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RESUMEN

Choques a proa de vientos estelares fotoionizados aparecen en distintos ob-
jetos astrof́ısicos: regiones H II compactas, regiones H II alrededor de estrellas O
desbocadas y choques a proa alrededor de estrellas jóvenes de baja masa dentro de
regiones H II. Presentamos una formulación para calcular la medida de emisión a
partir de modelos anaĺıticos de capa delgada de choques a proa asociados a vientos
estelares, con la cual se pueden hacer predicciones sencillas de la emisión de ĺıneas
de recombinación o del continuo libre-libre. Ilustramos el tipo de predicciones que
pueden ser hechas calculando los mapas de emisión que resultan de un modelo de
un choque a proa no-axisimétrico de un viento estelar.

ABSTRACT

Photoionized stellar wind bow shocks are found in a number of different as-
trophysical objects : compact H II regions, H II regions around runaway O stars and
bow shocks around young, low mass stars within photoionized regions. We present
a formulation for calculating the emission measure from analytic, thin shell stellar
wind bow shock models, with which simple predictions of the recombination line or
the free-free emission can be made. We illustrate the predictions that can be made
by calculating the emission maps that result from a model of a non-axisymmetric
stellar wind bow shock.

Key Words: ISM: HERBIG-HARO OBJECTS – ISM: JETS AND OUT-

FLOWS – ISM: KINEMATICS AND DYNAMICS

1. INTRODUCTION

A wind from a star in relative motion with re-
spect to the surrounding environment produces a
stellar wind bow shock. Such bow shocks are found
in compact H II regions (in which the star is moving
with respect to the surrounding molecular cloud, see,
e.g., van Buren et al. 1990), and within H II regions
around runaway O stars (in which the star is passing
through the galactic plane, see, e.g., Noriega-Crespo,
van Buren, & Dgani 1997). Also, the recently discov-
ered “LL Ori objects” (Bally, O’Dell, & McCaugh-
rean 2000; Bally & Reipurth 2001) are T Tauri stars
with winds which interact with the expanding Orion
Nebula (M42).

Van Buren et al. (1990) presented an analytic
model for the region close to the stagnation point
of a stellar wind bow shock. Mac Low et al. (1991)
computed the “thin shell” bow shock numerically,
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2Instituto de Ciencias Nucleares, Universidad Nacional
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and calculated the emission measure as a function
of position in order to obtain predictions of free-
free radio continuum maps. Stellar wind bow shocks
have also been studied with full gasdynamical mod-
els (see, e.g., Dgani, van Buren, & Noriega-Crespo
1996; Raga et al. 1997).

The thin shell solution for stellar wind bow
shocks was first obtained numerically by Baranov,
Krasnobaev, & Kulikovskii (1971), and an analytic
solution was found by Dyson (1975) in the “ram
pressure balance” approximation (i.e., neglecting the
centrifugal pressure term). Somewhat surprisingly, a
full analytic solution to the thin shell, axisymmetric
stellar wind bow shock was found by Wilkin (1996)
and Cantó, Raga, & Wilkin (1996). Wilkin (2000)
extended this work, obtaining full analytic solutions
for non-axisymmetric stellar wind bow shocks.

In the present paper, we discuss a model for the
stellar wind bow shocks in the LL Ori objects. While
some of these objects show a prominent jet system,
which probably dominates the interaction with the
expanding Orion nebula, others appear to be the re-
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102 CANTÓ, RAGA, & GONZÁLEZ

sult of the presence of a more or less isotropic stellar
wind.

In these objects, both the stellar wind and the
external shocks are radiative, so that the thin shell
approach is directly applicable (its application to the
case of O star bow shocks being somewhat more du-
bious because the stellar wind shock is non-radiative,
see, e.g., Mac Low et al. 1991). With the exact so-
lutions of Wilkin (1996; 2000) in mind, we calcu-
late a density stratification (within the thin shell)
which is consistent with the ram+centrifugal pres-
sure balance, and then use this result to calculate
the emission measure of the shell (§2). We then
use this recipe for the emission measure in order
to calculate emission maps (see §3) from one of the
non-axisymmetric stellar wind bow shock solutions
of Wilkin (2000). We finally present a discussion of
the applicability of these models to the LL Ori ob-
jects in M42 (§4).

2. THE EMISSION MEASURE OF A THIN
SHELL

2.1. The Emission Measure in Terms of the Surface

Density

Let us consider the thin shell flow formed by a
stellar wind and a surrounding environment which
is flowing past the position of the star. This flow
is shown in a schematic way in Figure 1. We as-
sume that the stellar wind moves radially away from
the star, and that the ambient flow moves in a fixed
direction (e.g., we do not allow for a diverging or
converging ambient flow). However, we do allow for
the possibility of having an inhomogeneous ambient
medium (i.e., with non-uniform density and/or ve-
locity modulus) and/or a latitude-dependent stellar
wind.

In this figure, we see the wind from a star (with
a mass loss rate Ṁw and a radially constant wind
velocity vw) interacting with an environment of den-
sity ρa, which is flowing at a velocity va with respect
to the star. The flow within the thin shell (which
is limited by an inner, “stellar wind shock” and an
outer “ambient shock” has a surface mass density σ,
and is flowing along the shell at a velocity v.

We define a coordinate l measured inwards from
the “ambient shock” (perpendicularly to the thin
shell, see Fig. 1), so that the ambient shock is lo-
cated at l = 0, and the stellar wind shock at l = h
(where h is the position-dependent thickness of the
thin shell). Assuming that the flow within the shell
is well mixed, it will be then flowing along the shell
at a velocity v which is independent of l.

We now assume (as appropriate for the LL Ori
objects) that the whole flow is photoionized by an

ρ
v

w
w

v

ρa

a

v
σ

l

* M vw w,
.

Fig. 1. Schematic diagram showing the thin shell flow re-
sulting from the interaction of a stellar wind (of velocity
vw and mass loss rate Ṁw) with an impinging ambient
flow (of velocity va and density ρa). The thin shell is
limited by a stellar wind shock and an ambient shock.
The gas flows along the thin shell at a velocity v, and
has a surface density σ. The coordinate l is measured
inwards from the ambient shock, normal to the locus of
the thin shell.

external source, so that it can be approximated as
an isothermal flow (at a temperature T ≈ 104 K).
Then, the pressure within the thin shell just behind
the ambient shock will be

Pa = P (l = 0) = ρava,n
2 , (1)

where ρa is the density of the ambient medium and
va,n the component of the ambient velocity normal
to the thin shell, and the pressure just behind the
stellar wind shock is

Pw = P (l = h) = ρwvw,n
2 , (2)

where ρw is the density and vw,n the normal com-
ponent of the stellar wind velocity (see Fig. 1). The
pressure as a function of position l across the width

R

y

x

φ θ
z

va

Fig. 2. Schematic diagram of a stellar wind bow shock,
showing the definition of the spherical coordinate system
used in §2 and §3.
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PHOTOIONIZED BOW SHOCKS 103

of the thin shell is then described by the hydrostatic
equation

dP

dl
= −ρ g , (3)

where P = ρc2 (with c being the isothermal sound
speed) and the centrifugal acceleration being g =
v2/Rc (where Rc is the radius of curvature of the
curved flow streamlines). Equation (3) can be inte-
grated with the boundary condition (1) to obtain:

P (l) = ρ(l)c2 = Pa e−l/H , (4)

where H ≡ c2/g is the pressure (or density) scale
height. The boundary condition on the stellar wind
shock boundary (Eq. 2) then gives a relation between
H and the width h of the thin shell

Pw = Pa e−h/H , (5)

using Eq. (4). Using Eqs. (4) and (5) we can now
calculate the surface density

σ =

∫ h

0

ρ(l)dl =
H

c2
(Pa − Pw) , (6)

and the emission measure

EM =

∫ h

0

(ρ/m)
2
dl =

(Pa + Pw) σ

2m2c2
, (7)

where m ≈ 1.4mH is the average mass per hydrogen
ion of the photoionized gas.

Let us now consider a spherical coordinate system
(R, θ, φ), with the polar angle θ measured from the
direction of the impinging ambient flow, as shown in
Figure 2. The normal component of the pre-shock
velocities (see Eqs. [1] and [2]) are then given by:

va,n = va
sin θ[R cos θ + (∂R/∂θ) sin θ]

√

[R2 + (∂R/∂θ)2] sin2 θ + (∂R/∂φ)2
,

(8)

vw,n = vw
R sin θ

√

[R2 + (∂R/∂θ)2] sin2 θ + (∂R/∂φ)2
.

(9)
For the case of a uniform ambient medium and a
spherically symmetric stellar wind, the flow would
be axisymmetric, and therefore we would have
∂R/∂φ = 0, leading to much more simple equations
for va,n and vw,n.

Combining Eqs. (1–2) and (8–9) we then obtain:

Pa = ρa,0va,0
2 fa(θ, φ) , (10)

and
Pw = ρa,0va,0

2 fw(θ, φ) , (11)

where

fa(θ, φ) =

(

ρav2
a

ρa,0v2
a,0

)

×

sin2 θ[R cos θ + (∂R/∂θ) sin θ]2

[R2 + (∂R/∂θ)2] sin2 θ + (∂R/∂φ)2
, (12)

and

fw(θ, φ) =
R2 sin2 θ

[R2 + (∂R/∂θ)2] sin2 θ + (∂R/∂φ)2
,

(13)
where ρa,0 and va,0 are characteristic values of the
ambient velocity and density (respectively), which
we use to adimensionalize the equations.

2.2. The Surface Density and the Flow Velocity

With the results of §2.1, we can calculate the
emission measure of the thin shell in terms of its
surface density σ (see Eq. [7]). The remaining prob-
lem then is to calculate σ as a function of position
on the thin shell.

In order to do this, we first note that the flow
within the shell always follows trajectories with con-
stant φ (see Fig. 2 and Wilkin 2000). The mass loss
rate ∆Ṁ flowing along a slice of angle ∆φ of the thin
shell is given by:

∆Ṁ = (R sin θ)vσ ∆φ , (14)

where R is the local radius of the thin shell, v the ve-
locity along the thin shell, and σ its surface density.
We then can find σ as a function of v:

σ =
(dṀ/dφ)

v R sin θ
, (15)

where
dṀ

dφ
≡

Ṁw

4π
fm(θ, φ) , (16)

is the mass fed into the slice by the stellar wind and
by the impinging ambient medium. An example of
how to calculate fm(θ, φ) for a given model is shown
in §3.

Now, in a completely equivalent way we can con-
sider the z-momentum and the r-momentum (where
r is the direction of the cylindrical radius) in order
to obtain:

vz = vw
fz(θ, φ)

fm(θ, φ)
, (17)

vr = vw
fr(θ, φ)

fm(θ, φ)
, (18)

and the total velocity v =
√

v2
z + v2

r along the thin
shell

v = vw

√

[fz(θ, φ)]2 + [fr(θ, φ)]2

fm(θ, φ)
, (19)
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104 CANTÓ, RAGA, & GONZÁLEZ

where fz(θ, φ) and fr(θ, φ) are intrinsic properties of
the stellar wind+impinging ambient medium model
defined through the relations:

dΠ̇z

dφ
≡

Ṁwvw

4π
fz(θ, φ) , (20)

dΠ̇r

dφ
≡

Ṁwvw

4π
fr(θ, φ) , (21)

where dΠ̇z/dφ and dΠ̇r/dφ are z- and r-momentum
rates (respectively) inserted by the wind+impinging
environment into the thin shell slice which we are
considering.

Equation (19) can now be inserted into (15) in
order to obtain the surface density as a function of
position on the thin shell

σ(θ, φ) = σ0 fσ(θ, φ) , (22)

where

fσ(θ, φ) =
[fm(θ, φ)]2

(R/R0) sin θ
√

[fr(θ, φ)]2 + [fz(θ, φ)]2

(23)
is the function describing the angular dependence of
σ,

σ0 =
va

vw

(

Ṁwρ0

4πvw

)1/2

(24)

is the characteristic surface density, and

R0 =

(

Ṁwvw

4πρa,0v2
a,0

)1/2

(25)

is the stagnation radius of the thin shell bow shock.
Finally, now that we have an expression for σ

(Eq. [22]), we can combine it with Eq. (7) in order to
obtain the emission measure of the shell as a function
of position:

EM(θ, φ) = EM0 [fa(θ, φ) + fw(θ, φ)] fσ(θ, φ) ,
(26)

where

EM0 =
ρa,0v

2
a,0σ0

2m2c2
. (27)

We now finally have a calculation of the veloc-
ity along the thin shell v and the emission measure
EM (Eqs. [19] and [26], respectively) given in terms
of the functions fa, fw, fm, fr, fz and fσ(θ, φ) (de-
fined by Eqs. [12], [13], [16], [21], [20], and [23], re-
spectively). In the following section, we calculate
these functions for a specific stellar wind/impinging
ambient medium model.

3. STELLAR WIND BOW SHOCK AGAINST A
LINEARLY STRATIFIED AMBIENT

MEDIUM

Let us now consider a stellar wind bow shock
(see the schematic diagram of Fig. 2) of an isotropic
stellar wind interacting with an impinging ambi-
ent medium of homogeneous velocity va, but with
a stratified density of the form:

ρa = ρ0 + a y , (28)

where a is a constant (with dimensions of g cm−4),
and the y-axis is perpendicular to va (see Fig. 2).
Wilkin (2000) found that the thin shell solution re-
sults in an equation for the spherical radius of the
bow shock as a function of polar angle θ and az-
imuthal angle φ (see Fig. 2) of the form:

1

3
R2 sin3 θ +

ε

6
sinφR3 sin4 θ + θ cos θ − sin θ = 0 ,

(29)
where R is the spherical radius in units of R0,

R0 =
1

va

√

Ṁwvw

4πρ0

, (30)

and

ε ≡
aR0

ρ0

. (31)

Equation (29) can be inverted analytically or numer-
ically to obtain R(θ, φ).

For this solution, we can then calculate

fa(θ, φ) = (1 + εR sin φ sin θ)×

sin2 θ[R cos θ + (∂R/∂θ) sin θ]2

[R2 + (∂R/∂θ)2] sin2 θ + (∂R/∂φ)2
, (32)

and fw(θ, φ) which is given by Eq. (13) with the
R(θ, φ) calculated from Eq. (29). For this thin shell
solution, Eq. (16) gives

fm(θ, φ) = 1 − cos θ +

+
vw sin2 θ

va

(

1

2
R2 +

ε

3
R3 sinφ sin θ

)

,

(33)

and Eq. (21) gives

fr(θ) =
1

2
(θ − sin θ cos θ) . (34)

This equation was previously derived by Cantó et al.
(1996) and by Wilkin (2000). Finally, Eq. (20) gives

fz(θ, φ) = sin2 θ

(

1 − R2

2
−

ε

3
R3 sin φ sin θ

)

, (35)
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PHOTOIONIZED BOW SHOCKS 105

Fig. 3. Emission maps predicted from the ε = 0.1 model,
for different orientation of the flow with respect to the
plane of the sky. The three columns correspond to line
of sight directions with azimuthal angle φ = 0, 45 and
90◦ (from left to right) and the three rows correspond
to directions with polar angle θ = 0, 45 and 90◦. In
the two bottom rows, the projection of the velocity va of
the impinging ambient flow on the plane of the sky points
from right to left along the abscissa. The axes are labeled
in units of R0 (see Eq. [30]). The maps are normalized
with respect to the peak intensity value (within each of
the maps), and are shown with the logarithmic greyscale
given by the bar on the bottom right.

and fσ(θ, φ) is then given by Eq. (23).
With these results, Eqs. (19), (22), and (26) can

be used to obtain the flow velocity v (along the
thin shell), the surface density σ and the emission
measure EM (respectively) as a function of position
(θ, φ) on the thin shell bow shock.

The emission measure EM(θ, φ) can be now used
as an estimate of the H recombination line emission
(or of the free-free continuum emission), and one
can then carry out the appropriate line of sight inte-
grations in order to obtain predicted emission maps
from the thin shell model. This is done in the fol-
lowing section.

Finally, we note that the values for the “fn” func-
tions for θ = 0 are:

fa(θ = 0) =
16

16 + ε
, (36)

fw(θ = 0) =
16

16 + ε
, (37)

fm(θ = 0) = 0 , (38)

fr(θ = 0) = 0 , (39)

Fig. 4. Emission maps predicted from the ε = 0.5 model,
for different orientations of the flow with respect to the
plane of the sky. The description of the graph is other-
wise identical to the one of Fig. 3.

fz(θ = 0) = 0 , (40)

fσ(θ = 0) =
3 (1 + vw/va)

2

√

16 + ε2 sin2 φ
. (41)

This last equation is nothing short of surprising.
As can be seen from Eq. (22), Eq. (41) directly im-
plies that at the stagnation point (i.e., at θ = 0) the
surface density (and hence the emission measure, see
Eq. [26]) is multi-valued, as it has an explicit depen-
dence on the azimuthal angle φ (see Eq. [41]).

This unphysical property of the solution is due
to the fact that in the calculation of the transport
of the material along the thin shell, the pressure of
the gas has been neglected (see Eqs. [20] and [21]).
The pressure of the gas (which is proportional to the
surface density σ for an isothermal flow) guarantees
that the properties of the flow are single valued and
continuous through the stagnation point. However,
in our zero-pressure model this desirable character-
istic is not preserved.

We note that it is also possible to derive a purely
“ram pressure balance” solution (in which the cen-
trifugal pressure is neglected) for a stellar wind bow
shock moving in a medium with a linearly stratified
density. This ram pressure balance problem gives a
solution of the form

R(θ, φ) =

(

1 + 3

2
εθ sinφ

)2/3
− 1

ε sin θ sinφ
, (42)
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which for ε = 0 gives the well known solution of
Dyson (1975) for the axisymmetric, ram pressure
balance stellar wind bow shock. Using the ram pres-
sure balance solution (Eq. [42]) instead of the full
solution with centrifugal pressure (Eq. [29]) one can
again determine the surface density of the thin shell.
One then finds that the surface density of the ram
pressure balance solution (Eq. [42]) has an behavior
at θ = 0 which is identical to the one of the solution
with ram pressure balance, confirming the somewhat
suspicious result of Eq. (41).

In the following section, we have computed mod-
els with ε = 0.1 and 0.5 (see Eqs. [28] and [31]),
and we find that the surface density σ and the emis-
sion measure EM are almost continuous through the
stagnation point. For these values of ε, the jumps in
σ and EM when going through the stagnation point
have values of < 2% (as can be seen from Eq. [41]).
Such small jumps do not produce important effects
on the computed emission maps.

Clearly, if one considers models with larger values
of ε, (so that the environmental density changes by
factors of more than 2 over distances comparable to
the stagnation radius of the bow shock) the jumps in
σ and EM become larger. However, a linear approx-
imation for the environmental density stratification
(Eq. [28]) is meaningful only for small values of ε,
i.e., for shallow stratifications that can be approxi-
mated with a linear spatial dependence. Therefore,
for the particular problem that we are considering
(of a wind/linearly stratified impinging environment
interaction), the multivaluation of σ and EM for
θ = 0 does not introduce further limitations in the
parameter range for which the model can be applied.

4. PREDICTED EMISSION MEASURE MAPS

We have computed the emission measure (see §2)
for a pair of non-axisymmetric bow shock models.
In order to compute the dimensionless shape (see
Eq. [29]) and emission measure (Eq. [26]), it is nec-
essary to specify two dimensionless parameters: ε
(which gives the steepness of the stratification of the
ambient medium, see Eqs. [28] and [31]) and the ratio
vw/va between the velocity of the stellar wind and
the velocity of the impinging ambient medium. We
have computed two models, with vw/va = 10 (which
is appropriate for a vw ∼ 200 km s−1 T Tauri wind
interacting with a va ∼ 20 km s−1 expanding H II

region) and ε = 0.1 and 0.5.
We have calculated the shape and the emission

measure for these models, limiting the computed
emission to the regions in which the density of the
pre-bow shock ambient medium is positive (as can

TABLE 1

BOW SHOCK MODELSa

Map ε φ0[
◦] θ0[

◦] rb

S1 0.1 0 0 1.47

S2 0.1 0 45 1.22

S3 0.1 0 90 1.19

S4 0.1 45 0 1.31

S5 0.1 45 45 1.16

S6 0.1 45 90 1.13

S7 0.1 90 0 1.00

S8 0.1 90 45 1.00

S9 0.1 90 90 1.00

L1 0.5 0 0 6.37

L2 0.5 0 45 3.58

L3 0.5 0 90 3.23

L4 0.5 45 0 2.85

L5 0.5 45 45 2.39

L6 0.5 45 90 2.13

L7 0.5 90 0 1.00

L8 0.5 90 45 1.00

L9 0.5 90 90 1.00

aAll of the models have have a ratio vw/va = 10
between the velocity of the stellar wind and the
velocity of the impinging ambient medium.
br is the ratio between the emission measure inte-
grated over the upper half and the lower half of the
maps shown in Figures 3 and 4.

be seen from Eq.[28], for large enough values of y,
ρa < 0). We then generate emission maps assuming
that we observe the bow shock from an arbitrary di-
rection (θ0, φ0) (where θ0 is the polar angle and φ0

the azimuthal angle of the lines of sight, see Fig. 2).
The plane of the sky is of course perpendicular to
this direction, and we describe it with a coordinate
system so that its ordinate is parallel to the y-axis
(i.e., the direction of the environmental density gra-
dient) when φ0 = 0 and θ0 = 0.

Of course, as we have a model in which the thick-
ness of the thin shell has been neglected, the pre-
dicted emission maps always have infinite intensity
values in the regions where the thin shell is parallel
to the lines of sight. We eliminate this problem by
presenting maps which have been convolved with a
square beam of 0.1R0 (where R0 is the stagnation
region radius of the bow shock, see Eq. [30]). This
smoothing is meant to simulate the effect of the see-
ing in the maps of LL Ori objects (obtained by Bally
et al. 2000) of angular sizes of a few arcseconds (with
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PHOTOIONIZED BOW SHOCKS 107

a seeing of a fraction of an arcsecond). Also, one
could consider the effect of the actual width of the
thin shell, but this width is much smaller than the
seeing.

In this way, we have computed emission measure
maps for 9 different lines of sight and for our two cho-
sen ε = 0.1, 0.5 values for the dimensionless density
gradient (see Eq. [31]). The chosen values of (φ0, θ0)
are listed in Table 1. Figure 3 shows the computed
emission maps for the ε = 0.1 model, and Figure 4
the ones for the ε = 0.5 model.

These two figures illustrate the different
morphologies that can be expected for non-
axisymmetric, photoionized bow shocks. While
the ε = 0.1 model produces bow shocks that do
not appear to have high asymmetries (see Fig. 3),
the ε = 0.5 model does produce clear asymmetries
(see Fig. 4). In order to quantify the degree of
asymmetry of the different maps, we have calculated
the emission Itop integrated over the top half of the
computed maps, and the emission Ibot integrated
over the bottom half.

Table 1 gives the values of the r = Itop/Ibot ratios
obtained from all of the computed emission maps.
For the maps of the ε = 0.1 model we have r ≤ 1.5,
and for the maps of the ε = 0.5 model we have larger
asymmetries, with r ≤ 6.5. The larger values of r
are obtained for lines of sight with φ0 = 0 (for which
the y-axis is parallel to the ordinate of the computed
emission maps). For φ0 = 90◦, we always have r = 1,
which is natural since the projection of the y-axis on
the plane of the sky is parallel to the abscissa.

5. CONCLUSIONS

In this paper, we have developed a model for cal-
culating the emission measure from a thin shell flow
solution. In this model, we assume that the flow
within the thin shell is well mixed (so that there is
a single value for the velocity as a function of posi-
tion across the width of the thin shell), but we allow
for a density stratification within the shell, which is
formed as a result of the centrifugal pressure. This
model is consistent with “full” thin shell calculations,
in which the ram pressures of the flows (impinging
on both sides of the thin shell) and the centrifugal
pressure are considered.

In order to illustrate the possible applications of
this model, we have applied it to the thin shell so-
lution of Wilkin (2000) for a stellar wind interacting
with an impinging ambient flow with a density gra-
dient. We have then used the computed emission
measure in order to obtain predicted emission maps
for two different values of the dimensionless density

gradient, ε = 0.1 and 0.5, and different orientations
of the flow with respect to the plane of the sky (see
Eq. [31], Table 1, and Figs. 4 and 5).

The predicted maps can be compared directly
with hydrogen recombination line maps of externally
photoionized stellar wind bow shocks such as the
ones found in the LL Orionis objects. From the
papers of Bally et al. (2000) and Bally & Reipurth
(2001), we see that the Hα maps of the LL Ori ob-
jects show limb-brightened, arc-like structures, with
their “heads” pointing in the direction of θ Orionis
(the photoionizing source of M 42). These objects
do not have fully symmetric structures with respect
to the axis pointing to θ Orionis. As we show in the
present paper, such side-to-side asymmetries might
be the result of large-scale density inhomogenieties
in the density of the expanding H II region.

It is also possible that the observed asymme-
tries of the LL Ori objects might be the result of
anisotropic, latitude-dependent winds being ejected
by the associated T Tauri stars. From the observed
emission maps, it is not possible to distinguish be-
tween asymmetries caused by an angular dependence
of the stellar wind and asymmetries resulting from
inhomogenieties in the expanding nebula. However,
these two effects will lead to bow shocks with clearly
different kinematical structures.

Therefore, it will be possible to use future high
resolution spectro-imaging observations of LL Ori
objects in order to deduce whether or not these ob-
jects show evidence for the presence of an angular
dependence in the winds ejected from their associ-
ated T Tauri stars. As the formalism presented in
§2 gives both the emission measure and the velocity
along the thin shell, it can be used not only to ob-
tain emission maps, but also to obtain predictions of
spatially resolved line profiles, position-velocity di-
agrams and/or velocity channel maps. In this way,
we already have a simple theoretical framework for
interpreting spectro-imaging observations of LL Ori
objects when they are made.

We end by noting a couple of limitations in our
model. In the first place, our model is meant only
for smooth environmental density stratifications, for
which the assumption of a linear spatial dependence
is a reasonable approximation. Secondly, we find
that the thin shell formalism leads to a multivalua-
tion of the surface density (and therefore the emis-
sion measure) of the thin shell at the stagnation
point. While this is not a serious problem for our
shallow environmental density stratification model,
it might indeed be a problem in the case of other
models for which this formalism could be applied,
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and appropriate care should be taken in such future
applications.
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grants 36572-E, 41320-F, and 43103-F, and the
DGAPA (UNAM) grants IN 112602 and IN 113605.
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