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RESUMEN

Se calcula una órbita para el Cometa 122P/ de Vico. La órbita se basa en
400 observaciones en ascensión recta y 396 en declinación hechas entre el 20 de
febrero de 1846 y el 16 de mayo de 1996, pero con un intervalo de 150 años entre
las observaciones del siglo XIX y las del siglo XX. Fue dif́ıcil enlazar la órbita de
1846 con la de 1995 y fue necesario un enfoque de condiciones del contorno para
enlazar ambas órbitas en un punto común. El sistema lineal que resulta tiene forma
de matriz de banda simétrica y negativa definida, que se resuelve fácilmente con la
descomposición de Cholesky libre de ráız cuadrada. Pruebas estad́ısticas indican
que la órbita es buena.

ABSTRACT

An orbit for Comet 122P/ de Vico, based on 400 observations in right as-
cension and 396 in declination, made between 20 February 1846 and 16 May 1996
but with a gap of 150 years between the 19th and the 20th century observations, is
given. Linking to two orbits proved difficult until a boundary value approach was
taken: link best fit orbits for the comet to a common fitting point. The linear sys-
tem to be solved acquires a special form, symmetric, negative-definite, band, that
permits efficient solution by square-root free Cholesky decomposition. Statistical
tests indicate that the orbit is good.

Key Words: CELESTIAL MECHANICS — COMETS: INDIVIDUAL
(COMET 122P/ DE VICO) — METHODS: DATA ANALY-
SIS

1. INTRODUCTION

Comet 122P/ de Vico is included in the Catalogue of Cometary Orbits 2003 (Marsden & Williams 2003).
Why, therefore, devote effort to a study of its orbit? There are two reasons. First, the catalogued orbit is
based on 199 observations, but a literature search shows that double that number is available. To include
all of the observations, and in particular the 19th century observations, in the orbit seems a worthwhile
endeavor. As Dubyago (1961) sagely remarks, “...the concept of a definitive orbit is relative...the possibility
often exists for further improvement of the definitive orbit in connection with a new discussion and reduction
of the observations....” The second reason for calculating the orbit arises because the endeavor entails certain
challenges.

Comet 122P/ de Vico was discovered on 20 February 1846 by Father de Vico in Rome. 1846 seems to
have been an annus mirabilis for de Vico, who discovered four comets that year, sharing credit for one of the
discoveries with Hind. Of these four 122P/ de Vico, which I shall hereafter refer to as simply de Vico, is
the most interesting. The orbit calculated from the first observations was similar to that of another comet
discovered that year, 5D/ 1846 D2 (Brorsen), so similar that the two were considered by some to be the same.
In the Astronomische Nachrichten for 1846 (Vol. 23, Nr. 556, p. 62) we read (translated from German):
“There is thus no doubt that the comet discovered by Brorsen on 8 March is the one de Vico discovered on
20 February.” The observers at Altona, Germany, published observations of Comet de Vico as observations of
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Fig. 1. The 1846 observations.

Brorsen’s comet (Astronomische Nachrichten, 1846, Vol. 23, Nr. 556, pp. 61-62). More refined calculations,
however, showed that the two are different. Thus, the Monthly Notices RAS for 1846 (Vol. 7, p. 79) mentions,
“this comet has so much similarity with that of Brorsen, that at first the two were suspected to be identical”.
The calculations showed that Brorsen’s comet has a period of 5.6 years whereas de Vico’s period is ≈ 75 years.
De Vico’s comet was observed until May of 1846 and then not seen again until 1995, when it was observed
between September 1995 and May 1996. It should have made an appearance in 1922, but was apparently not
observed that year. Seeing as even a few observations from 1922 would greatly strengthen the solution, it is
imperative to ascertain if there were in fact no observations made.

One must link the relatively poor 1846 visual observations made during four months with the more precise
1995–1996 CCD observations. This proved a real challenge, and the solution I found, treat linking the two orbits
as a boundary value problem, may prove useful to others who face a similar situation. The problem becomes
one of determining a best fit orbit to both groups. The best fit orbit for the 1846 observations represents poorly
the 20th century observations and the same happens when the best fit orbit for those observations is extended
back to 1846. So poorly that differential corrections to improve both orbits simultaneously diverge. But if
we use boundary value techniques the problem becomes tractable: solve for an intermediate fitting point that
satisfies both groups of observations and then employ this fitting point as a good first approximations to the
differential corrections.

2. PRELIMINARY DATA REDUCTION AND EPHEMERIDES

I conducted a literature search of the journals published in the 19th century that include comet observations
and also annual reports of some of the major observatories. Observations of Comet de Vico for 1846 were found
in The Astronomical Journal, Monthly Notices RAS, and Astronomische Nachrichten. This yielded a total of
137 observations in right ascension (α) and 133 in declination (δ). I have discussed the reduction of observations
in a previous publication (Branham 2003) and will only repeat certain salient features. Observations were
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Fig. 2. The 1995–1996 observations.

TABLE 1

OBSERVATORIES

Observatory Obsns. in α Obsns. in δ Referencea

Vienna, Austria 4 3 AN, 1846, Vol. 23, pp. 193-94

Cambridge, England 3 3 AN, 1846, Vol. 23, pp. 69-70

Altona, Germany 30 28 AN, 1846, Vol. 23, pp. 44-46, 61

Berlin, Germany 8 8 AN, 1848, Vol. 26, p. 3

Bonn, Germany 24 24 AN, 1846, Vol. 23, pp. 257-58, 295-96

Hamburg, Germany 11 11
AN, 1846,Vol.23,pp.77 − 78

MN, 1846,Vol.7,p.87, 91

Mailand, Germany 1 1 AN, 1846, Vol. 23, p. 62

Padua, Italy 9 9 AN, 1846, Vol. 23, pp.189-90, 275-76

Rome, Italy 1 1 MN, 1846, Vol. 7, p. 79

Leiden, Netherlands 2 2 AN, 1846, Vol. 23, pp. 201-02

Cambridge, USA 25 24
AN, 1846,Vol.23,pp.91 − 92

MN, 1846,Vol.7,p.187

(Old) U.S. Naval, USA 19 19 AJ, 1850, Vol. 1, p. 137

Total 137 133
a AJ:Astronomical Journal; AN: Astronomische Nachrichten; MN: Monthly Notices RAS.
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Fig. 3. Distribution of the weights.

reduced to the common format of: Julian Ephemeris Day (JED), right ascension, and declination. (I use the
term “Ephemeris Day” realizing that ephemeris time has been replaced by Terrestrial Time. But for the year
1846 the two systems are the same, and it is more precise, albeit perhaps slightly arcane, to use the older
designation of ephemeris time.) Such a reduction was necessary because some observers preferred to measure
α in circular rather than time units, some preferred north polar distance rather than δ, some used sidereal
rather than mean time, and most, with the exception of the British observers, used time of place rather than
Greenwich Mean Time to record the observation.

The observations were all made with equatorial telescopes and filar or ring micrometers, the comet measured
with respect to a nearby reference star. Given that modern star catalogues are more precise than 19th century
catalogues, it is more accurate when a definite reference star is mentioned to recalculate its apparent position,
using the algorithm in Kaplan et al. (1989), from a recent modern catalogue, Tycho-2 (Høg et al. 2000), and
apply ∆α and ∆δ, corrected for differential aberration, to the new position. If ∆α and ∆δ were not given the
differences in the positions between the older catalogue and Tycho-2 were applied to the published positions of
the comet. If no reference star was given, then one had to take the observation as published.

The 20th century observations, found on various IAU and Minor Planet Center circulars, seem all to have
been made by CCD’s and totalled 263 in each coordinate; there were no α only or δ only observations. (In
case one wonders how a CCD observation can be one coordinate only, the answer is simple. CCD’s are used on
modern meridian instruments. A problem with the clock results in a δ only observation: a circle error produces
an α only observation.) The format for all of the observations was standard: universal time, α, and δ referred to
equinox J2000. Between the 19th and the 20th century observations there was thus a total of 400 observations
in α and 396 in δ. Figure 1 graphs the 1846 observations and Figure 2 the 1995–1996 observations. Because
the 20th century observations can be found with relative facility whereas the 19th century observations are
scattered over the literature, I have included in Table 1 a summary of the 19th century observations.

The rectangular coordinates and velocities of the comet and the Earth were calculated by a program, used
in numerous investigations previously, that treats the solar system as an n-body problem. The program is a
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TABLE 2

ERRORS AND MISSING INFORMATION IN THE OBSERVATIONS

Reference Date Error or Missing Data

AN, 1846, Vol. 23, pp. 61-61 All Obsns. for Comet de Vico, not Brorsen

AN, 1846, Vol. 23, p. 189 March 1 α probably 01h00m34.s8

AN, 1846, Vol. 23, p. 189 March 7 δ probably +16◦46′33′′

AN, 1846, Vol. 23, pp. 193-94 April 4 Unidentified star is Tycho 9537-00387-1

AN, 1846, Vol. 23, pp. 201-02 March 23 Unidentified star is Tycho 2288-00102-1

AN, 1846, Vol. 23, pp. 201-02 March 31 Unidentified star is Tycho 9537-00387-1

AN, 1848, Vol. 26, p. 3 March 30 Unidentified star is Tycho 2805-01621-1

AN, 1848, Vol. 26, p. 3 April 6 δ probably 03◦00′54.
′′

5

MN, 1846, Vol. 7, p. 187 May 4 δ probably 67◦21′12′′

12-th order Lagrangian predictor-corrector that incorporates relativity by a Schwarzschild harmonic metric.
To obtain coordinates and velocities for the Earth, the Moon is carried as a separate body. This means a
small step-size, 0.d25. To correct the comet’s orbit partial derivatives are calculated by Moulton’s method
(Herget 1968), which integrates the partial derivatives to correct for the osculating rectangular coordinates and
velocities along with the coordinates and velocities. The rectangular coordinates, after interpolation to the
moment of observation for the Earth and to the moment of observation antedated by the light time correction
to allow for planetary aberration, are then converted to a unit vector that is transformed to a mean or apparent
place in α and δ by application of precession, nutation, annual aberration, relativity, and so forth. The 19th
century, but not the 20th century, observations were corrected for the E-terms of the aberration during the
calculation of a mean place. The final step calculates an observed minus a computed place, (O-C), in α and δ.
To interpolate coordinates and partial derivatives I used recursive Aitken interpolation (Branham 2003).

3. ERRORS OR MISSING INFORMATION IN THE 1846 OBSERVATIONS

When looking at large (O-C)’s it sometimes becomes evident that there is some sort of error with the
published observation. When the error is corrected, the (O-C) becomes acceptable. Because all of the errors
were associated with the 1846 observations, I will restrict my comments to these. Typical errors include
misidentifying a reference star. The wrong reference star can sometimes be detected by taking an abnormally
large (O-C) and seeing if there is a relatively bright star near the published reference star that would reduce
the (O-C) to something reasonable. Sometimes a differential observation gives the wrong sign for a ∆α or ∆δ.
Simply changing the sign produces a good (O-C). And sometime a clerical error occurs, such as writing a 3
for a 5, a 5 for 8, or a 1 for a 7. Typesetting was done in those days from a written manuscript where it is
easy to confuse these numbers. If, for example, a declination is published ending with something like 54.′′6 and
the (O-C) is close to 20′′, it is reasonable to assume that the declination really should have been 34.′′6. The
assumption of a clerical error can be checked by looking at the daily motion of the comet to see if the time of
observation indicates that a change in the coordinate becomes likely.

The Altona, Germany, observers made a series of observations closely spaced in sidereal time and then
averaged the time, α, and δ and published the result as one observation in mean time. I used the original,
unaveraged sidereal time observations.

Table 2 lists the errors found for the benefit of anyone who wishes to further study and perhaps improve
the orbit of this comet.

4. TREATMENT OF THE OBSERVATIONS

Given the disparity in the quality of the observations, one should contemplate ways of assigning higher
weight to the better observations. Differential observations referred to an apparent place calculated from
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Tycho-2 should be better than apparent places published by the observer, but this is not invariably so. I used
the same weighting scheme as in my previous publication (Branham 2003), the biweight. One scales the post-fit
residual ri by the median of the residuals and assigns a weight wt as

wt = [1 − (ri/4.685)
2]2; ri ≤ 4.685

wt = 0; ri � 4.685 .
(1)

The robust L1 criterion (Branham 1990a) calculates the first approximation. Because the first approximation
is good, it becomes unnecessary to iterate the solutions. The median weight was 0.91. Figure 3 shows the
distribution of the weights. 72.9% of the observations received weights between 0.7 and 1, 67.1% weights
between 0.8 and 1, 52.6% weights between 0.9 and 1. Fifty-four observations received weight of less than 0.1,
of which six were 0.

Linking the 1846 with the 1995–1996 observations proved difficult. At first I calculated a best fit orbit
through the 20th century observations for epoch JD 2450000.5 and then extended it back to 1846. But this
resulted in high residuals. Apparently the time span is too short to give a good fit to the 19th century
observations. Then I reversed the procedure: determine a best fit orbit for the 19th century observations
using epoch JD 2395310.5, with a four month time span, and extend it to 1995. But once again the residuals
were unacceptably high, sufficiently high to destroy convergence of the differential corrections. Thus, it proved
impossible to correct either the two best fit orbits to encompass all of the observations.

The convergence of differential corrections, of course, is a complicated problem. The fact that an orbit for
Comet 122P/ de Vico has already been published in Marsden & Williams’s catalogue (2003) shows that perhaps
the previous orbit computer did not run into the difficulties that I did. My problems may have been caused or
exacerbated by carrying the Moon as a separate body. (My n-body program integrates both coordinates and
the partial derivatives needed for the differential corrections.) The Moon’s motion is complicated and others,
such as Oesterwinter and Cohen (1972), have found that n-body integrations that include the Moon are much
more demanding than merely integrating planetary orbits: among other factors one must use a small step-size,
which I took as 0.d25. Whether or not this was the cause, I had difficulty in linking the two orbits.

But one can circumvent the difficulty of linking the two sets of observations if one converts the problem to a
boundary value problem and enforces the condition that the two orbits have to agree at an intermediate fitting
point. We could, for example, enforce the condition that the best fit 1846 orbit and the best fit 1995–1996
orbit calculate the same rectangular coordinates and velocities for JD 2420000.5.

5. THE RELAXATION METHOD

The equations of perturbed motion in celestial mechanics, without inclusion of relativistic terms, are

ẍ = −Gx(1 + m)/r3 +

p
∑

j=1

Gmj [(xj − x)/ρ3
j − xj/r

3
j ] , (2)

with similar equations in y and z. In Eq. (2) x represents one of the rectangular coordinates of the object
whose motion we are studying, m its mass, which for comets may be taken as zero, r its heliocentric distance,
xj the rectangular coordinate of a perturbing planet with heliocentric distance rj , ρj the distance of the comet
from the perturbing planet, p the number of perturbing planets, and G is the Gaussian gravitational constant
of 0.017202098952. Relativistic terms are not included in Eq. (2) because a finite difference approximation
to the equations yields a formal error higher than the error represented by omission of those terms and their
inclusion complicates the matrix that ensues from the approximation because it becomes unsymmetric.

To achieve sufficient precision in the approximation the finite differences should be of high order. Ferziger
(1981) gives equations for a fourth order method that results in a almost pentadiagonal matrix. Because the
matrix is negative definite it can be solved by LU decomposition without pivoting. But it is questionable
whether fourth-order is sufficient for numerical integrations in celestial mechanics. I did some experimentation
with the fourth-order method, even developing code for the solution of the band matrix, but found out that in
the end the solution was of insufficient precision. Then I decided to implement a tenth-order method, an order
that should incorporate sufficient precision. This decision proved felicitous because the resulting matrix exhibits
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pleasing features. The matrix becomes a strict band matrix, a matrix whose nonzero elements are constrained
to lie on diagonals immediately above and below the main diagonal. The number of upper diagonals is called the
“upper bandwidth” and the number of lower diagonals the “lower bandwidth”. The matrix is also symmetric
and negative definite and can, therefore, be solved quickly by square-root free Cholesky decomposition. Because
Cholesky decomposition requires no pivoting, the bandwidth of the matrix remains constant.

But one must first develop a tenth-order method. A literature search revealed no finite difference ap-
proximation of that order. But Cynar (1987) discusses how it can be done using Taylor series truncated
after the tenth order. Assume that the function is tabulated at equally spaced intervals h, with h=1, . . .,
f−k, f−k+1, . . . , f−1,f0, f1, . . . , fk−1, fk, . . .. The tenth-order approximation to the second derivative becomes

f ′′

0 (x) =
−1
∑

i=−5

ci+6fi +
5

∑

i=1

ci+5fi − (
10
∑

i=1

ci)f0(x), (3)

where






































c1

c2

c3

c4

c5

c6

c7

c8

c9

c10







































=







































0.00031746031746

−0.00496031746032

0.03968253968254

−0.23809523809525

1.66666666666668

1.66666666666668

−0.23809523809525

0.03968253968254

−0.00496031746032

0.00031746031746







































.

with
∑10

i=1
ci =2.92722222222222. Let us now postulate that we have osculating coordinates and velocities

for the comet for a certain date in 1846, denoted by x0 and ẋ0, and for another date in 1995, denoted by xn

and ẋn. These coordinates form the boundary conditions. We really do not need the velocities, which can be
calculated from the coordinates by numerical differentiation. One establishes a linear system for the 3(n − 1)
unknowns x1, . . . ,xn−1. The equation for an interior point k for the x-coordinate assumes the form

5
∑

i=1

cixk−i − 2.92722222222222xk +

10
∑

i=6

cixk+i−5 =
−Gxk

r3
k

+

p
∑

j=1

Gmj [
(xk,j − xk)

ρ3
kj

−
xkj

r3
kj

] . (4)

Similar equations pertain to y and z. The system will be represented by a band matrix. Eq. (4) leads to five
superdiagonals and five subdiagonals. But because the coefficients are symmetric, the matrix will be also, and
the subdiagonals need not be stored. The bandwidth becomes five. Boundary value problems have difficulties
at the boundaries themselves. When k = 0 and k = n the values x0 and xn are indeed available, but what
about x−1, x−2, · · · , xn+1, xn+2, · · ·? In celestial mechanics, fortunately, these values offer no problem because
they can be generated by extending the integration to include them. Our matrix, therefore, remains a strict
band matrix whereas Ferziger (1981) has to look for a different order approximation near the boundaries to
avoid the pre- and post-boundary values; this destroys the strict band structure near the boundaries.

Although Eq. (4) results in a linear matrix for the unknowns, because the unknown xk appears on the
right-hand-side of Eq. (4), the problem itself is nonlinear. One must have or assume a first approximation for
the x′s, use it in the right-hand-side, solve for the x′s, and iterate until convergence. The matrix is negative
definite, as a calculation of its singular values shows. I have previously shown (Branham 1990b) how such
a matrix can be stored and solved. To recapitulate briefly, if q is the bandwidth, equal to 5 when we use
Eq. (4), the matrix may be stored in column order as a vector occupying n(q+1)−q(q+1)/2 storage locations.
To locate an i, j matrix element in the vector we use a mapping function that transforms the two indices i
and j into a single index k. The mapping function becomes: if j < q + 1 then k = j(j − 1)/2 + i; otherwise
k = qj + i − q(q + 1)/2.

Because the matrix is negative definite, converted trivially to positive definite by multiplication by −1,
it may be solved by Cholesky decomposition. But being a band matrix, the square root-free version of the
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decomposition (Branham 1990a) saves considerable time by obviating the calculation of the numerous square
roots. If A represents the matrix the decomposition is

A = ST · D · S, (5)

where S is upper triangular with unit principal diagonal and D is diagonal. For band matrices Eq. (5) becomes:

di = Aii −
∑i−1

k=1
dkS2

ki, i = 1, . . . , n

Sij = (Aij −
∑i−1

k=1
dkSkiSkj)/di, j = i, . . . ,min(i + q, n) .

(6)

To solve the system for the unknown vector x, use an auxiliary vector y. First solve the upper triangular
system ST · y = b, where b represents the right-hand-side, and then the lower triangular system D · S · x = y.
The operation count for banded Cholesky decomposition and subsequent calculation of the solution becomes
q2n/2 + 7qn/2 + n.

Banded Cholesky decomposition compares favorably, extremely favorably when n � 1 and q � n, the usual
situation, with its unbanded counterpart. Cholesky decomposition for a general symmetric matrix requires
n(n + 1)/2 storage locations and has an operation count of n3/6 + n2. The banded variety, therefore, needs
≈ 2(q + 1)/(n + 1) less memory and ≈ 3q/n fewer operations. For Comet de Vico q = 5 and, as we shall see,
n = 164040. Banded decomposition calculates a solution quickly whereas unbanded decomposition exhausts
available memory.

But as mentioned previously the procedure is nonlinear and must be iterated. What we are solving is the
banded linear system

A · xk+1 = f(xk). (7)

with first approximation x0 given by the best fit 1846 and 1995–96 orbits integrated forwards and backwards to
an intermediate point, where a discrepancy exists. Does Eq. (7) converge? Zadunaisky & Pereyra (1965) have
examined this problem and established sufficient conditions for convergence. Without going into mathematical
detail, one can state heuristically that what may destroy convergence is: an initial approximation far from
the final solution; an ill-conditioned matrix; the presence of large residuals. Because the x′s come from
numerical integrations, large residuals arising from experimental error will not be present. Matrices from
finite difference approximations are not highly ill-conditioned for reasonable stepsizes. Thus, only a poor
initial approximation will destroy convergence. As long as the 1846 and the 1995–96 best fit orbits are not
horribly bad, Eq. (7) should converge. Convergence, moreover, becomes more probable than the convergence
of differential corrections, based on first-order Taylor series approximations to a nonlinear problem whereas
Eq. (7) is based on tenth-order approximations.

One thus integrates the 1846 orbit forward to JD 2420000.5 and the 1995–96 orbit backwards to the same
date and uses the rectangular coordinates from each orbit as the first approximation for Eq. (7). The coordinates
for the perturbing bodies can be taken from a previous integration or from standard ephemerides. Because
we need the comet’s rectangular coordinates and are not calculating (O-C)’s, for which accurate coordinates
for the Earth are required, we can use the Earth-Moon barycenter in Eq. (4). We can therefore take h = 1d

in the equation. For comets that pass exremely close to the Earth, the barycenter lacks sufficent precision;
one would have to use rectangular coordinates for the Earth and Moon separately, set h = 0.d25, which
changes the coefficients in Eq. (3) and leads to a matrix with four times as many unknowns, although still a
band matrix. The starting coordinates for the two orbits furnish the boundary conditions for the problem. I
used JD 2395314.5 and JD 2449995.5 as the boundary conditions. This results in a band matrix for 164,040
unknowns with bandwidth 5, equivalent to a 906×906 square matrix. Such a size is solvable on most personal
computers. In fact, my computer, a 1 Ghz machine with 256 Mb of memory, calculates the solution in eight
seconds. On the other hand, if I try to solve it as a square system, albeit triangular superior, the program
aborts with the “out of memory” message.

But one must proceed with a certain amount of caution. Agreed, we can force the orbits to match at the
fitting points, but how sensitive to the boundary conditions is the agreement at the fitting point? Use Eq. (7)
to establish a sensitivity criterion. Let x0 be the left-hand boundary condition. The sensitivity of the solution
xk+1 to the boundary condition, denoted by ∂xk+1/∂x0, becomes

A·∂xk+1/∂x0 = ∂f(xk)/∂x0 = (c4 c3 c2 c1 0 · · · 0 c4 c3 · · ·). (8)
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Upon rearranging Eq. (8) and taking norms of both sides we find

‖ ∂xk+1/∂x0 ‖≤‖ A−1 ‖ · ‖ (c4 c3 c2 c1 0 · · · 0 c4 c3 · · ·) ‖ . (9)

Thus, the sensitivity of the fitting point is determined by the norm of the matrix inverse A−1. As long as
this norm is not unduly high, which it will not be for matrices approximating finite difference operators with
reasonable stepsize, the fit should be satisfactory. One must keep in mind, nevertheless, that the boundary
conditions cannot be arbitrary for the procedure outlined in this paper to work.

Figure 4 graphs the two solutions, the one from the 1846 observations and the one from the 1995–96
observations; the discrepancy at JD 2420000.5 is clearly visible. But the solution after the first iteration of
Eq. (7) joins the orbits smoothly at the fitting point, as Figure 5 shows, although the orbit is not too close
to the final orbit, also shown in Fig. 5. A total of five iterations produces a good orbit from which the initial
conditions at JD 2420000.5,

x(AU) −2.34614801134367

y(AU) −12.4149365728521

z(AU) −15.1097648537061

ẋ(AU day−1) 0.0005861839641

ẏ(AU day−1) 0.0029890882044

ż(AU day−1) 0.0020848962179

.

The velocities come from a tenth-order formula for calculating the first derivative from function values derived
in a similar way to the coefficients of Eq. (3).

TABLE 3

SOLUTION FOR RECTANGULAR COORDINATES
AND VELOCITIESa

Unknown Value Mean Error

x0 −2.3457004176998 0.0000451108129

y0 −12.4144286322227 0.0000358451094

z0 −15.1103388130149 0.0000379747086

ẋ0 0.0005860946316 0.00000000902022

ẏ0 0.00298900996560 0.0000000058739

ż0 0.0020850106376 0.0000000075927

σ(1) 1.′′89

aFor Epoch JD 2420000.5 and Equinox J2000.

TABLE 4

COVARIANCE (UPPER TRIANGLE) AND
CORRELATION (LOWER TRIANGLE) MATRICES

24.2096 4.5321 −9.5019 −0.0047 −0.0007 0.0018

0.2356 15.2857 −15.6622 −0.0009 −0.0025 0.0032

−0.4662 −0.9672 17.1560 0.0018 0.0025 −0.0034

−0.9776 -0.2381 0.4537 0.0000 0.0000 0.0000

−0.2121 −0.9855 0.9591 0.1875 0.0000 0.0000

0.4300 0.9772 −0.9988 −0.4236 −0.9664 0.0000
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Fig. 4. Initial best-fit orbits.

TABLE 5

ELLIPTICAL ORBITAL ELEMENTS AND
MEAN ERRORSa

Unknown Value Mean Error

M0 319.◦367359276965 0.◦0000024549024

a 18.0186023009206 0.0000579424844

e 0.962972992857856 0.0000051049267

q 0.66717491608764 0.0000113464177

Ω 78.◦3785836514897 0.◦0003519217280

i 89.◦2295500829416 0.◦0003707365174

ω 230.◦106440842196 0.◦0012243068425

aFor Epoch JD 2420000.5 and Equinox J2000.
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Fig. 5. Second (- -) and final (–) orbits.

6. THE SOLUTION

Table 3 shows the final solution for the rectangular coordinates, x0, y0, z0, and velocities, ẋ0, ẏ0, ż0, along
with their mean errors for epoch JD 2420000.5 and the mean error of unit weight, σ(1). This Julian Date
permits calculation of cometary position for the 1846 and the 1995–1996 observations without the greater
accumulation of round-off of chopping error that would occur if one used a Julian Date close to either the 1846
or the 1995–1996 observations. Table 4 exhibits the covariance and correlation matrices for the solution. The
correlations are high, and the singular value decomposition calculates a condition number of 6×107 for the
matrix of the equations of condition, moderately high. This condition number is an unfortunate consequence
of the poor distribution of the observations with respect to time; the condition numbers for the best fit orbits
for the 1846 and the 1995–1996 observations taken separately are considerably lower, less than 103 in both
instances, although the lower condition numbers imply little because these two best fit orbits do not permit
linking the 1846 with the 1995–1996 observations.

Table 5 gives the orbital elements corresponding with the rectangular coordinates of Table 3: the mean
anomaly of perihelion passage, M0; the eccentricity, e; the major semi-axis, a; perihelion distance, q; the
inclination, i; the node, Ω; and the argument of perihelion, ω. Rice’s procedure (1902) was used to calculate
the mean errors for the elliptical elements. To express Rice’s procedure in modern notation let C be the
covariance matrix for the least squares solution for the rectangular coordinates and velocities. Identify the
errors in a quantity such as the node Ω with the differential of the quantity, dΩ. The error can be found from

(dΩ)2 = σ2(1)
(

∂Ω/∂x0 ∂Ω/∂y0 · · · ∂Ω/∂ż0

)

· C ·













∂Ω/∂x0

∂Ω/∂y0

...

∂Ω/∂ż0













. (10)

The partial derivatives in Eq. (10) are calculated from the well known expressions linking elliptical orbital
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Fig. 6. Residuals for 1846 observations.
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Fig. 7. Residuals for 1995–1996 observations.
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Fig. 8. Histogram of the residuals.

elements with their rectangular counterparts. Because the partials acquire great complexity, use of a symbolic
manipulation language such as Maple becomes almost mandatory.

Figure 6 shows the residuals for the 1846 observations and Figure 7 the 1995–1996 residuals before the
residuals were weighted by Eq. (1). The residuals are random: a runs test shows 381 runs out of an expected
398 with standard deviation of 20. Random, but not normal. Figure 8 shows a histogram of the residuals after

weighting by Eq. (1). The residuals are skewed, factor of skewness = −0.329, and platykurtic, kurtosis= −0.211.
But given that they are random—randomness is far more important for the statistical treatment of data than
normality—one can consider the solution acceptable. The randomness also indicates that no unmodeled forces
remain undetected, within the errors of the observations, of course.

From this orbit I calculated that de Vico should have had a perihelion passage during 1922 on 8.45792
Apr. Observations from that year would greatly strengthen the solution. But a literature search disclosed
no observations that could be attributed to Comet de Vico during 1922. J. Calderón of the National Obser-
vatory of Córdoba, Argentina, offered to search through their old Carte du Ciel plates to see if any images
possibly associated with the comet could be detected. I sent him an ephemeris, but the search proved sterile.
Unfortunate!

The orbit also predicts that de Vico will appear again in 2069, with perihelion passage on 13.98761 Oct.
Perhaps at that time more observations will be made to strengthen the orbit (although I doubt if I will be
around to calculate the orbit) and to determine if the comet exhibits nongravitational effects.

7. CONCLUSIONS

An orbit for Comet 122P/ de Vico, based on all available observations, 400 in α and 396 in δ, is given.
Linking the 19th century with the 20th century observations proved possible when the problem is treated as
a boundary value problem. The linear system, although large with over 160,000 equations, is nevertheless
banded and easily solved with square root-free Cholesky decomposition. Comet de Vico, not seen during the
1922 apparition, will next return in 2069.
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I wish to thank Lic. Jesús Calderón and his collaborators at the Córdoba Observatory for their search of
the Carte du Ciel plates.
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