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RESUMEN

Presentamos un modelo para el movimiento de la cabeza de un jet variable que
conserva tanto masa como momento. Nuestro modelo en principio se puede aplicar
a una variabilidad arbitraria. Sin embargo, presentamos soluciones completas sólo
en dos casos: “variabilidad sinusoidal de velocidad + pérdida de masa constante” y
“variabilidad sinusoidal de velocidad + densidad de eyección constante”.

ABSTRACT

We present a model for the motion of the head of a variable jet which conserves
both mass and momentum. Our model is in principle applicable for an ejection
variability of arbitrary form. However, we present full solutions for only two cases:
“sinusoidal velocity variability + constant mass loss rate” and “sinusoidal velocity
variability + constant ejection density”.

Key Words: ISM: HERBIG-HARO OBJECTS — ISM: JETS AND OUT-

FLOWS — ISM: KINEMATICS AND DYNAMICS

1. INTRODUCTION

The problem of the formation and the motion
of working surfaces in a hypersonic, variable jet is
simple enough that it can be attacked with analytic
methods. Past efforts in this direction have had vary-
ing degrees of success, and have been based on two
possible approaches, which we describe below.

In a hypersonic jet ejected with a time-dependent
velocity, pairs of shocks (“internal working surfaces”)
form, and travel down the jet flow (Raga et al. 1990).
The continuous segments in between the working
surfaces are “ballistic” (i.e., as the flow is hypersonic,
the pressure is negligible), and preserve the flow ve-
locity with which the material was ejected from the
source. For these ballistic segments, the continu-
ity equation has an exact, analytic integral (Raga
& Kofman 1992), so that there is a full analytic so-
lution for the flow within the continuous jet beam
segments.

The working surfaces are produced when faster
material collides either with the surrounding envi-
ronment (at the head of the jet) or with slower
material ejected previously from the jet source (at
the internal working surfaces). The full solution for
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the jet flow is then obtained by “patching” the free-
streaming solution for the continuous segments with
the equations of motion for the successive working
surfaces.

There are two possible equations of motion that
can be considered for the working surfaces:

• the equation resulting from the ram pressure
balance condition across the two working sur-
face shocks,

• the equation for the motion of the center of mass
of the material within the working surface.

The first of these two possibilities represents the mo-
tion of a working surface that rapidly loses mass side-
ways into a cocoon (surrounding the jet beam), so
that the inertia of the material within the working
surface is negligible. The second model corresponds
to a working surface which conserves (within the re-
gion in between the two shocks) most of the mass
that has gone through the working surface shocks.
It has been shown (Masciadri et al. 2002) that nu-
merical simulations of variable jets give results that
lie in between these two (“massless” or “mass con-
serving” working surface) assumptions.

The first efforts to obtain analytic models were
based on the “massless working surface” assumption,
and were calculated with a constant density approxi-
mation for the gas in the jet beam (Raga et al. 1990).
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262 CANTÓ & RAGA

Kofman & Raga (1992) and Raga & Kofman (1992)
derived an asymptotic solution for long distances
from the source, valid for an arbitrary velocity and
density ejection variability. Raga & Cantó (1998)
considered the exact solution to the “free streaming
flow + massless working surface” problem, but were
unable to solve the differential equations of motion
of the working surfaces in an analytic way.

Cantó, Raga, & D’Alessio (2000) first studied
solutions to the “mass conserving working surface”
problem. They showed that the position of the work-
ing surface has to coincide with the position of the
center of mass of all of the material confined between
the two working surface shocks. This condition leads
to an integral formalism, which gives complex but
tractable analytic solutions. Cantó et al. (2000) com-
puted the solution for the “free streaming flow +
mass conserving working surface” problem for the
case of a sinusoidally varying ejection velocity (with
either a constant mass loss rate or constant ejection
density).

In a recent paper, Raga & Cantó (2003) have de-
veloped an analytic model for the motion of the lead-
ing head of a variable jet. In this model, the head
travels forward (sweeping up environmental mate-
rial) and is impacted from behind by the successive
“pulses” of material (corresponding to the internal
working surfaces, which are assumed to concentrate
all of the material ejected from the source). The
model of Raga & Cantó (2003) has the limitation
that the jet is assumed to be composed of a series
of travelling “clumps”, but is missing a calculation of
the concentration of the jet beam material into the
successive working surfaces.

In the present paper, we discuss a full model for
the head of a jet from a variable source, in which we
consider the details of the time-dependence of the
ejection. This model incorporates both the concen-
tration of the jet material into a series of internal
working surfaces, as well as the impacts of the work-
ing surfaces as they catch up with the leading head
of the jet.

The general formalism of the analytic model is
dicussed in § 2. In § 3, we present the solutions
obtained for a sinusoidally varying velocity and with
either a constant mass loss rate or constant ejection
density. Finally, we discuss the results in § 4.

2. THE ANALYTIC MODEL

We consider the motion of the head of a variable
jet, which is ejected with a time-dependent mass loss
rate ṁ(τ) (per unit area of the jet) and velocity vi(τ),

where τ is the time at which the material is being
ejected. We will assume that the ejection starts at
τ = 0, producing a jet that is moving into an undis-
turbed, stationary environment.

If we assume that the jet is perfectly collimated
(i.e., that it has zero opening angle) and that all
of the material intercepted by the head of the jet
remains within it, the mass (per unit area of the jet
cross section) of the jet head is given by

ms =

∫

xs

0

ρe dx +

∫

τs

0

ṁ(τ) dτ, (1)

where xs is the position of the head of the jet, ρe is
the environmental density and τs is the time at which
the material which is now just catching up with the
working surface was ejected from the source.

The momentum (per unit area) of the head of the
jet is

Πs =

∫

τs

0

ṁ(τ) vi(τ) dτ. (2)

The velocity of the jet head is then

vs = Πs/ms. (3)

The position of the head of the jet xs can be
computed as the position of the center of mass of the
swept up environment and the jet material (ejected
between times 0 and τs) that has caught up with the
jet head:

xs =
1

ms

[
∫

xs

0

ρex dx +

∫

τs

0

(t − τ) ṁ(τ) vi(τ) dτ

]

.

(4)
The position of the head also satisfies the condition

xs = (t − τs) vi(τs) → t =
xs

vi(τs)
+ τs, (5)

namely, that the material ejected from the source at
a time τs, travelling with a ballistic velocity vi(τs) is
now (i.e., at time t) just catching up with the head of
the jet. It will be shown below that the ejection ve-
locity vi(τs) and time τs change discontinuously each
time an internal working surface impacts the head.
These changes, however, are such that equation (5)
is still valid at any time, since the position of the
head xs must be a continuous function of time.

For a uniform environment, ρe is independent of
x, and the first integral in equation (1) is equal to
ρe x. Substituting equation (1) into (4) we then ob-
tain a quadratic equation for xs:

ρe

2
xs

2 + A(τs)xs + B(τs) = 0, (6)
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MOTION OF THE HEAD OF A VARIABLE JET 263

Fig. 1. Position xs (top) and velocity vs (bottom) of the
head of the jet as a function of time t obtained from the
“sinusoidal ejection velocity + constant mass loss rate”
model (see § 3.1). Six choices of parameters are shown.
In both plots the three upper curves correspond to ρe =
1, and the three lower curves to ρe = 10. Of each of the
groups of three curves, the curve with larger values of
xs and larger variability in vs corresponds to va = 1.0.
The two other curves correspond to va = 0.5 and va = 0.1
(which gives the lower values for xs and for the variability
of vs).

where

A(τs) ≡

∫

τs

0

ṁ(τ) dτ −
1

vi(τs)

∫

τs

0

ṁ(τ) vi(τ) dτ, (7)

B(τs) = −τs

∫

τs

0

ṁ(τ) vi(τ) dτ

+

∫

τs

0

ṁ(τ) vi(τ) τ dτ.

(8)

Given the functional forms of ṁ(τ) and vi(τ), we
can use equations (7) and (8) to find A(τs) and B(τs),
and solve the quadratic equation (6) in order to find
xs. We can then obtain the time t from equation
(5), and the velocity vs of the head of the jet from
equations (1–3). In this way, we obtain the position
xs and the velocity vs of the head of the jet as a
function of time t in a parametric way, by computing
the values of xs, vs and t corresponding to all of the
positive values of the parameter τs. This procedure is
illustrated in the following section for specific forms
of ṁ(τ) and vi(τ).

Fig. 2. Position xs (top) and velocity vs (bottom) of the
head of the jet as a function of time t obtained from the
“sinusoidal ejection velocity + constant ejection density”
model (see § 3.2). Six choices of parameters are shown.
In both plots the three upper curves correspond to ρe =
1, and the three lower curves to ρe = 10. Of each of the
groups of three curves, the curve with larger values of
xs and larger variability in vs corresponds to va = 1.0.
The two other curves correspond to va = 0.5 and va = 0.1
(which gives the lower values for xs and for the variability
of vs).

3. THE CASE OF A SINUSOIDAL
EJECTION VELOCITY

3.1. Constant Mass Loss Rate

Let us now consider an ejection variability of the
form:

ṁ(τ) = 1, vi(τ) = 1 + va sin τ, (9)

where va is the (dimensionless) amplitude of the ve-
locity variability. This dimensionless form is ob-
tained by writing the time τ in units of τ0/2π (where
τ0 is the dimensional period of the variability), the
velocities in units of v0 (the average, dimensional
ejection velocity) and the densities in units of ρ0 (the
average, dimensional ejection density). In the dimen-
sionless form of equation (9), both the total mass m0

and momentum Π0 ejected in one variability period
are equal to 2π.

Substituting equation (9) into (7–8), one obtains

A(τs) = va

cos τs + τs sin τs − 1

1 + va sin τs

, (10)

B(τs) = −
1

2
τs(τs + 2va) + va sin τs. (11)
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264 CANTÓ & RAGA

Fig. 3. Comparison between our “sinusoidal ejection ve-
locity + constant mass loss rate”model and the “discrete
pulse” model of Raga & Cantó (2003). The three solid
curves correspond to parameters ρe = 10 and va = 1.0,
0.5 and 0.1, and the dashed curve corresponds to the
model of Raga & Cantó (2003) with ρe = 10.

The solution to the quadratic equation (6) then gives
the position as a function of τs. The velocity of the
jet head is given by equation (3) which now takes
the form

vs =
τs + va(1 − cos τs)

ρ0xs + τs

, (12)

and the time t as a function of τs is finally obtained
from equation (5).

From this parametric solution, we find, e.g., the
position xs of the jet head as a function of the time
t. Interestingly, this is a multivalued function, with
several different possible values of xs for each value
of t. One can show that the physical solution giving
the real position of the jet head corresponds to the
solution with the maximum value of xs for each given
time t.

In this way, we can fix different values of the di-
mensionless velocity amplitude va and environmental
density ρe, and then obtain the position xs and ve-
locity vs of the jet head as a function of time. Several
examples of such solutions are shown in Figure 1.

3.2. Constant Ejection Density

We now consider an ejection variability of the
form:

ṁ(τ) = 1 + va sin τ, vi(τ) = 1 + va sin τ, (13)

In this dimensionless form the total mass ejected in
one variability period is m0 = 2π, and the total mo-
mentum is Π0 = 2π(1 + va

2/2).
Substituting equation (13) into (7–8), one obtains

A(τs) = −
va

2(1 + va sin τs)

×
[

2 + va τs − 2(τs + va) sin τs

+ cos τs(−2 + va sin τs)
]

,

(14)

B(τs) =
1

8

[

−4τs
2 + 16va(sin τs − τs)

+ va
2(1 − 2τs

2 − cos 2τs)
]

.
(15)

Equation (3) for the velocity of the jet head now
takes the form

vs =
τs + 2va(1 − cos τs) + 1

2
va

2(τs −
1

2
sin 2τs)

ρ0xs + τs + va(1 − cos τs)
.

(16)
Solving equation (6) we then obtain the solution for
the motion of the jet head as a function of time
(choosing the appropriate solution for the multi-
valued function, as described in § 3.1).

In Figure 2, we show the position xs and the ve-
locity vs as a function of time obtained for different
values of va and ρe. The results are discussed in the
following section.

3.3. Discussion

In § 3.1 and § 3.2 we presented the solutions ob-
tained for a sinusoidal velocity variability and a con-
stant mass loss rate or a constant ejection density.
Numerical examples of the results that are obtained
are shown in Figs. 1 and 2.

From these figures it is clear that qualitatively
similar results are obtained for the two cases. Ini-
tially, the jet head velocity vs first increases (as a
result of the initially increasing ejection velocity, see
equations 9 and 13), reaches a peak, and then starts
to decrease. This decrease in vs is a direct result of
the decrease of the ejection velocity beyond the first
peak of the sinusoidal variability, together with the
increase of the mass of the swept-up environmental
material.

The velocity vs then shows a number of oscilla-
tions, with increases at the times at which the head
of the jet is caught up by the successive “ejection
events” of the sinusoidal ejection velocity variability.
From Figs. 1 and 2 it is clear that these increases are
discontinuous for the va = 1.0 and 0.5 cases, but are
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MOTION OF THE HEAD OF A VARIABLE JET 265

first continuous (for t < 50) and then discontinuous
(for t > 50) for the va = 0.1 model. This result is
due to the following effect.

For large amplitudes, a sinusoidal velocity vari-
ability leads to the formation of internal working sur-
faces close to the jet source (the exact expression for
the time and distance at which the working surfaces
form is given by Raga & Noriega-Crespo 1998). Be-
cause of this, by the time that the second “ejection
event” catches up with the jet head it has already
steepened into an internal working surface, therefore
giving a sudden boost to the momentum (and there-
fore to the velocity) of the jet head. This is what is
occurring in the va = 1.0 and 0.5 models.

In the va = 0.1 model, the first few ejection
events catch up with the jet head before they have
steepened into internal working surfaces, and they
therefore do not give such sudden boosts to the ve-
locity of the jet head. However, at large enough
distances from the source, they do form internal
working surfaces, and start to produce discontinuous
jumps in vs when they catch up with the jet head.

It is interesting to compare our present results
with the “discrete” model of Raga & Cantó (2003).
These authors considered the motion of the head of
a variable jet, which is formed of a periodic series of
discrete“ejection events”of mass m0 and momentum
Π0. In Figure 3, we show solutions for ρe = 10 and
va = 0.1, 0.5 and 1.0 from our “constant mass loss
rate” solution (see § 3.1), together with the solution
from the “discrete” model of Raga & Cantó (2003)
with the same values of m0 and Π0 (i.e., with the
same mass and momentum per ejection event).

From Fig. 3, we see that for t > 10 the va = 1.0
and 0.5 solutions quite closely resemble the“discrete”
model of Raga & Cantó (2003). However, the va =
0.1 model does not develop discontinuities (in vs vs.
t) in the time-range shown in Fig. 3, and therefore
shows a qualitatively different behaviour.

It is mathematically interesting that the “contin-
uous flow” model described in the present paper au-
tomatically develops the “discrete” behaviour of the
model of Raga & Cantó (2003), which has this dis-
creteness imposed in the form of the ejection time-
variability. Even though the solutions for vs that we
obtain for the flow velocity are continuous as a func-
tion of τs (see equations 12 and 16), they do show
discontinuities when plotted as a function of time t.
These discontinuities result from the fact that one
has to choose between the different branches of the
xs(t) function (in which the branch with larger value
of xs represents the physical solution, see § 3.1 and
§ 3.2). The discontinuities in vs correspond to the

points in which one branch crosses another one, and
suddenly becomes the solution with larger xs (i.e.,
the physical solution).

From Fig. 3, we see that our model results in
the same asymptotic velocity (for large times) as the
discrete model of Raga & Cantó (2003), so we do not
rederive its value here.

4. CONCLUSIONS

In this paper we derive a fully analytic model
for the motion of the head of a variable jet, based
on mass and momentum conservation considerations.
This model is in principle applicable for an arbi-
trary ejection velocity and density variability, but
we present explicit solutions for only two kinds of
variabilities:

• sinusoidal velocity variability, constant mass
loss rate,

• sinusoidal velocity variability, constant ejection
density.

However, as our solution only involves integrals of
the mass and momentum injection rates, any time-
variability which leads to analytic forms for the rel-
evant integrals (see equations 7 and 8) will lead to a
full analytic solution.

We have only considered the case of a homoge-
neous, constant ρe environment. One could of course
also consider the case of a stratified environment.
However, most possible forms for the density strati-
fication will lead to a transcendental equation for xs

as a function of τs (see equation 6), which would then
require a numerical inversion. Also, in the present
paper we have considered a perfectly collimated jet,
but the case of a jet with a constant opening angle
could also be treated with the same formalism (this
would lead to a quartic equation for xs as a function
of τs).

This paper represents an extension to the work
of Raga & Cantó (2003). These authors derived the
motion of the head of a jet composed of a series
of discrete “pulses” of mass m0 and momentum Π0.
Our present model is much more general, as it repre-
sents a solution for an ejection variability of arbitrary
form.

As discussed by Raga & Cantó (2003), this model
for the motion of the head of a variable jet has clear
applications for HH jets. For example, in young out-
flow systems one might be observing the leading head
of a jet as it begins to escape from the dense re-
gion close to the source. An example of this kind of
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flow might be the emission knots close to XZ Tauri
(Krist et al. 1997), which appear to represent the ini-
tial stages of an outflow from a young star. Another
example of an outflow in the initial stages of its evo-
lution might be HH 57 (Reipurth et al. 1997). Also,
our model could be applied to the leading head of an
evolved outflow. Such leading heads might be asso-
ciated with the knots farther away from the source
in “giant jets” systems such as the ones associated
with the HH 34 (Devine et al. 1997) and HH 111
(Reipurth, Bally, & Devine 1997) outflows.
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Raga, A., & Cantó, J. 2003, A&A, submitted

. 1998, RevMexAA, 34, 73
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