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RESUMEN

Puesto que la distribución de luz medida sobre cualquier radio galactocéntrico
de una galaxia eĺıptica tiene la misma forma funcional: exp[−R1/n] (perfil de Sérsic)
para casi todas estas galaxias, y dado que este perfil es la integral de Abel de la
densidad espacial de fuentes luminosas ρL(r), parece lógico buscar el camino de
derivar esta densidad a partir de la distribución de luz observada. Proponemos en
este art́ıiculo un método de “ordenadas discretas” que proporciona, para cualquier
n > 1, una expresión expĺıcita para esa densidad de fuentes emisoras, tal que puede
evaluarse numéricamente con cualquier grado de precisión. Una vez obtenida esa
densidad ρL(r), se calculan fácilmente la distribución de masa M(r), el potencial
φ(r) y la dispersión de velocidades, tanto en el espacio σ2

s(r) como en el plano de
observación, σ2

p(R).

ABSTRACT

Since the distribution of light measured along any galactocentric radius of an
elliptical galaxy has the same functional form exp[−R1/n] (Sérsic profile) for almost
all galaxies, and since this profile is the Abel integral of the luminous density,
it looks worth-while to seek the way to derive the latter from the former. We
propose in this paper a “discrete ordinate” method, which yields, for any value of
n > 1, an explicit expression for the luminous density, ρL(r), that can be evaluated
numerically to any required degree of precision. Once we have obtained such an
expresion for the spatial density, ρL(r), we can compute straightforwardly the mass
distribution, M(r), the potential, φ(r), and the velocity dispersions, σ2

s(r), in space
and on the observational plane, σ2

p(R).

Key Words: GALAXIES: ELLIPTICAL — GALAXIES: KINEMATICS

AND DYNAMICS — GALAXIES: STRUCTURE

1. INTRODUCTION

The analysis of the light intensity distribution
over the surface of an elliptical galaxy is fundamental
in order to determine its internal structure. Already
the first studies pointed out that this intensity distri-
bution along a galactocentric radius is similar for all
galaxies, and this holds true also for the bulges of spi-
ral galaxies. This distribution was first represented
by the Hubble-Reynolds law I(R) ∝ (R + Ro)

−2

(Reynolds 1913; Hubble 1930), and some time later
by the “universal” R1/4 de Vaucouleurs law (de Vau-
couleurs 1948). However, subsequent observations

1Ramón y Cajal Fellow, Spain.

(Davies et al. 1988; Caon, Capaccioli, & D’Onofrio
1993; Andreakis, Peletier, & Balcells 1995; Graham
et al. (1996); Binggeli & Jergen 1998) have shown
some discrepancies with the R1/4 law, leading to a
more general form R1/n, usually with n > 1 (Sérsic
1968). This three-parameter expression accounts
much better for the observed intensity profiles of
both elliptical galaxies and bulges of spiral galaxies.

In this paper we present an exhaustive study to
determine the 3D spatial distribution of emitting
sources from any observed R1/n Sérsic profile. Then,
via a mass-to-luminosity ratio, we are able to derive
the corresponding dynamical properties.
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70 SIMONNEAU & PRADA

2. THE ABEL INVERSION FOR THE SERSIC
PROFILES

For an spherical galaxy of total luminosity L, the
“light profile”, which describes the light intensity dis-
tribution along any galactocentric radius, can be ap-
proximated by the Sérsic profile

I(R) = I(0) exp[−k(R/Re)
1

n ] . (1)

Then, the luminosity L is given by

L = I(0)R2
eπ

2n

k2n
Γ(2n) , (2)

where Γ(2n) is the Gamma function. Re is the ef-
fective radius, i.e., the “radius” of the isophote that
encloses one half of the total luminosity. For n ≥ 1,
k can be estimated (with an error smaller than 0.1%)
by the relation k = 2n − 0.324 (see Ciotti 1991).

Our aim is to determine the density of galactic
luminous sources which can explain the observed in-
tensity profile, I(R), given by Eq. (1). This intensity
at a given position is due to the emission of all the
stars lying on the line of sight. In the case where
the emitting sources of the galaxy have a spherical
distribution of density, ρL(r), the observed isophotes
should be circular, and the corresponding intensity
will be given by

I(R) =

∫

∞

R

ρL(r)
2rdr

√
r2 − R2

, (3)

where R is the radius of each observed isophote.
If the distribution of emitting sources is not

spherical, as it happens in the case of actual ellip-
tical galaxies, the relation between the observed in-
tensity profile I and the spatial distribution of lu-
minous sources ρ is, in practice, the same (Lindblad
1956; Stark 1977). In this paper, then, we shall con-
sider only the case of spherical galaxies by means of
Equation (3). But we would like to emphasize that
many of the conclusions presented in this paper can
be applied, with minor changes, to the case of ellip-
tical galaxies.

Thus, in terms of the new variables z ≡ (R/Re)
and s ≡ (r/Re), the theoretical inversion of the
Abel integral transform (Tricomi 1985; Binney &
Tremaine 1987), can be writen in the form

ReρL(s) = −
1

π

∫

∞

s

dI(z)

dz

dz
√

z2 − s2
, (4)

where I(z) is given by the Eq. (1). Thus, it follows
that

ρL(s) =
1

π

k

n

I(0)

Re

∫

∞

s

exp[−kz
1

n ] z
1

n
−1

√
z2 − s2

dz, (5)

or, alternatively (for n ≥ 1) with z = tns

ρL(s) =
k

π

I(0)

Re
s

1

n
−1

∫

∞

1

exp[−ks
1

n t]
√

t2n − 1
dt. (6)

Of course the divergence of ρL(s) for s = 0 is
a direct consequence of the form of the empirical
Sérsic law used to describe the observed I(R). How-
ever, this a minor problem because the correspond-
ing mass distribution, Eq. (19) does not present any
discontinuity.

Although the argument in the integral of Eq. (6)
is singular at t = 1, it is integrable for any value of n.

When n = 1 the intensity profile, I(R), takes the
form of an exponential law and the integral in Eq. (6)
is the Ko(x) modified Bessel function, which has a
logarithmic discontinuity for x = 0 (see Abramowitz
& Stegun 1964, pages 374–376). Hence, for n = 1
the spatial density becomes

ρL(s) =
k

π

I(0)

Re
Ko(ks). (7)

For n > 1 the integration of Eq. (6) is not possible
analytically. However, for s = 0 it holds that

∫

∞

1

dt
√

t2n − 1
=

1

2n
B(

1

2
,
n − 1

2n
) (8)

However, the form of the integral in Eq. (6) has
been used by many authors to obtain different ap-
proximations for ρL(s). First, for the de Vaucouleurs
case n = 4, by Poveda, Iturriaga, & Orozco (1960),
Mellier & Mathez (1987); subsequently for the Sérsic
profiles by Gerbal et al. 1997. Also, numerical com-
putations of ρL(s) have been carried out by Young
(1976) for the de Vaucouleurs case and by Ciotti
(1991) and Graham & Colles (1997) for the Sérsic
cases, respectively. In this article we propose an an-
alytical approximation for ρL(s) that makes possible
an easy computation of the mass and gravitational
potential to any required degree of precision.

As the argument of the integral in Eq. (6) can
be integrated for any value of s, irrespectively of the
singularity at t = 1, it seems possible to rewrite this
integral in the variable, x, such that the argument
does not show any discontinuity. Our choice is t =
1/(1 − x2)1/(n−1). Eq. (6) for the density becomes
then

ρL(s) =
k

π

I(0)

Re

2

n − 1

1

s
n−1

n

∫ 1

0

exp[−ks
1

n (1 − x2)−
1

n−1 ]
√

1 − (1 − x2)
2n

n−1

xdx. (9)
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TABLE 1

ABSCISSAE, xj , AND WEIGHTS, wj
a

xj wj

Nap = 1 0.5 1.

Nap = 2 0.211325 0.5

0.788675 0.5

Nap = 5 0.046910 0.118464

0.230765 0.239314

0.5 0.284444

0.769235 0.239314

0.953090 0.118464
aFor the Gaussian integration in the in-
terval (0,1) for three different approxi-
mations, Nap=1,2 and 5.

We can now formally perform the integration by
means of a Gaussian numerical integration to obtain

ρL(s) =
k

π

I(0)

Re

2

n − 1

1

s
n−1

n

Nap
∑

j=1

ρj exp[−λjks
1

n ] ,

(10)
where

λj =
1

(1 − x2
j )

1

n−1

, (11)

ρj = wj
xj

√

1 − (1 − x2
j )

2n

n−1

, (12)

and xj and wj (j = 1, 2, ..., Nap) are respectively
the Gaussian abcissae and the corresponding inte-
gration weights with the interval (0, 1). Nap is the
order of approximation, i.e., number of abscissae and
weights necessary to evaluate numerically the inte-
gral in Eq. (6). In Table 1 we have listed the abscis-
sae and weights for the Nap = 1, 2 and 5 cases that
we discuss below.

The standard tables of abcissae, x̄j , and in-
tegration weights, w̄j , correspond to the interval
(−1,+1) (Abramowitz & Stegun 1964, pages 916–
919). Therefore, the relation of the values of xj and
wj for the interval (0,1) are xj = (1 + x̄j)/2 and
wj=w̄j/2.

Now, in order to test the quality of our approxi-
mations, we shall start by pointing out that there are

a few characteristic quantities relevant to the distri-
bution ρL(s) that can be determined independently
of the numerical approximations. These quantities
enable us to perform a first check of our approxi-
mate form for ρL(s) in Eq. (10). One of them is the
integral in Eq. (8) which determines the asymptoti-
cal behaviour of ρL(s) when s → 0. From Eqs. (8)
and (10) it is necessary that

4n

n − 1

Nap
∑

j=1

ρj ∼ B(
1

2
,
n − 1

2n
), (13)

where the coefficients ρj are those given by Eq. (12).
The other characteristic quantities are the different
moments of the density distribution, ρL(r), defined
by

Mρm =

∫

∞

0

ρ(r)rmdr =
1

B(m
2 , 1

2 )
MIm, (14)

where B(z, w) is the complete Beta (Euler) function,
and MIm are the moments of the observed intensity
given by

MIm =

∫

∞

0

I(R)Rm−1dR = Rm
e I(0)

n

knm
Γ(nm).

(15)
The first one (m = 0) leads to the synthetic value

of I(0). To satisfy Eq. (3) for R = 0 with a density
law as in Eq. (10) it is necessary that

Nap
∑

j=1

ρj

λj
∼

π

2

n − 1

2n
. (16)

The second one (m = 1) leads to the value of
the gravitational potential at the centre of the sys-
tem (r = 0). This value, φ(0), is known a priori; it
is obtained directly from the analytical solution of
the Poisson equation in the center, s = 0 (see be-
low Eq. [21]). To reach this theoretical value with a
density law as in Eq. (10) is necessary that

Nap
∑

j=1

ρj

λn+1
j

∼
n − 1

2n
. (17)

The third one (m = 2) leads to the value of the
total luminosity, L. To have the same theoretical
value as in Eq. (2) it is necessary that

Nap
∑

j=1

ρj

λ2n+1
j

∼
π

4

n − 1

2n
. (18)
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72 SIMONNEAU & PRADA

Fig. 1. Top: the surface distribution of intensity, I(R) normalized to I(0); this is Sérsic law for different values of the
exponent n (n = 1, 2, ..., 10) in Eq. (1). Re is the effective radius of the corresponding galaxy. The dotted line correspond
to n = 1. Bottom: the corresponding density of luminous sources ρ(r) given by equation (10), in units of I(0)/Re.

Thus, to test as a first step the accuracy of our
approximation for ρL(s) in Eq. (10), we have com-
puted the left-hand side of Eqs. (13), (16), (17), and
(18) numerically; and in Tables 2, 3, 4, and 5 we
have compared these with the theoretical values of
their right-hand sides for the different approxima-
tions Nap =1, 2, and 5, and for different values of n
(2, 3,4 ,..., 10). As can be seen, the approximation
Nap = 5 leads to results of high quality. According

to the results we have that for Nap = 10, 20, and
40, the variation is insignificant with respect to the
results for Nap = 5.

We shall now discuss the accuracy of each ap-
proximation for ρL(s) (Nap =1, 2, 5, 10, 20, 40)
over the entire interval. As a reference we take the
density ρ40(s) calculated with Nap = 40. The rela-
tive variation between this one and ρ20(s), calculated
with the approximation Nap = 20, is always smaller
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SPHERICAL GALAXIES 73

Fig. 2. Top: plot of the normalized luminosity distribution L(r)/L corresponding to the I(R) Sérsic profiles for n =
1, 2, ..., 10. Bottom: plot of the normalized mass M(r)/M for the same values of n.

than 0.01%, i.e., negligible to the first four signifi-
cant figures. This difference increases by one order
of magnitude for the approximation with Nap = 10.
The relative difference between ρ10(s) and ρ40(s) is
always smaller than 0.1%. For the case with Nap = 5
the difference between ρ5(s) and ρ40(s) is always
less than 1%. For the case of Nap = 2 we can get
differences of around 10% only for low values of n
(less that 5), and for large values of s (greater than
10). This relative difference increases significantly

for Nap = 1. Thus, if we consider as not significative
the difference between the cases with Nap = 40 and
Nap = 20, we can take the above difference as the
error of any approximation. In general, Nap = 2 is
a good approximation for a suitable first-order de-
scription.

Then, for most applications, when great accu-
racy is not necessary, the approximation Nap = 5
can be sufficient. In case a much higher accuracy is
required, the Nap = 10 and Nap = 20 approxima-



©
 C

o
p

yr
ig

ht
 2

00
4:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

74 SIMONNEAU & PRADA

TABLE 2

ASYMPTOTIC VALUE OF ρL(s) FOR s → 0,
Eq. (8) a

n (1) Nap = 1 Nap = 2 Nap = 5

2 5.2441151 4.837945 5.255770 5.244083

3 4.2065460 3.945576 4.204081 4.206550

4 3.8558066 3.643523 3.850307 3.855832

5 3.6790940 3.490923 3.672538 3.679124

6 3.5725536 3.398728 3.565529 3.572583

7 3.5012896 3.336962 3.494024 3.501318

8 3.4502622 3.292684 3.442860 3.450289

9 3.4119198 3.259382 3.404436 3.411943

10 3.3820539 3.233423 3.374518 3.382076
a(1). We show the exact value of B(1/2, (n − 1)/2n)

and the corresponding computed values 4n

n−1

∑Nap

j=1 ρj ,
Eq. (13), with Nap=1, 2, 5.

tions can be good enough.
In Figure 1, we plot ρL(r) as a function of s =

r/Re, for different values of n, together with I(R)
so as to exhibit the small, but representative differ-
ences between the two functions related by the Abel
transform.

3. DYNAMICAL INFERENCES

Once we have obtained the density of luminous
sources, ρL(s), we can study some other quantities
related to the dynamical state of the galaxy.

The density ρL(s) in Eq. (10) refers to the den-
sity of luminous sources. In cases where the mass-
to-luminosity ratio, Υ, is the same throughout the
galaxy, the corresponding mass distribution, M , will
be given by

M(s)

M
=

4

π(n − 1)Γ(2n)
Nap
∑

j=1

ρj

λ2n+1
j

γ(2n + 1, λjks
1

n ), (19)

where γ(2n + 1, λjks
1

n ) is the incomplete Gamma
function corresponding to the Gamma function
Γ(2n + 1) for the value λjks

1

n . For n = 1 the distri-
bution of mass must be computed directly from the
corresponding density given by Eq. (7). The total
mass M is given as a function of the total luminos-
ity, given by Eq. (2), multiplied by the factor Υ.

Because the Gaussian values of λj and ρj satisfy
Equation (18) very accurately we are sure about the
correct normalization in the M(s) distribution. The

TABLE 3

SYNTHESIS OF THE OBSERVED CENTRAL
INTENSITY I(0) a

n (1) Nap = 1 Nap = 2 Nap = 5

2 0.3926991 0.453557 0.397601 0.392702

3 0.5235988 0.569495 0.537842 0.524518

4 0.5890502 0.620693 0.603678 0.590514

5 0.6283185 0.649734 0.641712 0.629974

6 0.6544985 0.668478 0.666468 0.656182

7 0.6731984 0.681587 0.683865 0.674842

8 0.6872234 0.691273 0.696759 0.688799

9 0.6981317 0.698723 0.706698 0.699631

10 0.7068726 0.704633 0.714593 0.708280
a(1). We show the theoretical value of (π/2, (n− 1)/2n)
together with the corresponding numerical computation
of

∑Nap

j=1 ρj/λj , Eq. (16), with Nap =1, 2, 5.

normalized mass distribution, M(s)/M , is shown in
Figure 2 for different values of n. We show in the
same figure the normalized luminosity distribution
L(R)/L.

Now, for the gravitational potential we have

φ(s) =
2nφ(0)

(n − 1)Γ(n + 1)
Nap
∑

j=1

ρj

λn+1
j

γ(n + 1, λjks
1

n ) +

− (
ΥGL

Re
)
1

s

M(s)

M
, (20)

where M(s)/M is given by Eq. (19) and where the
potential at the center is given by

φ(0) = −(
ΥGL

Re
)
2

π
kn Γ(n)

Γ(2n)
, (21)

which is the correct value known a priori (see Ciotti
1991). The fact that the Gaussian values of λj and
ρj account for the first moments of the density law
assures the correct normalization of the M(s) and
φ(s) distributions.

Curves for the potential φ(s) for different values
of n (n = 1, 2, ..., 10) are shown in Figure 3.

With the above expressions for ρ(s), M(s) and
φ(s) it becomes very easy to compute the total po-
tential energy

W =
1

2

∫

∞

0

4πr2ρ(r)φ(r)dr, (22)
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Fig. 3. Curves for the normalized potential φ(s)/φ(0) for n = 1, 2, ..., 10.

to get

−W = Υ2 GL2

Re
w2. (23)

The values of the parameter w2, defined from
Eq. (23), have been computed numerically and are
given in Table 6 for the different values of n.

3.1. The Velocity Dispersion

We can interpret the term (ΥGL/Re)w
2, as a

mean quadratic velocity such that the correspond-
ing kinetic energy, T = (1/2)M(ΥGL/Re)w

2, sat-
isfies the virial theorem. In spherical galaxies, this
mean quadratic velocity —mean square of the space
(3-D) stellar velocities— must correspond to the
mean quadratic velocity dispersion < σ2(r) >, where
σ2(r) =σx

2(r)+ σy
2(r)+σz

2(r). Then, in station-
ary spherical galaxies we can assume that there are
no organized motions of the stellar populations as
a whole; we can also assume the isotropy condition
in the velocity dispersion tensor: σx

2(r) =σy
2(r) =

σz
2(r) =σs

2(r). Under this condition it holds that
<σ2(r)>= 3<σs

2(r)>= 3σs
2.

If observations of the above mean quadratic ve-
locity (velocity dispersion), independent of the ob-
servations of the profile I(R), were available, under
the assumption of the validity of the “Sérsic model”
for the galaxy we could derive the potential energy
from any observed I(R) profile (cf. Eq. [22]), and
consequently the factor w2. Hence, we could esti-
mate the value of the mass-to-luminosity ratio Υ
from the virial theorem. This method for the de-
termination of the masses of elliptical galaxies was
proposed by Poveda (1958) for the case n = 4 (de
Vaucouleurs law).

However, we cannot actually measure the veloc-
ity dispersion in space, σs(r). We can measure only
its “projection” on the observational plane, the so-
called velocity dispersion on the observational plane,
σp(R). Theoretically, these measurements can be
represented by

I(R)σ2
p(R) =

∫

∞

R

σ2
s(r)ρL(r)

2r
√

r2 − R2
dr, (24)

which corresponds to the integral along the line of
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76 SIMONNEAU & PRADA

Fig. 4. Top: plot of the spatial velocity dispersion σ2
s(r) derived from Eq. (28) for n = 1, 2, ..., 10. Bottom: plot of the

observed velocity dispersion σ2
p(R) derived from Eq. (24) for the same values of n. σ2

s(r) and σ2
p(R) are normalized to

GM/Re.

sight of the line-of-sight component of the spatial
velocity the dispersion, i.e., σ2

s(r) weighted by the
density of light. The mean quadratic value of σ2

p(R)
is

< σ2
p(R) >=

∫

∞

0
σ2

p(R)dL(R)

L
= σ2

p. (25)

On the other hand, the mean quadratic space
velocity dispersion is given by

< σ2(r) >= 3

∫

∞

0
σ2

s(r)r2ρ(r)dr
∫

∞

0
r2ρ(r)dr

= 3σ2
s . (26)

Equations (23) to (25), together with the defini-
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Fig. 5. Plot of the aperture velocity dispersion σ2
p(Rm), normalized to GM/Re, derived from equation (29) for different

values of the exponent n (n = 1, 2, ..., 10) in the Sérsic profile.

tion of I(R) given by Eq. (1), assure that the con-
dition σ2

p = σ2
s is satisfied. This offers us a way to

estimate the mean quadratic spatial velocity disper-
sion, 3σ2

s , and, via the virial theorem, the mass-to-
luminosity ratio, Υ.

But the measurement of the velocity dispersion
averaged over the observation plane, Eq. (25), re-
quires an integration over the entire image of the
galaxy, namely, from the mathematical standpoint,
over the entire radial interval from 0 < R < ∞. In
general, this condition cannot be satisfied and we
can measure only I(R)σ2

p(R) over a radial interval
(0, Rm) which does not contain the entire luminos-
ity L of the galaxy. This can lead to an incorrect
value of σ2

p, and therefore a wrong estimate of the
mass-to-luminosity ratio, Υ, from the virial theorem.

However, this lack of spatial coverage in the ob-
servations can be compensated thanks to our galaxy
model. Once we have the density distribution law,
Eq. (12), and the potential distribution, Eq. (20), the

spatial velocity dispersion, σ2
s(r) (assuming isotropy

in the velocity distribution function), satisfies the
Maxwell–Jeans equation,

d

dr
ρ(r)3σ2

s(r) = −ρ(r)
d

dr
φ(r), (27)

and, with the natural boundary condition
ρ(r)σ2

s(r) → 0 for r → ∞, we have

ρ(r)3σ2
s(r) =

∫

∞

r

ρ(r′)
d

dr′
φ(r′)dr′

= G

∫

∞

r

ρ(r′)
M(r′)

r′2
dr′ . (28)

Equations (10) for ρ(r) and (19) for M(r) allow
the direct calculation of σ2

s(r) from r = 0 to r =
∞. Afterwards, we can use Eq. (24) to get, via our
model, the local mean velocity dispersion, σ2

p(R), on
the observational plane.
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TABLE 4

SYNTHESIS OF THE THEORETICAL
GRAVITATIONAL POTENTIAL AT S = 0 a

n (1) Nap = 1 Nap = 2 Nap = 5

2 0.25 0.255126 0.246949 0.249997

3 0.3333333 0.369898 0.327389 0.333356

4 0.375 0.422952 0.370122 0.374965

5 0.4 0.453484 0.396269 0.399942

6 0.4166667 0.473327 0.413849 0.416597

7 0.4285714 0.487259 0.426461 0.428498

8 0.4375 0.497580 0.435943 0.437496

9 0.4444444 0.505533 0.443330 0.444371

10 0.45 0.511849 0.449245 0.449928

a(1) We show the theoretical value of (n − 1)/2n to-
gether with the corresponding numerical computation of
∑Nap

j=1 ρj/λn+1

j , Eq. (17), with Nap=1,2,5.

We have computed both σ2
s(r) from Eq. (28)

and σ2
p(R) from Eq. (24) for each value of n (n =

1, 2, ..., 10) with the Sérsic profile (see Figure 4). In
all the cases we have calculated the corresponding
mean quadratic velocity over the total space. We
have found that (ΥGL/Re)w

2 = 3σ2
s and σ2

s = σ2
p

with a precision greater that 0.01%, i.e., to at least
four significant digits. This has been the precision
that we have used in the calculation of the density,
ρ(r).

As we now have a “theoretical” distribution of
σ2

p(R), we can compute the mean quadratic value,
σ2

p(Rm), inside any total radius Rm and so we can
evaluate the difference between the total and any
partial integration. In Figure 5 we show the effects
that can appear as a consequence of having a lack
of data in the radial observational interval. We have
calculated the mean quadratic partial value,

< σ2
p(Rm) >=

∫ Rm

0
σ2

p(R)dL(R)
∫ Rm

0
dL(R)

. (29)

Obviously, when Rm → ∞ we find the total value
σ2

p = 1/3(ΥGL/Re)w
2. But when Rm/Re is too

small we can find important differences between σ2
p

and σ2
p(Rm), at least for some values of n of the

Sérsic profile (see Fig. 5).

4. CONCLUSIONS

Once we admit that the distribution of the inten-
sity over a galactocentric radius of a spherical galaxy
can be well represented by the R1/n Sérsic profile a
semi-analytical expression for the corresponding spa-
tial density of luminous sources, ρL(r), is given. It

TABLE 5

SYNTHESIS OF THE THEORETICAL VALUE
OF THE TOTAL LUMINOSITY a

n (1) Nap = 1 Nap = 2 Nap = 5

2 0.1963495 0.143508 0.208820 0.196357

3 0.2617994 0.240256 0.265076 0.261793

4 0.2945431 0.288208 0.294168 0.294525

5 0.3141592 0.316511 0.312086 0.314166

6 0.3272492 0.335146 0.324230 0.327259

7 0.3365992 0.348335 0.333001 0.336611

8 0.3436117 0.358159 0.339631 0.343623

9 0.3490659 0.365757 0.344818 0.349077

10 0.3534292 0.371810 0.348987 0.353441

a(1) We show the theoretical value of (π/2, (n − 1)/2n)
together with the corresponding numerical computation
of

∑Nap

j=1 ρj/λ2n+1

j , Eq. (18), with Nap = 1, 2, 5.

TABLE 6

THE TOTAL POTENTIAL
ENERGY (−W ) a

n w2 n w2

1 0.31426 6 0.38897

2 0.30973 7 0.42349

3 0.31856 8 0.46363

4 0.33615 9 0.50981

5 0.35983 10 0.56260

a Measured by taking
(Υ2GL2/Re) as unity in Eq. (23)
for different values of n.

takes the form of a sum of exponentials with the
same argument, R1/n, as in the observed intensity
profile, I(R). But for ρL(r) in each one of these expo-
nentials, the argument r1/n is multiplied by a numer-
ical factor, λj , and it is easily obtained. Likewise, the
corresponding coefficient of each exponential is eas-
ily computed. The number (Nap) of these exponen-
tials (the order of approximation) depends on the re-
quired precision. A number between 5 and 10 can be
sufficient for practical applications. Once this semi-
analytical expression for the spatial density, ρ(r), is
found, the distribution of mass, M(r), the potential,
φ(r), and the velocity dispersions, σ2

s(r) and σ2
p(R),

can be computed in a straightforward manner.

Furthermore, we show that the total mean
quadratic of the measured velocity dispersion over
the observational plane, σ2

p(Rm), cannot take the
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correct value σ2
p as a consequence of an incomplete

integration because of lack of observations. The ratio
between σ2

p(Rm) and σ2
p obtained by means of com-

putations with parameters and the function of the
“Sérsic” models provides us with the corresponding
correction factor and, consequently, with the correct
value of the velocity dispersion to use in the virial
theorem to deduce the mass and mass-to-luminosity
ratio.

We thank Terry Mahoney and Enrique Pérez for
corrections to the manuscript. E. S. wants to thank
the Instituto de Astronomı́a (UNAM) at Ensenada
where part of this work was done.
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