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RESUMEN

Presentamos un modelo anaĺıtico de la sección de un flujo turbulento y radia-
tivo. Este modelo es apropiado para modelar chorros HH o“estelas”detrás de“balas
astrof́ısicas”. A pesar de que el modelo es muy simple, tiene la propiedad benigna
de tener sólo cuatro parámetros libres (el radio exterior del flujo, la velocidad ax-
ial, la velocidad del borde del haz, y la dispersión de velocidades turbulentas), que
pueden ser derivados mediante una comparación con las secciones de la velocidad
radial y del ancho de ĺınea de un objeto observado. Ilustramos como realizar este
tipo de ajustes usando observaciones espectroscópicas previamente publicadas del
chorro HH110.

ABSTRACT

We present an analytical model for the cross section of a turbulent, radiative
jet or wake. This model is appropriate for modeling HH jets, or “wakes” left behind
by “astrophysical bullets”. Even though the model is very simple, it has the benign
property of only having four free parameters (the outer radius of the beam, the axial
velocity, the velocity at the edge of the beam, and the turbulent velocity width),
which can be derived by fitting the radial velocity and line width cross sections of
an observed outflow. We illustrate how to do such fits using previously published
spectroscopic data of the HH 110 jet.

Key Words: ISM: HERBIG-HARO OBJECTS — ISM: INDIVIDUAL
(HH110) — ISM: JETS AND OUTFLOWS — ISM: KINE-
MATICS AND DYNAMICS

1. INTRODUCTION

Some HH jets show complex structures of emit-
ting knots that are reminiscent of turbulent, labo-
ratory jets. Two examples of this kind of flow are
HH 110 (Reipurth, Raga, & Heathcote 1996) and
HH 399 (Cernicharo et al. 1998; Rosado et al. 1999).
The morphology of these jets resembles the radio
continuum maps of Faranoff-Riley Type I extragalac-
tic jets, which have been modeled in terms of analyt-
ical “mean flow+turbulent eddy” fully turbulent jet
models (e.g., Bicknell 1984, 1986; Komissarov 1988,
1994).

For HH jets, some effort has been made to model
the turbulent boundary layer around a laminar jet
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beam core (e.g., Cantó & Raga 1991; Lim, Rawl-
ings, & Williams 1999; Binette et al. 1999). How-
ever, models for a fully turbulent jet have been quite
primitive (Richer, Hills, & Padman 1992; Raga et al.
1993), and limited to a description of the general dy-
namical properties of such a jet as it incorporates
mass from the surrounding environment. Also, 2D
and 3D numerical simulations of the development of
turbulence in radiative jets have been carried out
(Massaglia et al. 1996; Rossi et al. 1997; Downes &
Ray 1998; Stone, Xu, & Hardee 1997; Xu, Hardee,
& Stone 2000; Micono et al. 2000).

In the present paper, we discuss an analytical
model for the cross section of a radiative, turbulent
jet. Even though the model is dynamically very sim-
ple, it is useful in that it leads to concrete predictions
of the observational properties (radial velocity, line
widths and line profiles) that should characterize the
cross section of a turbulent jet. The usefulness of this
model is then illustrated by carrying out a compar-
ison with long-slit spectra of the HH 110 jet (taken
from Riera et al. 2003a).
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208 CANTÓ, RAGA, & RIERA

We present the dynamical model in § 2. The
derivation of the line profiles and their moments
(barycenter and line width) is discussed in § 3. The
comparison with observations of HH 110 is made in
§ 4. Finally, the results are discussed in § 5.

2. A SIMPLE MODEL FOR A TURBULENT JET
OR WAKE

It is common practice to describe a turbulent flow
as a superposition of a “mean flow” (corresponding
in principle to an ensemble average of many “exper-
iments”, but which can also be estimated by appro-
priately defined spatial or temporal averages) and
highly time-dependent and chaotic “turbulent ed-
dies”. It is well known that both turbulent labora-
tory jets and turbulent wakes have an axially peaked
mean flow velocity, which is directed mainly along
the flow axis. Even though there are no experiments
of radiative, high Mach number jets, 3D numerical
simulations of such jets (e.g., Micono et al. 2000)
appear to show that when such flows become turbu-
lent, they also develop an axially peaked mean flow
velocity profile.

In order to develop an analytical model of the
cross section of the jet, we will then consider a Taylor
series expansion vj(r) = a+br+cr2+. . . for the mean
flow velocity (which we assume to be directed along
the flow axis). It can be argued that in order not
to have an unphysical axial “cusp”, the first order
term has to be equal to zero. Therefore, the lowest
order, physically meaningful, expansion is quadratic.
We then consider the simplest possible form for the
mean flow velocity cross section:

vj(r) = v0

(

1 − r2

h2

)

+ v1 , (1)

where h is the outer radius of the jet beam, v0 + v1

is the axial velocity, and v1 is the velocity of the
material in the outer edge of the jet beam (with r =
h). We will assume that h, v0, and v1 vary only
slowly along the beam of the jet (in other words,
that they change over scales much larger than h),
so that they can be considered as constants when
studying the properties of the jet cross section.

Superimposed on this mean velocity, one also has
the turbulent eddies. We will assume that these mo-
tions are randomly directed, and that the component
of this velocity along any direction has a Gaussian
probability distribution with a mean value of zero,
and a dispersion ∆vT which is independent of posi-
tion. For subsonic flows, it is normal to set ∆vT ∝ vj.
However, for supersonic flows it appears that labo-
ratory experiments are consistent with a ∆vT ∝ cs

assumption (where cs is the sound speed, see Cantó
& Raga 1991). As a radiative turbulent jet is ap-
proximately isothermal (see below), this leads to the
conclusion that ∆vT should be independent of posi-
tion.

As is normally done in models of turbulent jets,
we will assume that the jet beam is in lateral pressure
equilibrium with the surrounding material. Also, it
has been previously argued (Cantó & Raga 1991;
Raga et al. 1993) that a radiative, turbulent flow
reaches a local balance between the turbulent dissi-
pation and the radiative energy loss, and that be-
cause of the steepness of the cooling function this
balance always leads to a temperature of a few thou-
sand K. Therefore, the flow is approximately isother-
mal. Together with the pressure balance condition,
this leads to the conclusion that the density of the jet
has to be approximately constant across the beam of
the jet.

If the temperature and density across the section
of the jet are constant, it then appears to be reason-
able to assume that the emission coefficient j asso-
ciated with a given emission line is independent of
position across the section of the jet. However, this
is not necessarily true for the emission lines which
are responsible for the radiative cooling (e.g., the
[O I], [O II], [C II] collisionally excited lines), which
actually force the near isothermality through their
strong temperature dependence. The assumption of
a position-independent j is therefore only reasonable
for lines such as the recombination lines of H, which
have a temperature dependence which is much shal-
lower than the one of the forbidden lines which dom-
inate the radiative cooling of the gas. In the fol-
lowing, we also assume that the emission line under
consideration (which could be, e.g., Hα) is optically
thin.

In this way, one can construct what is basically
the simplest possible model for the mean flow cross
section of a radiative turbulent jet or of a wake
(which are completely equivalent at the level of ap-
proximation of the present model). This flow has a
quadratic velocity profile (see eq. 1), and a position-
independent line emission coefficient and turbulent
velocity dispersion ∆vT. From this simple structure,
one can then compute the emitted line profiles. This
is done in the following section.

3. THE EMISSION LINE PROFILES

Let us consider an observation of a jet which is
moving at an angle φ with respect to the plane of
the sky (with negative values of φ corresponding to
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Fig. 1. Schematic diagram showing a turbulent jet with
a mean flow velocity vj that decreases monotonically as
a function of the cylindrical radius r. The jet travels
along the Y -axis. The X-axis, which is parallel to the
plane of the sky, points out of the page, directly towards
the reader. A second coordinate system is defined, with
the z-axis along the line of sight, and the y-axis on the
projection on the plane of the sky of the jet axis. The jet
is shown moving at a (negative) angle φ (with respect to
the plane of the sky) towards the observer.

motions towards the observer). One can construct
an orthogonal coordinate system (X,Y, Z), with the
jet moving along the Y -axis and with the X-axis on
the plane of the sky. The observer defines a second,
(x, y, z) coordinate system, with y along the projec-
tion on the plane of the sky of the jet axis, x across
the projected cross section of the jet, and z along
the line of sight. These two coordinate systems are
shown in the schematic diagram of Figure 1.

The component along z of the mean flow velocity
(i.e., the radial velocity associated with the mean
flow) then is:

vm(x, z) = v0 sin φ
(

1 − x2 + z2 cos2 φ

h2

)

+ v1 sin φ ,

(2)

as can be deduced from eq. (1) and simple geometric
relations between the (X,Y, Z) and (x, y, z) coordi-
nates.

The radial velocity-dependent emission line coef-
ficient is then given by

jv(x, z) = j0 Ψv(x, z) , (3)

where j0 is constant (see § 2) and

Ψv =
1√
π∆v

e−(v−vm)2/(∆v)2 , (4)

where vm is given by eq. (2) and the velocity dispe-
rion ∆v includes both the turbulent and the thermal
motions of the gas. Also, in order to compare predic-
tions of the model with observations, one can include
the instrumental broadening by adding it in quadra-
ture to the thermal+turbulent line width.

The specific intensity along a line of sight passing
at a distance x from the projected outflow axis is
then given by

Iv(x) = 2

∫ zm

0

j0Ψv dz , (5)

where

zm =

(

h2 − x2
)1/2

cosφ
. (6)

For non-zero ∆v, the integral of eq. (5) cannot be
performed analytically. In order to calculate it nu-
merically, we can write it in dimensionless form:

Iν =
1

∆ν

∫ 1

0

e−
[

ν−(1−η2)
]

2
/

(∆ν)2 dη , (7)

where η = z/zm and

Iν =

√
π z2

m v0 sinφ cos2φ

2j0h2
Iv , (8)

ν =
h2 (v − v1 sin φ)

z2
m v0 sin φ cos2φ

, (9)

∆ν =
h2 ∆v

z2
m v0 sin φ cos2φ

. (10)

In the ∆ν → 0 limit, the integral of eq. (7) can be
performed analytically, giving

Iν →
√

π

2
√

1 − ν
. (11)

For nonzero ∆ν one can compute the dimensionless
line profiles by carrying out a numerical integration
of eq. (7). Alternatively, one could compute the same
line profile by convolving eq. (11) with a Gaussian
of dispersion ∆ν (which one can prove is mathemat-
ically equivalent to eq. 7). The results of such inte-
grations are shown in Figure 2.
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210 CANTÓ, RAGA, & RIERA

Fig. 2. Dimensionless line profiles Iν (see eq. 7) as a
function of the dimensionless radial velocity ν (see eq. 9)
for three different values of the dimensionless turbu-
lent+thermal line width ∆ν (see eq. 10). The solution
for ∆ν = 0 is given analytically by eq. (11).

We now compute three different velocity-
moments of the line profile (given by eq. 5). The
line flux is:

I0 ≡
∫

∞

−∞

Iv(x) dv = 2j0zm = 2j0

(

h2 − x2
)1/2

cos φ
. (12)

The barycenter of the line profile is given by:

Vc ≡
1

I0

∫

∞

−∞

v Iv(x) dv

=
2

3
v0 sin φ

(

h2 − x2
)

h2
+ v1 sinφ .

(13)

Finally, the velocity dispersion of the line profile is:

W 2 ≡ 1

I0

∫

∞

−∞

(v − Vc)
2 Iv(x) dv

=
(∆v)2

2
+

4

45
v2
0 sin2φ

(

1 − x2

h2

)2

.

(14)

These expressions for the line center (eq. 13) and
for the line width (eq. 14), as well as the shape of
the line profile itself (eq. 5), can in principle be com-
pared directly with observations of turbulent, radia-
tive astrophysical jets. In the following section, we
show such a comparison between our model and pre-
viously published observations of HH 110.

4. A COMPARISON WITH OBSERVATIONS
OF HH 110

Riera et al. (2003a) obtained high resolution,
long-slit spectra across knots B and C of the HH 110

Fig. 3. Hα intensity (dashed line, left), barycenters (dots,
centre) and line widths (dots, right) as a function of po-
sition across the width of the HH110 jet, obtained from
the long-slit spectra of Riera et al. (2003a). The results
obtained for slit positions across knot B (bottom) and
knot C (top) are shown. The abscissa gives the position
as offsets from the outflow axis. The observed radial ve-
locities are given relative to the velocity of the nearby
molecular cloud, and are plotted as positive values (the
HH110 flow, however, is blue-shifted). The solid lines
show the results from the model fits described in § 3 (see
also Table 1).

jet (which lie at distances of ≈ 8 and 23′′ down
the jet axis from knot A). From the resulting Hα
position-velocity (PV) diagrams, we can compute
the barycenter and width of the line profiles (using
the first equalities of eqs. 13 and 14, respectively) as
a function of position across the jet axis.

The obtained results are shown in Figure 3. From
this figure, we see that for knot C one obtains a cen-
trally peaked Vc(x) cross section, and a flat W (x)
dependence. For knot B, one obtains a more com-
plex, asymmetric Vc(x) cross section.

We now proceed as follows. We fix the width
of the jet to a value h = 4′′ (which approximately
corresponds to the half-width of the region with ob-
served emission). Then, we carry out a least squares
fit of the Vc(x) dependence predicted from the model
(eq. 13) in order to obtain the values of v0 sin φ and
v1 sinφ which best fit the data. Finally, using these
values for h, v0 sinφ and v1 sin φ, we carry out a fit
to the observed line widths with the W (x) predicted
from the model (eq. 14) in order to determine the
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TABLE 1

MODEL FITS TO HH 110a

Knot hb v0 sinφ v1 sinφ v0 + v1
c ∆v

B 4 7 22 50 51

C 4 45 10 97 55

aFits to the long-slit spectra across knots B and C ob-
tained by Riera et al. (2003a). All velocities are in
km s−1.
bOuter radius of jet beam in arcseconds.
cComputed for an orientation angle φ = −35◦ with re-
spect to the plane of the sky.

value of ∆v. In this way, we determine the param-
eters of the model that best fit the observed cross
sections of the HH 110 jet.

The model parameters resulting from these fits
are given in Table 1. For knot B, the least squares
fit gives a flat Vc(x) cross section, which does not
reproduce well the rather complex, observed cross
section (see Figure 3). On the other hand, a more
convincing fit is obtained for the Vc(x) cross section
of knot C. For both knots B and C, the observed Hα
intensity cross sections are much sharper and more
asymmetric than the broader, symmetric intensity
cross section predicted from the model.

The model fits show an outward “acceleration”,
with a higher axial velocity for knot C than for knot
B. This result is in agreement with the acceleration
down the jet axis noted by Riera et al. (2003a). On
the other hand, the model fits to both knots give
similar, ∆v ∼ 50 km s−1 line broadenings (see eq. 4
and Table 1). This line broadening clearly exceeds
the 20 km s−1 instrumental broadening of the data
of Riera et al. (2003a), and therefore mostly reflects
the turbulent motions of the gas flowing down the
HH 110 flow.

Using these model fits, we can now calculate pre-
dicted PV diagrams (for a slit position across the
jet axis) by numerically integrating eq. (5). We then
convolve the model predictions with a Gaussian“see-
ing” of FWHM = 2.′′5 in order to simulate the condi-
tions of the observations of Riera et al. (2003a). The
results of this exercise are shown in Figure 4, to-
gether with the observed Hα PV diagrams for knots
B and C.

Comparing the predicted and observed PV di-
agrams, one sees that while their general charac-
teristics (e.g., the radial velocities, characteristic
line widths and spatial extension of the emission)
agree well (as guaranteed by the model fits described
above), they do have substantial differences. In par-

Fig. 4. Observed (top) and predicted (bottom) Hα PV
diagrams for knots B (left) and C (right). The radial
velocities of the observed PV diagrams are given with
respect to the radial velocity of the nearby molecular
cloud. The positions are given as offsets across the jet
beam, measured from the outflow axis. The PV diagrams
are depicted with logarithmic,

√
2 contours.

ticular, the observed PV diagrams show clear asym-
metries on the two sides of the outflow axis, which
are of course absent in the axisymmetric theoretical
model.

5. CONCLUSIONS

We have developed a simple, analytical model
that describes the cross section of a radiative, turbu-
lent flow. This flow could correspond to a turbulent
jet beam, or to a turbulent wake left behind by the
passage of an “astrophysical bullet”.

Though the model is extremely simple, it has the
redeeming property that it leads to clear, analytic
predictions of the spatial dependence (across the out-
flow) of the emission line profiles. In particular, we
derive relations giving the barycenter and the line
width as a function of position across the outflow.

We have then shown how these relations can be
used to model the observed cross sections of the
HH 110 jet (taken at two different positions along
the jet beam). From fits to the observed barycenter
and line widths, one can derive the four free param-
eters of the model: the outer radius of the beam, the
central velocity, the velocity of the outer edge of the
beam and the “turbulent width” of the emitted lines.
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Interestingly, we find that while the observed ra-
dial velocity cross section of knot C (of HH 110) does
resemble the functional form predicted by our model,
the cross section of knot B does not (see Fig. 3).
This kind of result is not surprising, since a truly
turbulent flow will have eddies of all sizes (up to
sizes comparable to the width of the jet). Therefore,
comparisons of observed cross sections (taken at a
given position along the jet) with predictions from
a “mean flow model” (in which the turbulent eddies
are only considered in the form of a line broadening)
are likely to be unsatisfactory.

In order to obtain more appropriate comparisons
between our analytical model and observations of
HH jets it would be necessary to have spectroscopic
observations with 2D spatial resolution. With such
observations, one could calculate jet cross sections
from the emission averaged over an appropriately de-
fined length along the outflow axis. This “averaging
length” should be larger than a few jet diameters,
so that an average over several characteristic sizes of
the turbulent eddies is carried out.

In this way, one could try to recover the proper-
ties of the “mean flow” from observations of a turbu-
lent jet or wake. With such results, a more appro-
priate comparison with the model described above
could be carried out.

This has now been attempted by Riera et al.
(2003b), who have obtained Fabry-Pérot observa-
tions of HH 110, and computed cross sections of the
outflow carrying out averages along the jet over the
sizes of the different emission structures (using a
wavelet analysis technique). These authors find that
such “average cross sections” compare surprisingly
well with the cross sections predicted by the ana-
lytic model described above. This somewhat surpris-
ing result appears to indicate that our simple model
does capture some of the important properties of the
HH 110 flow.
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