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RESUMEN

En este art́ıculo, aplicamos métodos no lineales en el análisis de la curva de luz
de 3C390.3 con el fin de investigar su comportamiento temporal complejo y poder
distinguirlo de los modelos lineales. Aplicamos pruebas estad́ısticas avanzadas a la
serie temporal, asi como a modelos lineales y no lineales de referencia. Las diferen-
tes pruebas aplicadas sistemáticamente rechanzan la hipótesis de un mecanismo
generador lineal, independientemente de si se utiliza parcialmente la curva de luz,
lo que implica una naturaleza no lineal.

ABSTRACT

In this paper, we apply non-linear data analysis methods to the light curve of
3C390.3 in order to investigate its complex time-evolution behavior and distinguish
it from simple linear models. We applied advanced statistical tests to the time series
and to linear and non-linear mathematical models, in order to have a comparison
reference. The different tests applied systematically reject the hypothesis of a linear
generating mechanism for any part of the time series, implying that the light curve
of 3C390.3 has indeed a non-linear nature.

Key Words: METHODS: DATA ANALYSIS — METHODS: STATISTI-
CAL — QUASARS: INDIVIDUAL (3C390.3)

1. INTRODUCTION

The study of variability in astronomical objects
such as AGNs provides insight to the understanding
of the dynamics that govern the explosive events that
take place on them. Some features of these objects
can be described by means of stochastic models. The
unpredictability of such events leads us to believe in
the inadequacy of applying periodic analysis to their
light curves. Even more, in these systems, some non-
linear dependencies are observed, which are neces-
sary to explain their luminosity bursts. This non-
linear behavior is expected if one sees the central lu-
minosity source in AGNs as a complex system, with
many parameters non-linearly related. Examples of
these may well be luminosity dependent accretion
and the appearance or disappearance of hot spots in
an accretion disk.

2. THE LIGHT CURVE

As part of the photometric and spectral moni-
toring campaigns of AGNs, in 1998 a group of as-
tronomers from the former Soviet Union, Europe,

and México observed the central regions of 11 AGNs
with different telescopes in a common optical mon-
itoring program. In particular, the object 3C390.3
was included in the sample (Bochkarev & Shapoval-
ova 1999).

Spectral observations were taken with the 6 m
and 1 m telescopes of SAO RAS (Russia) and the
2.1 m of Cananea (México), in the wavelength range
4000–8000 Å, with resolutions from 3–15 Å, and a
S/N = 50 for the continuum in Hα and Hβ.

Photometric observations in the BV R bands
were conducted in 3 different observatories, i.e., SAO
RAS (Special Astrophysical Observatory), CL SAI
(Crimea Laboratory Sternberg Astronomical Insti-
tute) and AAO (Abastumani Astrophyscial Obser-
vatory). Yet, the observed number of points for the
light curves was insufficient to carry out a study of
the long-term dynamics of this object. So the his-
toric light curve in the B band, which dates back to
1966, was taken from the literature. Included are the
photoelectric photometry obtained by Sandage from
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Fig. 1. Historic light curve of 3C390.3, B band.

1965–1967, 1971–1972 (Sandage 1973), Nevizvestny
(1986); spectrophotometric observations from 1970–
1979 made by Yee & Oke (1981), from which B
magnitudes were derived. Also are included photo-
graphic observations available from 1967–1980 from
Cannon, Penston, & Brett (1971), Babadzhanyants
et al. (1973;1974;1975;1976;1984), Selmes, Tritton,
& Wordsworth (1975), Scott et al. (1976), Pica et al.
(1980). Photographic observations were averaged in
5 day intervals. We also included observations from
Perez et al. (1988), Lawrence et al. (1996) and the
data from the International Monitoring AGN Watch
Consortium from 1995-1995 (Dietrich et al. 1998).
The resulting light curve is shown in Figure 1, where
one can notice an increment in the luminosity with
significant fluctuations between 1965 and 1977. The
variability analysis of the emission in Hβ was dis-
cussed by Shapovalova et al. (2001).

3. NON-LINEARITY

In time-series analysis of chaotic systems, there
are certain physical parameters of special interest
(e.g., dimension) that determine some useful invari-
ant concepts. The particular problem of the detec-
tion of non-linear behavior is normally complicated
by the presence of long time coherence, besides the
usual problems related to finite precision, measure-
ment errors and signal noise. In such cases, the use
of surrogate data sets has proven to be an excellent
technique to compare with. In surrogates one seeks,
generally, for a statistical property that differs at a
significant level from the original data. If the gen-
erating mechanism of the synthetic data is linear, it
is relatively easy to test whether or not the signal is
linear.

From all possible non-linearity tests, we have
chosen a assortment, such as the McLeod-Li test

(McLeod & Li 1983), Engle’s test (Engle 1982), BDS
test (Brock, Dechert, & Scheinkman 1996), Tsay’s
test (Tsay 1986), Hinich’s Bicovariance test (Hinich
1996) and the Hinich’s Bispectral test (Hinich 1982).

3.1. Engle’s Test

In most time series analysis, emphasis is given
to the first moments (i.e., the linear part), neglect-
ing serial dependencies in any higher order moments,
bypassing them as an unimportant by-product. But,
in the case of complex series, the search for non-
stationarity has led people to seek for more plausi-
ble models that can deal with non-constant higher
order moments. Engle introduced the concept of
conditional heteroskedastic time series. This ap-
proach makes a distinction between the conditional
and the unconditional second order moments. Au-
toregressive univariate models frequently produce er-
rors with non constant variance once fitted to the
original data. The standard supposition of constant
variance of most models results then unlikely. The
key of the Engle’s ARCH model lies in the fact that
while the unconditional covariance of the variable of
interest may be time invariant, the conditional ones
(covariance and variance) show strong dependencies
on the past values of the system.

The variance of the error regressors of Engle’s
test takes the form of: σ2 = α0+α1ε

2
t−1+...+αpε

2
t−p,

where α0, α1, ..., αp and εt−i is the regression error in
the i-th delay.

Since the model seeks explicitly for second or-
der moment non-linearities, in its simplest form, the
ARCH(p) process can be written as:

yt = β1 + β2x2t + ... + βkxkt + εt ,

εt ∼ N(0, σt) ,

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + ... + αpε

2
t−p .

If the null hypothesis H0 : α0...αp = 0 is accepted,
any ARCH effect is neglected. Instead the alterna-
tive hypothesis H1 : αi 6= 0 accepts them. Engle pro-
poses a test by means of Lagrange Multipliers, due
to the constant conditional variance, whose statistic
can be calculated as nR2, where n is the number of
observations and R2 is the correlation coefficient in
the regression of ε2t . This statistic has an asymptotic
distribution of the form χ2.

3.2. McLeod-Li Test

McLeod-Li’s test is based fact that if xt is a Gaus-
sian stationary process, then the autocorrelation:

Corr(x2
t , x

2
t−i) = Corr(xt, xt−i)

2, ∀i , (1)
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Fig. 2. Linear Model.

where Corr(., .) is the correlation coefficient given
by:

r̂(i) =

∑N

i=1
(x2

t − σ2)(x2
t−i − σ2)

∑N

t=1
(x2

t − σ2)
, (2)

σ2 =

N∑

t=1

x2
t

N
. (3)

Any deviation from the former behavior points to
non-linearity. McLeod-Li’s test requires the exis-
tence of eighth order moments for the χ2 distribution
convergence. The Box-Ljung statistical estimator Q,
asymptotically converges to a χ2 distribution if the
generating process is of the iid kind, and is given by:

Q = N(N + 2)

L∑

i=1

r̂2(i)

N − i
. (4)

3.3. BDS Test

This is a non-parametric test that examines serial
independence based on the correlation integral of xt.
For a given number of embedding dimensions m, the
generated sequence of histories is:

xm
t = (xt, ..., xt+m−1)

′ , (5)

where ′ denotes transposed.
For a T number of observations, T + m − 1 his-

tories can be constructed. The integral correlation
Cm,T (ε) is given by:

Cm,T (ε) =

T−m+1∑

t=1s

t−1∑

s=1

Iε(x
m
t , xm

s )/
Tm(Tm − 1)

2
,

(6)

Iε(x
m
t , xm

s ) =

{
1 if ‖xm

t − xm
s ‖ < ε

0 otherwise .

Fig. 3. Non-Linear Model.

Basically, Cm,T counts the number of m-histories
that lay in an hypercube of size ε. Under the null of
an iid process:

H0 : Cm(ε) − C(ε)m = 0 , (7)

or expressed also as:

H0 : Cm,T (ε) − CT (ε)m , (8)

the BDS estimator

wm,T =
√

T
Cm,T (ε) − CT (ε)m

σm,T (ε)
, (9)

converges asymptotically to zero with probability 1.

3.4. Tsay Test

A non-linear stationary series can be expressed
as a Volterra expansion of the form:

xt = µ +
∞∑

i=−∞

aiεt−i +
∞∑

i=−∞

∞∑

j=−∞

aijεt−iεt−j +

∞∑

i=−∞

∞∑

j=−∞

∞∑

k=−∞

aijkεt−iεt−jεt−k + ... (10)

where εt is an iid process. The null of stationarity
is obtained fixing aij = aijk = ... = 0. If at least
one of these coefficients is different from zero, then
non-linearity is assumed.

The regression equation in this case takes the
form:

xt = γ0 +
K∑

i=1

γiv̂t,i + ηt , (11)

where v̂t,i is the projection of all possible cross-
products of the form xt−ixt−j . The Tsay estimator
is the usual F-test.
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Fig. 4. 3C390.3.

This particular test is a generalization of
Keenan’s test that explicitly seeks for quadratic de-
pendence in the data. Though Keenan’s test has
been used in the astronomical community in the
analysis of variability (Vio et al. 1992), Tsay’s test
is a better choice because it has proved to be a more
robust one.

3.5. Hinich Bicovariance Test

This test assumes that xt is a realization of a sta-
tionary stochastic process of third order. The sam-
ple’s bicovariance is defined as:

C3(r, s) = (N − s)−1

N−s∑

t=1

xtxt+rxt+s , 0 ≤ r ≤ s ,

(12)

which is a generalization of the skewness parameter.
The C3(r, s) are all zero for an iid process. Values
different from zero are expected for data in which xt

depends on delay cross-products xt−ixt−j and others
of higher order.

3.6. Hinich Bispectral Test

This is a non-parametric test that examines third
order moments in the frequency domain. The test
obtains a direct estimator of any non-linear mecha-
nism independently of any linear dependence present
in the data. As a result, the validity of data filtering,
through variants of AR modeling (i.e., prewhitening
of data) is irrelevant.

The third order correlation function is:

Corr(r, s) = E[xt, xt+r, xt+s] , (13)

where the bispectrum of xt for a pair of frequencies
(f1, f2) is the double Fourier transform:

Fig. 5. 3C390.3 without gap, simple interpolation.

F (f1, f2) =

∞∑

r=−∞

∞∑

s=
−
∞

Corr(r, s)

exp[−i2π(f1(r) + f2(s))] . (14)

The series xt will be linear only if can be ex-
pressed as:

xt =

∞∑

n=0

a(n)u(t − n) , (15)

where ut iid (i.e., x̄ = 0, σ2 = 0), and the coefficients
a(n) are fixed. The bispectrum of xt takes a simple
form when the mechanism is linear:

F (f1, f2) = µ3A(f1)A(f2)A
∗(f1 + f2) , (16)

A(f) =

∞∑

s=0

a(s)exp[−i2πfs] , (17)

where A∗(f) is the complex conjugate and µ3 is
E{u(t)3}.

4. RESULTS

In Fig. 1 the light curve of 3C390.3 is shown. It
has been binned in regular intervals of 10 days, as
the tests we are applying require regular sampling of
the signal. The compromise when choosing a binning
interval is that secondary peaks of the original sig-
nal do not disappear. In the reconstruction, linear
interpolation was adopted, because without a pri-

ori knowledge of the system’s dynamics there is no
reason for introducing a more sophisticated interpo-
lation. In addition there is the fact that for some
parts of the light curve there are lapses that cannot
be reconstructed by any algorithm. In other words,
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TABLE 1

CONFIDENCE LEVELS FOR NON-LINEARITY TESTS

Signal Bispectral McLeod-Li BDS Bicovariance Engle Tsay

Linear Model 0.988 0.017 0.700 0.898 0.173 0.941

Nonlinear Model 0.072 0.118 0.542 0.090 0.120 0.177

3C390 0.045 0.003 0.000 0.002 0.004 0.012

3C390 simple interp. 0.098 0.000 0.000 0.000 0.000 0.000

3C390 interp gauss. 0.007 0.000 0.000 0.000 0.000 0.013

3C390 no gap 0.023 0.005 0.000 0.006 0.009 0.070

3C390 no gap simp interp 0.058 0.000 0.000 0.000 0.000 0.000

3C390 no gap interp. gauss. 0.010 0.000 0.000 0.000 0.000 0.032

we cannot reproduce what was not measured. How-
ever, numerical simulations can help us to estimate
the interpolation effects in our analysis.

The tests were also applied to the signal contam-
inated by Gaussian noise and for partial lapses of
the signal, avoiding empty spaces of the order of 500
days. We must say, though, that there is no rea-
son to consider the noise to be Gaussian. By virtue
of the central limit theorem, under weak conditions,
the sum of noise sources is crudely approximated (i.e.
limited by the form of the sum) by a Gaussian dis-
tribution. In fact, most signals in physics are non-
Gaussian in nature. We just have to add noise in
order to make numerical simulation with contami-
nated data.

Table 1 shows the results of the tests with the
confidence intervals for each one, under the null hy-
pothesis of a linear generating mechanism. In gen-
eral, a high consistency is found between the differ-
ent tests, though each one shows variations due to
the specific power each one has against certain non-
linear mechanism detection. Nevertheless, none of
the tests has the ability to isolate the origin of the
non-linearity or the presence of chaos in the series.
Because each test has different hypothesis, there is
no compatibility between them. As a result, it is
hard to use the statistical estimators jointly, though
some are complementary.

In the case of the bispectral test, the statisti-
cal estimator has little power against some forms of
chaos that produce irregular peaks widely spaced in
the bispectrum, even though these are visually evi-
dent. That is why, in this test, the non-linear behav-
ior can be graphically evident. In Figures 2 to 5 are
shown the bispectra for the different signals.

For the bispectral test, also used were a couple
of “toy signals”, in order to compare them visually,

namely a linear and a non-linear model of the form:

ẋ = Θx(t) + σw(t) , (18)

ẋ = (α − 0.5)β − x(t) +
√

2βx(t)w(t) . (19)

There is a clear difference between linear and
non-linear models, where the bispectrum in the non-
linear case shows higher order dependencies in the
form of peaks away from the origin. This same be-
havior is observed in the bispectra of 3C390 for any
form of reconstruction and for the complete series
and the partial ones (i.e., without empty spaces).
This shows that the non-linear nature of the light
curve of 3C390 is not affected by any of the criteria
taken in the application of this analysis.

5. CONCLUSIONS

Different alternatives have been presented in or-
der to explain AGN variability. Most are linear
in nature, such those that employ explosive time-
independent events (i.e., shot noise) combined with
fixed or variable decay time. Other exploit the
stochasticity in the form of spatially independent ac-
tive regions (i.e.. blobs). But it is because of this
independence that the resulting approach is linear.

Other approaches, like local instabilities in the
accretion rate with spatial independence, exist, but
the light curves reproduced by these models are very
uniform, and such regularity is not observed in real
AGN curves.

Although others have made non-linear analyses,
the use of only one kind of test, usually a less robust
one than the ones presented here, is strange, and
so the use of an assortment of tests becomes rele-
vant. We have presented an exhaustive testing of the
light curve of 3C390.3 with powerful statistical tools,
which show with high consistency that 3C390.3 has
a non-linear nature. This leads us to think that the
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modeling of the nuclear events of AGNs must take
into account these non-linearities, i.e., the existing
feedback between different mechanisms in the core of
AGN and its environment, and not just select any
single physical parameter and expect it to explain
the central energetic processes of these objects.

We thank M. Hinich for useful suggestions on
issues related to Gaussian noise source restrictions,
which improved the paper. We acknowledge CONA-
CYT for supporting partially this work through a
grant fellowship.
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