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RESUMEN

Se presenta un tratamiento que explica mejor el factor de conversión
N(H2)/I(CO) y que incluye la transferencia radiativa. A primera vista, incluir
la transferencia radiativa parece superfluo para una ĺınea ópticamente gruesa como
CO J = 1 → 0. No obstante, dado que el medio interestelar es inhomogéneo, los
fragmentos de gas (es decir, grumos) todav́ıa pueden ser ópticamente delgadas ha-
cia sus bordes y en las alas de los pérfiles de la ĺınea. El tratamiento estad́ıstico
de Martin et al. (1984) de la transferencia radiativa a través una nube molecular
con grumos se usa para derivar una expresión para el factor de conversión que su-
pera los defectos de las explicaciones más tradicionales basadas en Dickman et al.
(1986). Por un lado, el tratamiento presentado aqúı posiblemente representa un
avance importante al entender el factor de conversión N(H2)/I(CO) pero, por otro
lado, tiene sus propios defectos, que son discutidos aqúı brevemente.

ABSTRACT

A treatment that better explains the N(H2)/I(CO) conversion factor is given
that includes radiative transfer. At first glance, involving radiative transfer seems
superfluous for an optically thick line such as CO J = 1 → 0 line. However, given
that the interstellar medium is inhomogeneous, the individual gas fragments (i.e.,
clumps) can still be optically thin toward their edges and in the wings of their line
profiles. The statistical treatment by Martin et al.(1984) of the radiative transfer
through a clumpy molecular cloud is used to derive an expression for the conversion
factor that overcomes the shortcomings in the more traditional explanations based
on Dickman et al. (1986). While possibly representing important step forward
in understanding the N(H2)/I(CO) conversion factor, the treatment here also has
shortcomings of its own that are briefly discussed.
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1. INTRODUCTION

In studies of the interstellar medium (ISM) the
amount of gas and dust affects the physical mecha-
nisms of the ISM and can affect the evolution of an
entire galaxy. In particular, the amount of molec-
ular gas in a cloud, cloud complex, spiral arm, or
galaxy constrains the number of stars that form and
the way that they form. The usual molecule for es-
timating molecular gas masses has been, and still
is, CO (e.g., see IAU Symp. #170, 1997, and ref-
erences therein). Specifically, observations of the
J = 1 → 0 rotational line of the isotopologue, 12C16O
(just CO for short), permit simple, but crude, esti-

mates of the mass of molecular hydrogen in an astro-
nomical source. The velocity-integrated brightness,
I(CO), often called the integrated intensity , is multi-
plied by a standard conversion factor, N(H2)/I(CO),
to yield the molecular hydrogen column density,
N(H2), which gives the H2 mass of the source af-
ter integrating over the source’s projected area. The
most current value of this conversion factor is about
2× 1020 H2 cm−2 · (K · km · s−1)−1 for the molecular
gas in the disk of our Galaxy (Dame, Hartmann, &
Thaddeus 2001). Why the CO J = 1 → 0 line should
yield an estimate of column density is far from clear.
As is well known (e.g., see Evans 1980; Kutner 1984;
Evans 1999), the CO J = 1 → 0 line is optically
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thick, obfuscating any simple explanation as to why
it should probe molecular gas column densities.

Other tracers of molecular gas mass exist, tracers
that do not possess the serious uncertainties posed
by CO J = 1 → 0. While potentially simpler to
use for determining column densities, the optically
thin lines of the isotopologues 13C16O and 12C18O
(just 13CO and C18O in short form) are normally
factors of about 3 to 50 weaker than the CO J =
1 → 0 line (e.g., Kutner 1984; Langer & Penzias
1990; Nagahama et al. 1998; Maddalena et al. 1986);
the 12CO lines are better for mapping large areas of
molecular gas or for detecting weak sources, such as
high-redshift galaxies (e.g., Brown & Vanden Bout
1992; Barvainis et al. 1997,1998; Alloin, Barvainis, &
Guilloteau 2000; Carilli et al. 2002a). This makes the
J = 1 → 0 line of CO, and the N(H2)/I(CO) factor,
more useful or even essential in estimating the total
molecular gas mass in some sources, resulting in a
strong incentive for understanding the N(H2)/I(CO)
factor’s behavior.

The usual attempts at accounting for why the
N(H2)/I(CO) factor, or X-factor, is relatively con-
stant on multi-parsec scales are variations of the ex-
planation given by Dickman et al. (1986), hereafter
DSS86 (e.g., Sakamoto 1996). A summary of the
DSS86 explanation follows. If T

R
is the peak radia-

tion temperature of the CO J = 1 → 0 line and ∆v is
the appropriately defined velocity width of this line,
then I(CO) = T

R
∆v. If the molecular gas under

observation is virialized, then the observed velocity
width is related to the mass of this gas and, there-
fore, to the gas column density averaged over the
solid angle subtended by the observed gas. It was
then easy to show that N(H2)/I(CO) ∝ n0.5/T

R
.

The n was the gas density averaged over the viri-
alized volume of gas. DSS86 found that n had to
be ∼ few × 102 H2 cm−3 to give the observed value
of N(H2)/I(CO); therefore it was assumed that this
volume included entire clouds. Even if the gas does
not fill the beam (a point to which we will return
later), we would have T

R
roughly proportional to

the gas kinetic temperature, T
K
, and we would still

have N(H2)/I(CO) ∝n0.5/T
K
. It is argued that the

quantity n0.5/T
K

does not strongly vary on multi-
parsec scales, especially due to the weak dependence
on density, resulting in a fairly stable value of X.
Observational evidence does indeed seem to support
a roughly constant value of the X-factor to within a
factor of about 2 for the disk of our Galaxy, where
X ' 2 × 1020 cm−2 · (K · km · s−1)−1 (see, e.g.,
Dame et al. 2001; Strong et al. 1988, and references
therein), although the observations of Sodroski et al.

(1994) and Strong et al. (2004) suggest a higher value
of X in the outer disk (a claim that is at odds with
Carpenter, Snell, & Schloerb 1990). The values of
the X-factor that apply to the disks of other spiral
galaxies are often within factors of about 3 of that
of the Galactic disk X-factor (e.g., Young & Scoville
1982; Adler et al. 1992; Guélin et al. 1995; Nakai
& Kuno 1995; Brouillet et al. 1998; Rand, Lord, &
Higdon 1999; Meier, Turner, & Hurt 2000; Meier
& Turner 2001; Boselli, Lequeux, & Gavazzi 2002;
Rosolowski et al. 2003). The goals of the current
paper are to address the deficiencies of the DSS86
explanation of the X-factor and improving upon this
explanation. Improvements are necessary because
DSS86 has the following problems:

1. No treatment of radiative transfer. This is a
fundamental problem with DSS86. At first
glance, it might seem superfluous to treat radia-
tive transfer in the optically thick case. How-
ever, if we consider a clumpy medium, where
the clumps can have optically thin edges and
optically thin frequencies in their line profiles,
then treating radiative transfer is essential for
understanding the X-factor. In particular, the
optically thin limit of CO J = 1 → 0 must also
be included. Any complete treatment must in-
clude the optically thin case, whether this case
is observed in nature or not. This case cannot
be included easily in the DSS86 explanation be-
cause it includes the virial theorem without in-
cluding radiative transfer —virialization by it-
self says nothing about the optical depth of the
emission.

2. Sensitivity to T
K

and n(H2). As discussed
in Wall (2006), I(CO) and the X-factor esti-
mate the molecular hydrogen column densities
to within factors of about 2 of the values ob-
tained from optically thin tracers for the ma-
jority of positions in the Orion clouds. In gen-
eral, we know that molecular cloud kinetic tem-
peratures and densities have a full range of an
order of magnitude on multi-parsec scales (cf.
Sanders, Scoville, & Solomon 1985; Sakamoto
et al. 1994; Helfer & Blitz 1997; Plume et al.
2000). Since the X-factor supposedly varies as
n0.5/T

K
, the temperature and density variations

can each change X by factors of 3 to 10 (unless
n0.5 were to vary like T

K
, but this is unlikely to

be true in general, especially if there is pressure
equilibrium). Thus the X of DSS86 is too sen-
sitive to the density and kinetic temperature.
Having a weaker dependence of X on n and T

K
,
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like X ∝(n/T
K
)0.3, would resolve this sensitiv-

ity problem; variations of an order of magnitude
in either n or T

K
would allow X to vary by less

than a factor of 2.

3. Virialization of entire clouds. DSS86 require
low densities (i.e., n(H2) ∼few × 102 cm−3) to
obtain the observed value of the X-factor. Given
that the critical density of the CO J = 1 → 0
transition is ∼ 3× 103 H2 cm−3, the densities of
the CO-emitting structures are about an order
of magnitude higher (also see the average den-
sities of the filaments found by Nagahama et al.
1998).

4. Stronger dependence of peak T
R

on N(H2) than
of ∆v on N(H2) is not explained. DSS86 re-
quire that the observed velocity width of the
line depends on the gas column density. How-
ever, there is evidence that it is the peak radi-
ation temperature, T

R
, that depends on N(H2)

and that ∆v has only a weak dependence on
N(H2) (see Wall 2006; Heyer, Carpenter, &
Ladd 1996).

The purpose of the current paper is to propose an im-
proved approach for understanding the X-factor that
will resolve, or at least mitigate, the problems with
DSS86. For example, the explanation proposed here
includes radiative transfer in a clumpy medium and
shows how the optically thick CO J = 1 → 0 emis-
sion of a cloud can be sensitive to the optical depths
of the individual clumps. As a result, this explana-
tion will permit, in some circumstances, a very weak
dependence on T

K
and n(H2). Also, even though we

will also use the virial theorem (in its simplest form),
we can apply it to scales smaller than entire clouds.
And the X-factor in the current proposed explana-
tion will lose its dependence on the virial theorem
in the optically thin case. In addition, the proposed
approach will naturally explain the dependence of
the peak T

R
on N(H2). This improved approach has

shortcomings of its own, but nevertheless may rep-
resent an important step forward in understanding
the X-factor.

2. A FORMULATION FOR THE X-FACTOR

2.1. Radiative Transfer in a Clumpy Cloud

The X-factor may yield a reasonable estimate of
the molecular gas column density, because the in-
tegrated intensity of the CO J = 1 → 0 line is es-
sentially counting optically thick clumps in the gas
in the beam (e.g., see Evans 1999). This explana-
tion does not, by itself, directly relate the masses of

individual clumps to the observed integrated inten-
sity, because, again, the clumps are optically thick
in the CO J = 1 → 0 line. Applying only the DSS86
approach to the clumps will not work, because, as
discussed in the introduction, DSS86 and the ob-
served value of the X-factor together require densi-
ties an order of magnitude lower than those found
in the clumps of real clouds. The DSS86 derivation
of the X-factor depends on the beam-averaged col-
umn density, N , and the observed velocity width,
∆v. We need a treatment of the problem in which
the beam-averaged quantities, N and ∆v, are can-
celled out in favor of the corresponding quantities for
an individual clump, i.e., Nc and ∆vc. And we need
a treatment of the radiative transfer in a clumpy
medium. Martin et al. (1984) (hereafter MSH84)
developed a method for describing radiative trans-
fer through a clumpy medium in a highly simpli-
fied case: they assumed that each clump was ho-
mogeneous and in LTE. For additional simplicity,
they also assumed that the clumps were identical,
although they pointed out that their method could
be easily generalized to clumps with a spectrum of
properties (see the Appendix of MSH84). The as-
sumption of LTE was necessary because the implicit
assumption is that the excitation temperature of the
transition is constant throughout each clump, which
is easily attained if the density is high enough for
LTE. This assumption is particularly appropriate for
the CO J = 1 → 0 line: because of its high optical
depth (i.e., τ ∼ few) and low critical density (i.e.,
n

crit
' 3×103 cm−3), this line is largely thermalized

(i.e., close to LTE). Hence the method of MSH84 is
appropriate here.

MSH84 used a statistical approach to find the
appropriately averaged optical depth on a sightline
through a cloud with clumps in a vacuum. The effec-
tive optical depth on a given sightline was expressed
in terms of the individual clump opacities and the
mean number of clumps on a sightline with veloci-
ties within a clump’s velocity width for the case of
identical clumps. This effective optical depth is the
expectation value of the total optical depth of the
clumps on a given sightline. Computing this expec-
tation value then depends on an average opacity over
all impact parameters for each clump. The appropri-
ate average is the average over values of [1−exp(−τ)]
and, accordingly, the effective optical depth, τef , is
given by 1 − exp(−τef ) = 〈1 − exp(−τ)〉, which im-
plies exp(−τef ) = 〈exp(−τ)〉, where 〈〉 indicates ex-
pectation value. In the approximation of the spectral
line width, ∆v, being much larger than the velocity
width of an individual clump, ∆vc, τef can be ex-
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pressed as the product of the number of clumps per
clump velocity width on a sightline and the effective
optical depth of an individual clump. If N is the
beam-averaged gas column density and Nc is the gas
column density averaged over the projected area of
a single clump, then (N/Nc)(∆vc/∆v) is the num-
ber of clumps per sightline averaged over the beam
per clump velocity width at the line central velocity.
(Note that, below, Nc is actually the column density
on the central sightline through the clump, but this
change in definition accords with the definition of
the clump average optical depth.) If τ0 is the optical
depth on a sightline through the center of a single
clump, then, following MSH84, A(τ0) is the clump
effective optical depth. (Note that MSH84 called
A(τ0) the effective optically thick area of the clump.
Even though their term is more accurate, the sim-
pler “clump effective optical depth” is adopted here.)
Consequently,

τef (vz) =
N

Nc

∆vc

∆v
A(τ0) exp

(

− vz
2

2∆v2

)

, (1)

where vz is the velocity component along the sight-
line and where a Gaussian line profile has been as-
sumed. If τ(x, y) is the clump optical depth on the
sightline at position (x,y) with respect to a sightline
through the clump center, then the clump effective
optical depth is given by

A(τ0) =
1√

2π ∆vc a
eff

∫

dv

∫

dx

∫

dy ·

·
{

1 − exp

[

−τ(x, y) exp

(

− v2

2 ∆v2
c

)]}

, (2)

where a
eff

is clump’s effective projected area defined
in terms of its optical depth:

a
eff

≡ 1

τ0

∫

dx

∫

dy τ(x, y) . (3)

The τ0 is simply τ(x = 0, y = 0), the optical depth
through the clump’s center and at the center of the
clump’s velocity profile. The integrals in both (2)
and (3) are over the projected area of the clump
and over the clump’s velocity profile. Note that, in
general, the expression for τef (vz) would have inte-
grals over both the line spectral distribution (over
vz) and over the velocity distribution of each indi-
vidual clump (over v). But, as done in MSH84, we
assume that ∆v is significantly larger than ∆vc and
all clumps are assumed to be identical. This then
leads to expressions (1) and (2). Numerically inte-
grating equation (2) gives Figure 1, which shows the

Fig. 1. The effective optical depth of a clump, A(τ0),
after averaging over its projected area is plotted against
the optical depth through the clump center, τ0. The
solid curve shows A(τ0) versus τ0 for a cylindrical clump
viewed perpendicularly to the symmetry axis. The opti-
cal depth profile across the cylinder, from the central axis
towards the edges, is Gaussian. The dashed curve shows
the corresponding curve for a spherical clump. The op-
tical depth profile from the sphere’s center towards the
edges is also Gaussian. The Gaussian spherical clump
case was also treated and plotted in MSH84.

variation of A(τ0) as a function of τ0 for two types
of clumps: cylindrical (seen orthogonally to the axis
of symmetry) and spherical.

The observed line radiation temperature, T
R
, is

then related to τef by the usual expression

T
R
(ν) = Jν(T

K
) [1 − exp(−τef)] . (4)

T
K

is the gas kinetic temperature. As stated ear-
lier, LTE is assumed for the emission of the spectral
line at frequency ν. The Jν(T

K
) is correction for

the failure of the Rayleigh-Jeans approximation and
for the cosmic microwave background emission. Of
course when τef � 1, we have the simplified form of
Eq. (4):

T
R
(ν) = Jν(T

K
) τef . (5)

This is often called the “optically thin limit” for the
equation of radiative transfer. An important point
here is that the effective optical depth is in the op-
tically thin limit even though the individual clumps
can still be quite optically thick. And this, of course,
will provide a partial explanation for the X-factor.
Substituting Eq. (1) into Eq. (5) yields

T
R
(vz) = Jν(T

K
)

N

Nc

∆vc

∆v
A(τ0) exp

(

− vz
2

2∆v2

)

.

(6)
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As mentioned previously, the quantity
(N/Nc)(∆vc/∆v) is the number of clumps per
sightline averaged over the beam within a clump
velocity width at the line central velocity. This
quantity can be much less than unity, thereby
permitting τef � 1 even for A(τ0) � 1. (When
(N/Nc)(∆vc/∆v) < 1, it is similar to the geometric
area filling factor within a narrow velocity interval,
although it is not necessarily equivalent.) Since
A(τ0) is roughly equivalent to [1 − exp(−τ)] for a
single clump, the meaning of expression (6) is clear:
it is the specific intensity of a single clump at veloc-
ity vz — ∼ Jν(T

K
) [1−exp(−τ)] —multiplied by the

number of clumps at that velocity within a clump ve-
locity width— (N/Nc)(∆vc/∆v) exp[−vz

2/(2∆v2)].
Simply multiplying the intensity of a single clump
by the number of clumps gives the observed inten-
sity if the clumps are radiatively de-coupled, and
this is ensured if τef � 1. As τef increases and
becomes optically thick, the different clumps within
each velocity interval start absorbing each other’s
emission and the radiation temperature approaches
the source function Jν(T

K
) asymptotically.

We can now better understand the behavior of
the curves in Fig. 1. A(τ0) represents the level
of emission from a single clump averaged over the
clump’s projected area. When τ0 � 1, A(τ0) ' τ0

because all lines of sight through the clump and the
line’s profile at all the clump’s internal velocities are
optically thin. As τ0 increases past unity, A(τ0) con-
tinues growing because of those lines of sight and
those velocities at which the emission is still optically
thin. Fig. 1 shows two curves: one for a cylindrical
clump of gas (i.e., a filament) and one for a spherical
clump. The cylinder is viewed side-on (i.e. with its
symmetry axis perpendicular to the sightline) and
has length h. If the symmetry axis is the x-axis,
then a Gaussian variation of the optical depth with
y was adopted:

τ(x, y) = τ0 exp

(

−πh2 y2

a
eff

2

)

. (7)

The spherical clump also has Gaussian spatial varia-
tion with optical depth, but with radial distance, p,
from the central sightline through the clump:

τ(x, y) = τ0 exp

(

−π
p2

a
eff

)

, (8)

where p =
√

x2 + y2. This case was also treated
by MSH84, and it is included here for comparison.
(Note that the a

eff
used here corresponds to the

r2
o of MSH84.) The effective optical depth of the

spherical clump grows faster with τ0 for τ0 >∼ 1 than
that of the cylindrical clump because the former’s
optically thick area is growing simultaneously in two
dimensions, whereas the latter’s grows only in one.
While A(τ0) can grow without bound in these ideal-
ized cases, T

R
cannot. Eventually, A(τ0) will grow

large enough that τef � 1 is no longer valid and
T

R
asymptotically approaches Jν(T

K
). The grow-

ing τ0 causes this to happen because the clumps start
crowding each other spatially and in velocity, due to
their increasing optically thick areas and their in-
creasingly saturated line profiles.

The curves of Fig. 1 demonstrate that we can
represent them as power-laws in τ0 for τ0 ≤ 1 or
τ0 ≥ 3:

A(τ0) ' kA τ ε
0 . (9)

The values of kA and ε obviously depend on the
specific τ(x, y) —the opacity structure of the clump,
except in the optically thin case. When τ0 < 1, we
have kA = 1 and ε = 1, regardless of the specific
variation of τ(x, y). Except for the optically thin
case, a lower value of ε, i.e., closer to zero, indicates
a clump with a better defined outer edge, like a hard
sphere. Conversely, a higher value of ε, i.e., closer
to unity, indicates a clump with a more tenuous, or
fluffier, outer region. Accordingly, ε will be called
the “fluffiness” of the clump.

2.2. Relating Clump Velocity Width with Column
Density

DSS86 required virialization in order to relate the
line velocity width to the gas column density. That
is also required here, but it will be combined with
the radiative transfer in a clumpy cloud discussed in
the previous subsection. The virial theorem in its
simplest form neglects the effects of surface pressure
and magnetic fields. Assuming a spherical clump of
uniform density gives

∆vc = kv N0.5
c L0.5

c , (10)

and

kv ≡
( π

15
Gµm

H2

)0.5

. (11)

Numerically in cgs units, this is

kv = 2.47 × 10−16 ,

where µ is the correction for the mass of helium in
the ISM and µ = 1.3 was used. The Nc and Lc

are the column density and path length through the
clump central sightline, respectively. The m

H2
is the

mass of the hydrogen molecule.
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2.3. Relating Clump Optical Depth with Column
Density

The clump optical depth on the sightline through
the clump’s center, τ0, can be written in terms of the
column density of CO in level J , NJ :

N
J

=
8π

A
J,J−1

λ3
J,J−1

×

×
[

exp

(

T
J,J−1

T
K

)

− 1

]

−1

τ0

√
2π∆vc . (12)

This comes from Eq. (A9) of Wall (2006) after ap-
plying the Boltzmann factor to change NJ−1 to NJ .
The velocity integral was replaced by τ0

√
2π∆vc,

where τ0 is the optical depth at the center of the
clump’s velocity profile and on the sightline through
the clump’s center. T

J,J−1
is the energy of the

J → J − 1 transition in units of temperature: i.e.,
T

J,J−1
= h ν

J,J−1
/k with ν

J,J−1
as the frequency of

the transition. A
J,J−1

and λ
J,J−1

are the spontaneous
transition rate and the wavelength of the transition,
respectively. LTE is assumed, so T

K
applies in place

of T
X
(J → J − 1). We can determine the total col-

umn density of CO, N(CO), by substituting Eq. (12)
into Eq. (A22) of Wall (2006) and rearranging:

τ0 =
3A10λ

3
10

8
√

2 π
3

2 ∆vcQ(T
K
)
×

×
[

1 − exp

(

−T10

T
K

)]

NcX(CO) . (13)

where Q(T
K

) is the partition function of CO and J
was set to 1. The N(CO) was replaced by NcX(CO),
where X(CO) is the abundance of CO relative to H2.
The following values are used (see Wall 2006, and
references therein): A10 = 7.19 × 10−8 s−1, T10 =
5.54K, λ10 = 0.2601 cm, and X(CO) = 8 × 10−5.
Accordingly,

τ0 =
1.21 × 10−14

√
2π∆vcQ(T

K
)

[

1 − exp

(

−5.54

T
K

)]

Nc .

(14)
The above expression can be represented more sim-
ply as a power-law in T

K
:

τ0 =
kτ√

2π∆vc

NcT
−γ
K

. (15)

The exact values of kτ and γ depend on the tem-
perature range and can be computed by numeri-
cally comparing expressions (15) and (14). In the

high-temperature limit, however, an analytical so-
lution is possible. This limit means that T

K
�T10

and Q(T
K
) → 2T

K
/T10 and [1 − exp(−T10/TK

)] →
T10/TK

. This results in kτ = 1.85 × 10−13 in cgs
units and γ = 2. But we will be interested in the
temperature range T

K
= 10 to 20K. The necessary

numerical comparison gives us

kτ = 7.30 × 10−14 (cgs units)

and
γ = 1.75 ,

for that range. This approximation is accurate to
within 1–2% in the above specified range. Equa-
tion (15) simplifies further by using expression (10)
for ∆vc and nc = Nc/Lc:

τ0 =
kτ

kv

√
2π

n0.5
c T−γ

K
. (16)

This interesting result suggests that the optical
depth for this simplified case (i.e., the velocity pro-
file of the optical depth is a simple Gaussian) of a
virialized clump does not explicitly depend on the
sightline pathlength nor the velocity width, but on
their ratio. This is related to the Sobolev approx-
imation (e.g., see Shu 1991) in which the optical
depth is dependent on the velocity gradient within a
given region and not explicitly on the region’s size.
The pathlength-to-velocity-width ratio (Lc/∆vc) in
a virialized clump is determined by the average den-
sity, the spatial variation of the density, and the
geometry. Therefore, the optical depth depends on
those things and the gas temperature, but with no
dependence on the clump size or velocity width (at
least for this simplified case).

2.4. The X-Factor

Understanding how to combine the results of
the previous subsections to derive an expression for
the X-factor requires examining the observational
data that inspired the current paper in the first
place. Figure 2 shows the Orion data discussed in
Wall (2006): the peak radiation temperature of the
12CO J = 1 → 0 line (i.e., T

R
) for various positions in

the Orion clouds normalized to the source function
at each position (i.e., Jν(T

K
), the source function

in temperature units) versus the gas column density
(i.e., N(H2)) as determined from 13CO J = 1 → 0.
The plots demonstrate a clear correlation between
T

R
/Jν(T

K
) and N(H2). The Spearman rank-order

correlation test indicates that the correlation exists
at better than the 99.99% confidence level. This is
more than just the expected correlation between the
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J = 1 → 0 lines of 12CO and 13CO, because the
Jν(T

K
) is determined from the dust temperature

(see Wall 2006, for details). This suggests that the
dust temperature really is a reliable measure of the
kinetic temperature of the molecular gas, at least for
the Orion clouds on the scales of parsecs (see Wall
2006,a,b, for more discussion of this). One way of ex-
plaining the correlation visible in Fig. 2 is that the
area filling factor of the clump in each clump velocity
interval is less than unity. A rising beam-averaged
column density, N , means the filling factor is rising
as more and more clumps fill the beam in each ve-
locity interval. Obviously, the goal here is to be very
specific about the relationship between T

R
/Jν(T

K
)

and N(H2). There is sufficient scatter and uncer-
tainty in the data that it is not possible to rule out
a priori a number of such relationships.

Nevertheless, from simple radiative transfer the-
ory, we know that the specific intensity of a source
normalized to its source function, usually written
Iν/Sν , will vary like 1 − exp(−τ) when plotted
against the optical depth through the source, τ .
Given that the column density, N , is proportional
to τ for constant kinetic temperature and density,
the data in Fig. 2 mimic a curve with the form
1 − exp(−aN) (see the plotted curves), where the
aN probably represents some kind of optical depth.
The majority of the data points are on the roughly
linearly rising portion of the curve. This repre-
sents the optically thin region of the curve, but the
12CO J = 1 → 0 is known to be optically thick
from comparisons with the optically thin isotopo-
logue 13CO. Therefore, a clue to understanding the
X-factor is realizing that CO J = 1 → 0 emission be-
haves like it is optically thin, despite being optically
thick. This apparent contradiction is resolved when
we consider the effective optical depth as described
previously. While the individual clumps are them-
selves optically thick in CO J = 1 → 0, the cloud is
optically thin “to the clumps.” In other words, the
emission from every clump in the telescope’s beam
through the cloud reaches the observer. An anal-
ogy would be observing the H I 21 cm line from an
atomic cloud. In this case, the cloud is optically
thin “to the atoms” in the sense that the emission
from every atom in the telescope’s beam through the
cloud reaches the observer. And since every hydro-
gen atom is nearly identical in its 21 cm line emission
properties, the conversion from I(H I) to N(H I) is
physically straightforward and undisputed. For con-
verting from I(CO) to N(H2), assuming absolutely
identical clumps would give a constant value of the
X-factor, relatable to the clumps’ properties. But

Fig. 2. Plots of the CO J = 1 → 0 line radiation tem-
perature, T

R
, normalized to its source function, Jν(T

K
),

versus the 13CO J = 1 → 0 derived H2 column density.
Both plots are reproduced from Wall (2006). The curves
are of the form y = 1 − exp(−a x − b), where, in the
ideal case, b = 0. The upper plot is for the LVG, one-
component models of Wall (2006) and the lower plot is
for the LVG, two-component, two-subsample models of
that paper. (The source function for the two-component
models is the effective source function as defined in Wall
2006). Given that x is in units of 1020 H2 cm−2, a =
(9.5±0.4)×10−3 and b = (2.4±5.5)×10−3 for the upper
plot and a = (6.4±0.2)×10−3 and b = (7.2±0.8)×10−2

for the lower plot.

we need not restrict the clump properties so severely
to explain the X-factor. All we need is to have the
clumps similar on average from one beam to the next
for the X-factor to stay relatively constant.

We now need to quantify this picture, so that
we might better understand it and its limitations.
As Fig. 2 clearly shows, the T

R
/Jν(T

K
) ∝ N for

N<∼ 1 to 2 × 1022 H2 cm−2. This is in the τef �
1 limit, so Eq. (6) applies and it has the desired
proportionality. Of course, this proportionality is
only visible if the clump properties —Nc, ∆vc, and
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A(τ0)— and the observed line width, ∆v, do not
vary strongly with N . In fact, the scatter visible in
the plots of Fig. 2 is probably due to variations in
all four of these quantities. Integrating Eq. (6) over
velocity, vz, gives

I(CO) =
√

2π T
R
(0)∆v ,

=
√

2π Jν(T
K
)τef(0)∆v . (17)

T
R
(0) is the radiation temperature of the CO J =

1 → 0 line at vz = 0 and is also the peak radiation
temperature of this line. Similarly, τef (0) is the ef-
fective optical depth at vz = 0. The X-factor is then
given by

Xf =
[√

2π Jν(T
K
) τef(0)∆v N−1

]

−1

. (18)

If we now substitute Eq. (1) evaluated at vz = 0 into
the above, then

Xf =
[√

2π Jν(T
K
)A(τ0)∆vc N−1

c

]

−1

. (19)

The important thing to notice here is that the di-
rectly observed quantities, N and ∆v, have been re-
placed by the corresponding clump properties, Nc

and ∆vc. In fact, all the parameters in expres-
sion (19) are clump parameters, as desired. It is
convenient to define

CT ≡ T
K

Jν(T
K
)

. (20)

We now use the approximation Jν(T
K
) ' T

K
−3.4K

for T
K
>∼ 10K and the frequency of the 12CO J = 1 →

0 line, ν = 115.271GHz. This is good to within 0.4%
of T

K
(and within 0.6% of Jν(T

K
)). Consequently,

CT =
T

K

T
K
− 3.4K

, (21)

which approaches unity as T
K

grows large. Now we
substitute the results of the previous subsections into
equation (19): equation (9) for A(τ0), (16) for τ0,
(10) for ∆vc, and T

K
/CT for Jν(T

K
). We also use

nc = Nc/Lc. These substitutions yield

Xf = (2π)
1

2
(ε−1) CT k−1

A k−ε
τ kε−1

v Tγε−1
K

n
1

2
(1−ε)

c .
(22)

The above formulation for Xf obviously accom-
plishes the goal of insensitivity to the parameters
T

K
and nc that we have sought for Xf . The fluffi-

ness parameter, ε, is in the range 0 to 1; any value
in that range that is greater than 0 will confer a
greater insensitivity than occurs for the DSS86 ex-
planation. A particularly interesting example is that

value of ε for which γε − 1 = 0. In the high temper-
ature limit, CT → 1 and γ → 2 and, if ε = 0.5,
then Xf has no dependence on temperature. (Notice
that the density dependence is also very weak in this
case: Xf ∝ n0.25

c .) Given that the CO J = 1 → 0
line is optically thick, this is counterintuitive; rais-
ing the temperature by some factor should simply
increase I(CO) by the same factor (in the high-T

K

limit), thereby decreasing Xf by that factor. That is
not the case here. Here we are dealing with a clumpy
medium where the optical depth varies across the
projected area of each clump. There will always be
some sightlines through a clump that will still be op-
tically thin. There will also be some velocities in the
clump’s spectral line profile where the line emission
is still optically thin. As T

K
increases, τ0 goes like

T−2
K

, so that A(τ0) goes like T−1
K

(see Eqs (15) and
(9). But Jν(T

K
) goes like T1

K
(in this high-T

K
limit),

meaning that the observed T
R

stays constant. The
effect of the increasing kinetic temperature of the
gas is cancelled by the decreasing effective optical
depth of the clumps. Another way of saying this is
that the effect of the rising temperature is cancelled
by the shrinking effective optically thick areas of the
clumps; the filling factors of the clumps decline as the
temperature rises. (Note that this special case also
occurs for lower temperatures. For T

K
= 10 to 20K,

for example, CT ∝ T−0.34
K

and γ = 1.75. The value of
ε for which Xf is independent of temperature would
be 0.77.) Therefore, despite the optical thickness of
the spectral line in the emitting clumps, changing the
optical depths of the individual clumps will still have
an appreciable effect on the line strength. And this
will reduce the dependence of the X-factor on the
temperature and the density of the gas within the
clumps.

3. CONCLUSIONS

What this treatment means in the astronomical
context will be examined in more detail in a future
paper (i.e., Wall 2006c). For now, it can be stated
that the goals set out in the introduction have been
largely accomplished:

1. Treatment of radiative transfer. This is no
longer a problem given that the treatment here
explicitly included the optical depth of the emit-
ting structures (i.e., clumps). The optically thin
case is now implicitly included by simply set-
ting the fluffiness to unity (i.e., ε = 1). This
gives the correct relationship between the col-
umn density and the integrated intensity for the
optically thin case in LTE.
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2. Reduced Sensitivity to T
K

and n(H2). As the
example in the previous section illustrates, the
sensitivity to clump density and temperature
can be greatly reduced or even eliminated (for
the case of T

K
only). For the case of a spher-

ical clump with a Gaussian spatial variation of
the optical depth, this dependence is roughly,
Xf ∝ (nc/TK

)0.3.

3. Virialization of entire clouds is not necessary.
By using densities more representative of indi-
vidual clumps, i.e., nc ∼ few × 103 cm−3, the
treatment given here will yield X-factor values
easily within factors of 2 of those observed in
our Galaxy.

4. Stronger dependence of peak T
R

on N(H2) than
of ∆v on N(H2) is now explained. Given that
the X-factor in this treatment depends on the
velocity width of the individual clumps and not
on the observed velocity width, ∆v, of all the
gas in the beam, the lack of dependence on ∆v
is now explained.

However, despite these successes, problems still
remain:

1. Sensitivity to ε. The previous sensitivity to the
physical parameters of density and temperature
has now been replaced by the strong dependence
on yet another physical parameter: ε. Why
this parameter should remain roughly constant
is uncertain. Nevertheless, it’s variation maybe
one reason why the X-factor can be very differ-
ent in certain special regions such as the Galac-
tic Centre region (e.g., Sodroski et al. 1995;
Dahmen et al. 1998).

2. Clump optical depths too high. Given reasonable
temperatures and densities (i.e. T

K
∼ 10–20K

and nc ∼ few × 103 cm−3) for the clumps, the
central sightline optical depths in the 12CO J =
1 → 0 line are an order of magnitude higher
than expected from observations of the optically
thin 13CO J = 1 → 0 line. However, the X-
factor is only reasonably constant on the scales
of many parsecs. On such scales, the central
sightline optical, τ0, is not really the relevant
quantity; the average over the clump’s projected
area, A(τ0), is the relevant quantity and is about
an order of magnitude smaller.

A more detailed discussion of the problems will
be given in Wall (2006c). Overall, the treatment
holds much promise, given that it includes basic ra-
diative transfer.
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