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RESUMEN

La simulaciéon de sistemas estelares requiere, primero, crear un modelo y,
luego, seguir su evolucién mediante la integracién numérica de las ecuaciones del
movimiento. Los modelos pueden generarse a partir de distribuciones tedricas
obtenidas del potencial Newtoniano, pero la integracién requiere recurrir a po-
tenciales ablandados para reducir los efectos de relajamiento. Habitualmente, la
diferencia entre ambos potenciales sdlo causa alteraciones insignificantes en el mo-
delo, pero en ciertos casos (por ejemplo, distribuciones muy concentradas) puede
alterarlos en forma substancial. Aqui presentamos un método simple, indepen-
diente del modelo, que corrige este problema en simulaciones de sistemas estelares
esféricos.

ABSTRACT

Simulations of stellar systems involve, first, creating a model and, subse-
quently, following its evolution through numerical integration of the equations of
motion. The models can be generated from theoretical distributions obtained from
the Newtonian potential, but the integration demands resorting to softened poten-
tials in order to reduce relaxation effects. Usually, the difference between both po-
tentials causes only negligible alterations in the model, but in some cases (e.g., cuspy
distributions) it can substantially alter it. Here we present a model-independent
simple method to correct this problem in simulations of spherical stellar systems.
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1. INTRODUCTION

Numerical simulations are a powerful tool to un-
derstand the dynamics of stellar systems. The usual
procedure is to begin by generating an N-body dis-
tribution that represents the system under study
(which, of course, may include subsystems, as in
a cluster of galaxies), then to follow its dynamical
evolution through the integration of the equations of
motion and, finally, to analyze the results.

Except in special cases (e.g., open clusters), the
number of bodies that enter in the simulation is much
smaller than the number of stars in the true stellar
system (10° to 107 times smaller when simulating a
galaxy) and, as a result, collisional relaxation effects
in the model would be much larger than in the real
world [see, e.g., Binney & Tremaine (1987)]. Soft-
ened potentials that mimic the Newtonian potential
at long distances but drastically reduce the short-

distance forces are thus used in the simulations to
increase the relaxation time and to reduce those ef-
fects [see, e.g., Huang, Dubinsky, & Carlberg (1993)].
Initial conditions for N-body simulations are gener-
ated from theoretical equilibrium models obtained
using the Newtonian potential so that, when they
are placed in the softened potential used for the in-
tegrations, they are no longer in equilibrium. The
departure from equilibrium is usually small, how-
ever, so that it is enough to let the system evolve
in isolation for a few crossing times to reach a new
equilibrium very similar to the theoretical one [see,
e.g., Vergne & Muzzio (1995)].

Nevertheless, in the course of an investigation we
are doing on cuspy stellar systems, the simple pro-
cedure just described failed to produce acceptable
models: models generated from the (Newton-based)
theoretical distributions strongly reduced their cen-
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tral cusps after they were let to evolve for a few cross-
ing times in the softened potential.

What to do? The analytical derivation of the
distribution function for a spherical stellar system
[see, e.g., Dehnen (1993)] usually starts by choos-
ing a density distribution whose gravitational poten-
tial is subsequently computed using Poisson’s equa-
tion and, finally, the distribution function is obtained
via Eddington’s (1916) formula. Nevertheless, when
a softened potential is used, Poisson’s equation is
lost because one no longer has the Dirac delta func-
tion that makes it possible to relate the potential
at a certain point with the mass density at that
same point. Softening introduces contributions to
the potential from points other than the point where
the potential is evaluated and one ends up with an
integro-differential equation much more difficult to
deal with than Poisson’s equation. Numerical so-
lutions are always possible, but they are less sim-
ple to use than analytical formulae and their obten-
tion may be complicated by the presence of singu-
larities that, although integrable, cause numerical
problems. Besides, this approach demands a spe-
cial derivation, either analytical or numerical, for
each distribution of interest. Finally, as softening
only partially compensates relaxation effects and es-
sentially all N-body codes are collisional [see, e.g.,
Hernquist & Barnes (1990)], some artificial evolution
will always be present, so that a theoretically exact
solution is not mandatory: an approximate one that
preserves the shape of the initial distribution is all
that is needed.

In the present paper, we present a simple method
to solve the problem in the case of spherical systems
which, together with disks, are the ones whose theo-
retical distribution functions are usually known. Be-
sides its simplicity, the method has the advantage of
being model-independent, so that the same routine
can be used for different distribution functions.

2. THEORY

As the cusps we were trying to model in our in-
vestigation of cuspy stellar systems became flatter in
the softened potential, we reasoned that the veloc-
ities of the bodies derived from the Newtonian po-
tential were too large for the softened potential and
thought that reducing them might offer the solution
to our problem. Thus, we decided to start gener-
ating the N-body distributions from the theoretical
(Newtonian-based) models and, thereafter, correct-
ing the velocities of the bodies in some systematic
way.

Our first idea was to use the escape velocity: we
computed the escape velocity for every body using

separately the theoretical and the softened potential,
and then we corrected all the velocities multiplying
them by the ratio of softened to Newtonian escape
velocities. Nevertheless, that simple approach failed
to yield acceptable results. In the example of Fig-
ure 1 (see description below), after a 107, evolu-
tion, the radius that contained the innermost 1% of
the mass increased by 220% in the case of the orig-
inal distribution and by 190% in that of the escape
velocity-corrected distribution; an improvement, in-
deed, but a very meager one. Thus, we decided to
use instead the velocity dispersion to make the cor-
rection.

The Jeans equation for spherical stellar systems
in equilibrium, with isotropic velocity distribution
and no systematic motions is:
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where p is the mass density, ¢ the one-dimensional

velocity dispersion, r the radius and ¢ the potential.

Since p and o are zero when r — oo, we can
integrate from oo to r and obtain:
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Let us apply now this equation to a system of
N particles of masses m; at distances r; from the
center of the system, numbered so that r; increases
as i increases. If G is the constant of gravitation, the
force can be approximated simply by the monopole

as: d(b G
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for the Newtonian potential, and as:
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for the softened potential. Any additional force (say,
one due to a central black hole) should be added to
the two previous expresions but, of course, it will be
the same for both of them. Although one might use
the true forces, rather than their monopole approxi-
mations, the latter work exceedingly well in the case
of spherical systems modeled with the large numbers
of particles that modern computers allow us to use,
and pose no limitation, as we will show below.

Expressing the integral as a summation, we fi-
nally have:

4rp(ri)o?(ry) = Z % (é—f)r] (5)
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Fig. 1. Density (decreasing curve) and mass (increasing
curve) profiles for a Dehnen model as is generated and
after letting it evolve 107,,; the softening parameter was
adopted as € = 0.010 in this case.

The idea is to follow now the subsequent steps:
(1) Generate the N-body distribution from the the-
oretical model derived from the Newtonian poten-
tial; (2) Compute the right-hand side of the previ-
ous equation for each one of the N particles twice,
once using the softened potential and once using the
Newtonian potential; (3) For every particle compute
the ratio between the results obtained with each po-
tential which, as 7 is constant and p(r;) is the same
in both cases, gives the ratio of the corresponding
velocity variances; (4) Multiply the velocity compo-
nents of every particle by the square root of the cor-
responding ratio and take these values as the new
velocities for the distribution.

3. RESULTS

As an example, we present here the results ob-
tained for a Dehnen (1993) distribution with v = 1.5
and a = 0.0625. The integration was performed with
the code of L. A. Aguilar who uses an octupolar
expansion of the potential [see Aguilar & Merritt
(1990)]. Therefore, we generated the distribution
with 250,000 particles of equal mass and softening
parameter plus one particle 25 times more massive
than the others and with a softening parameter 5
times larger than that of the others, which is taken
as the center of the expansion. The total mass was
taken as unity and the distribution was truncated at
a maximum radius of 9.30, which is the radius that
includes 99% of the mass of the system. With G = 1,
the crossing time of the system is T, = 1.275.
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Fig. 2. Same as Fig. 1 but showing the innermost region
only and showing two models with different softening.

Fig. 1 presents the results for a case where the
softening parameter of the less massive particles was
taken as € = 0.01. Both the density and the mass
inside a certain radius are shown: they were com-
puted sorting the particles in bins of 2,500 particles
each (i.e., about 1% of the total mass); the first bin
includes also the more massive particle, so that it
comprises 2,501 particles, and its mass is slightly
larger than that of the other bins. The radii used
for the plot are those of the 1250th particle of the
bin for the density, and of the last particle of the bin
for the mass. Poissonian statistical errors amount to
2% (standard deviation) so that errors in the abcisae
are 0.02 only, i.e., smaller than the size of the sym-
bols used for the figure. Due to the small errors, the
initial distribution coincides almost exactly with the
theoretical one; it is shown as a full line, and its left
tip corresponds to the radius that encloses the in-
nermost 2,501 particles at the beginning. The cusp
is clearly smoothed in the case of the uncorrected
distribution, but the profiles are very well conserved
in the corrected cases. We notice that, after evolv-
ing the system for 10 T¢,, the radius that encloses
the innermost 1% of the mass increased 220% in the
case of the original distribution, but only 14% in the
case of the corrected one.

Figure 2 presents a blow-up of the innermost re-
gion of Fig. 1 where we have also added the results
for a second model with ¢ = 0.005. As could be
expected, after 10 T¢,, for both the corrected and
uncorrected distributions the departures from the
initial distribution are smaller for the less-softened
model. In the new model, the radius that contains
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Fig. 3. Same as Fig. 1 but for a model of 25,000 particles
with e = 0.025 evolved with the NBODY?2 code.

the innermost 1% of the mass increased by 7% only
in the corrected distribution, but by 165% in the un-
corrected one.

In order to check whether our monopolar approx-
imations (3) and (4) had worked well just because of
the multipolar nature of Aguilar’s code, we made
an additional experiment using the NBODY2 code
of Aarseth (1985) which uses the direct summation
method. We used the same Dehnen distribution
of our previous experiments, but in this case only
25,000 particles were included and the softening pa-
rameter was taken as € = 0.025. The results are
shown in Figure 3, where 250 particle bins were used
for the density and mass computations; the results
are somewhat noisier due to the smaller number of
particles included, but the compensation of the soft-
ening effects is clearly as good as in the previous
examples.

4. CONCLUSION

We have presented a simple method to correct N-
body distributions for the effects of softening and we
showed, in particular, that the method is useful to
preserve the central cusps of highly concentrated sys-
tems. Moreover, the method is model-independent
and, once implemented in an N-body distribution
generating code, it can be used for different distri-
butions without modification.

Although we have used this method in systems
with isotropic velocity distributions only, its exten-
sion to systems with anisotropic velocity distribu-
tions seems feasible. If 0., 09 and o4 are the veloc-
ity dispersions in an spherical system of coordinates,
assuming for a non-rotating spherical system that
09 = 0y, We can measure the anisotropy with the
parameter:

p(r)=1-—=3. (6)

Then, from the theoretical phase-space density,
one has to compute the function:

=2 [ AL, ™

and, instead of equation (2), use the following one:

—em [T oy dP
p(r)o®(r) =e C()/ p(r')est )Wdrl’ (8)

except for that change, the other steps to follow
would be the same.
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