r, 0) = F0(r).

(B16)

Fig. 6. Sketch of the progression of the computation
along the spatial (i index) and temporal (j index) grids.

Last, we need to know the ionizing photon flux
of the source Fsource at Rin as a function of time:

∀t, F(Rin, t) = Fsource(t) . (B17)

Assuming that the cavity inside the shell (r < Rin)
is empty, Fsource(t) can be expressed as a function of
the central source ionizing photons production rate,
Qsource (in photon s−1):

Fsource(t) =
Qsource(t)

4π R2
in

. (B18)

B.2. Algorithm

In the following text, the indices i and j refer to
the spatial and time axes, respectively.

B.2.1. Transfer Equation

Once linearized, equation (A4) allows us to com-
pute the ionizing photon flux Fi,j at a radius ri and
time tj , as a function of the ionization and temper-
ature structures of the shell and of the ionizing pho-
ton flux at radii ri−1 and ri, and time tj−1. A sketch
of the progression of the computation in the spatial
and temporal grids is shown in Figure 6. We have
the following recursive equation for Fi,j :

Fi,j =
c δt

δr
Fi−1,j−1

(
ri−1/ri

)2

×
(

1 − ξi−1,j−1 δr
(
ri/ri−1

)2
)

︸ ︷︷ ︸

incoming photon flux (diluted and absorbed)

+
(
1 − c δt/δr

)
Fi,j−1

︸ ︷︷ ︸

outgoing photon flux
(B19)

ξi−1,j−1 = a(ν) ε nH(ri−1)
(
1 − fi−1,j−1

)
, (B20)
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where δr = ri − ri−1, δt = tj − tj−1, and c is the
speed of light. For this equation to be valid, we must
always have:

c
δt

δr
< 1, (B21)

δr �

(
ri−1

ri

)2

ξ−1
i−1,j−1. (B22)

If δt is larger than the typical atomic physics
timescales (e.g., the recombination time), the time-
step is divided in smaller time intervals. This pre-
vents ξi−1,j−1 (i.e., the opacity) from changing sig-
nificantly during the timestep.

B.2.2. Ionization Balance

Once Fi,j is computed, the time-dependent ion-
ization balance [equation (A7)] is then solved. The
new ionization fraction at tj , fi,j , is computed as a
function of fi,j−1, Ti,j−1 and (Fi,j + Fi,j−1)/2. The
algorithm used to solve equation (A7) is the same as
in mappings ic (see Appendix in Binette, Dopita, &
Tuohy 1985).

B.2.3. Temperature Equation

Lastly, the temperature Ti,j is computed using
the following recursive equation [as derived from
eq. (A15)]:

Ti,j = Ti,j−1 − δtΘi,j−1 − Φi,j−1, (B23)

Θi,j =
2

3

Λi,j

k nH(ri)
(
1 + fi,j

) , (B24)

Φi,j =
Ti,j

1 + fi,j

(
fi,j+1 − fi,j

)
. (B25)

Θi,j and Φi,j represent the change in temperature
due to the net cooling and the change in ‘molecu-
lar’ weight, respectively. If necessary, the ionization
balance and the temperature equations are solved
iteratively.
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(raga@astroscu.unam.mx).
Wolfgang Steffen: Instituto de Astronomı́a, Apdo. Postal 877, 22830 Ensenada, B. C., México (wsteffen@
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