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RESUMEN

En este trabajo se investiga la conexión entre fórmulas Newton-Cotes,
métodos diferenciales por ajustes trigonométricos e integradores simplécticos. Se
conoce, a través de la literatura, que varios integradores simplécticos de un paso han
sido obtenidos basándose en geometŕıa simpléctica. Sin embargo, la investigación
de integradores simplécticos multicapa es muy pobre. Zhu et al. (1996) presen-
taron los conocidos métodos diferenciales Newton-Cotes abiertos como integradores
simplécticos multicapa. También Chiou & Wu (1997) investigaron la construcción
de integradores simplécticos multicapa basándose en los métodos de integración
abierta Newton-Cotes. En este trabajo investigamos las fórmulas cerradas Newton-
Cotes y las escribimos como estructuras simplécticas multicapa. Después de esto,
construimos métodos simplécticos por ajustes trigonométricos, los cuales se basan
en las fórmulas cerradas Newton-Cotes. Aplicamos los esquemas simplécticos para
resolver las ecuaciones de movimiento de Hamilton que son lineales en posición
y momento. Observamos que la enerǵıa hamiltoniana del sistema permance casi
constante a medida que la integración avanza.

ABSTRACT

The connection between closed Newton-Cotes, trigonometrically-fitted differ-
ential methods and symplectic integrators is investigated in this paper. It is known
from the literature that several one step symplectic integrators have been obtained
based on symplectic geometry. However, the investigation of multistep symplectic
integrators is very poor. Zhu et al. (1996) presented the well known open Newton-
Cotes differential methods as multilayer symplectic integrators. Also, Chiou & Wu
(1997) investigated the construction of multistep symplectic integrators based on
the open Newton-Cotes integration methods. In this paper we investigate the closed
Newton-Cotes formulae and we write them as symplectic multilayer structures. Af-
ter this we construct trigonometrically-fitted symplectic methods which are based
on the closed Newton-Cotes formulae. We apply the symplectic schemes in order to
solve Hamilton’s equations of motion which are linear in position and momentum.
We observe that the Hamiltonian energy of the system remains almost constant as
integration procceeds.
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168 SIMOS

1. INTRODUCTION

In recent years, the research area of construction of numerical integration methods for ordinary differential
equations that preserve qualitative properties of the analytic solution has been of great interest. We consider
here Hamilton’s equations of motion which are linear in position p and monentum q

q̇ = mp ,

(1)

ṗ = −mq ,

where m is a constant scalar or matrix. It is well known that the Eq. (1) is a an important one in the field of
molecular dynamics. In order to preserve the characteristics of the Hamiltonian system in the numerical solution
it is necessary to use symplectic integrators. In recent years work has been done mainly in the construction of
one step symplectic integrators (see Sanz-Serna & Calvo 1994). In their work Zhu, Zhao, & Tang (1996) and
Chiou & Wu (1997) constructed multistep symplectic integrators by writing open Newton-Cotes differential
schemes as multilayer symplectic structures.

During the last decades much work has been done on exponential fitting and on the numerical solution
of periodic initial value problems (see Anastassi & Simos (2004;2005), Monovasilis, Kalogiratou, & Simos
(2004;2005), Psihoyios & Simos (2003;2004a;2004b), Simos (1996;1998a;1998b;2000;2002a;2002b;2003;2004a;
2004b;2005), Van Daele, & Vanden Berghe (2004), Vanden Berghe, Van Daele & Vande Vyver (2004), Vlachos
& Simos (2004), and references therein).

In this paper first we try to present closed Newton-Cotes differential methods as multilayer symplectic
integrators. After this we apply the closed Newton-Cotes methods on the Hamiltonian system (Eq. 1) and
we obtain as a result that the Hamiltonian energy of the system remains almost constant as the integration
proceeds. After this, trigonometrically-fitted methods are developed. We note that the aim of this paper is to
generate methods that can be used for non-linear differential equations as well as linear ones.

In § 2 the results about symplectic matrices and schemes are presented. In § 3 closed Newton-Cotes integral
rules and differential methods are described and the new trigonometrically-fitted methods are developed. In
§ 4 the conversion of the closed Newton-Cotes differential methods into multilayer symplectic structures is
presented. Numerical results are presented in § 5.

2. BASIC THEORY ON SYMPLECTIC SCHEMES AND NUMERICAL METHODS

Following Zhu et al. (1996) we have the following basic theory on symplectic numerical schemes and sym-
plectic matrices. The proposed methods can be used for non-linear differential equations as well as linear ones.
Dividing an interval [a, b] with N points we have

x0 = a, xn = x0 + nh = b, n = 1, 2, . . . , N . (2)

We note that x is the independent variable and a and b in the equation for x0 (Eq. 2) are different than the a

and b in (Eq. 3).
The above division leads to the following discrete scheme

(

pn+1

qn+1

)

= Mn+1

(

pn

qn

)

, Mn+1 =

(

an+1 bn+1

cn+1 dn+1

)

. (3)

Based on the above we can write the n-step approximation to the solution as

(

pn

qn

)

=

(

an bn

cn dn

)(

an−1 bn−1

cn−1 dn−1

)

· · ·

(

a1 b1

c1 d1

)(

p0

q0

)

,

= Mn Mn−1 · · · M1

(

p0

q0

)

.
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Defining

S = Mn Mn−1 · · · M1 =

(

An Bn

Cn Dn

)

,

the discrete transformation can be written as
(

pn

qn

)

= S

(

p0

q0

)

.

A discrete scheme (3) is a symplectic scheme if the transformation matrix S is symplectic. A matrix A is
symplectic if AT JA = J where

J =

(

0 1

−1 0

)

.

The product of symplectic matrices is also symplectic. Hence, if each matrix Mn is symplectic the trans-
formation matrix S is symplectic. Consequently, the discrete scheme (2) is symplectic if each matrix Mn is
symplectic.

3. TRIGONOMETRICALLY-FITTED CLOSED NEWTON-COTES DIFFERENTIAL METHODS

3.1. General Closed Newton-Cotes Formulae

The closed Newton-Cotes integral rules are given by

∫

b

a

f(x)dx ≈ z h

k
∑

i=0

tif(xi) ,

where

h =
b − a

N
, xi = a + ih, i = 0, 1, 2, . . . , N .

The coefficient z as well as the weights ti are given in Table 1.

TABLE 1

CLOSED NEWTON-COTES
INTEGRALS RULES

k z t0 t1 t2 t3 t4

0 1 1 · · · · · · · · · · · ·

1 1/2 1 1 · · · · · · · · ·

2 1/3 1 4 1 · · · · · ·

3 3/8 1 3 3 1 · · ·

4 2/45 7 32 12 32 7

From the above table it is easy to see that the coefficients ti are symmetric i.e., we have the following relation:

ti = tk−i, i = 0, 1, . . . ,
k

2
.

Closed Newton-Cotes differential methods were produced from the integral rules. For the above table we have
the following differential methods:
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k = 1 yn+1 − yn = h

2 (fn+1 + fn) ,

k = 2 yn+1 − yn−1 = h

3 (fn−1 + 4fn + fn+1) ,

k = 3 yn+1 − yn−2 = 3h

8 (fn−2 + 3fn−1 + 3fn + fn+1) ,

k = 4 yn+2 − yn−2 = 2h

45 (7fn−2 + 32fn−1 + 12fn + 32fn+1 + 7fn+1) .

In the present paper we will investigate the case k = 4 and we will produce trigonometrically-fitted differ-
ential methods.

3.2. Trigonometrically-Fitted Closed Newton-Cotes Differential Method

Requiring the differential scheme:

yn+2 − yn−2 = h
(

a0 fn−2 + a1 fn−1 + a2 fn + a3 fn+1 + a4 fn+2

)

, (4)

to be accurate for the following set of functions (we note that fi = y′
i
, i = n − 1, n, n + 1):

{1, x, x2, x3, cos(±wx), sin(±wx)} , (5)

the following set of equations is obtained:

a0 + a1 + a2 + a3 + a4 = 4

−4 a0 − 2 a1 + 2 a3 + 4 a4 = 0

12 a0 + 3 a1 + 3 a3 + 12 a4 = 16

v sin(v) (a1 − a3 − 2 a4 cos(v) + 2 cos(v) a0) = 0

4 cos(v) sin(v) = v (−a0 + a2 − a4 + 2 a0 cos(v)2 +

+2 a4 cos(v)2 + a3 cos(v) + a1 cos(v)) , (6)

where v = w h. We note that the first equation is produced requiring the scheme (4) to be accurate for
1, x, while the second and the third equations are obtained requiring the algorithm (4) to be accurate for
cos(±wx), sin(±wx). The requirement for the accurate integration of functions (5), helps the method to be
accurate for all the problems with solution which has behavior of trigonometric functions.

Solving the above system of equations we obtain:

a0 =
−3 sin(2 v) − 2 v + 8 v cos(v)

−9 v − 3 v cos(2 v) + 12 v cos(v)

a1 =
12 sin(2 v) − 16 v − 8 v cos(2 v)

−9 v − 3 v cos(2 v) + 12 v cos(v)

a2 =
4 v cos(2 v) + 32 v cos(v) − 18 sin(2 v)

−9 v − 3 v cos(2 v) + 12 v cos(v)

a3 =
12 sin(2 v) − 16 v − 8 v cos(2 v)

−9 v − 3 v cos(2 v) + 12 v cos(v)

a4 =
−3 sin(2 v) − 2 v + 8 v cos(v)

−9 v − 3 v cos(2 v) + 12 v cos(v)
. (7)
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For small values of v the above formulae are subject to heavy cancellations. In this case the following Taylor
series expansions must be used.

a0 =
14

45
+

8

945
v2 +

1

4725
v4 +

1

311850
v6

−
97

2043241200
v8 −

139

20432412000
v10 −

229

595458864000
v12

−
285689

16631166071520000
v14 + . . .

a1 =
64

45
−

32

945
v2 −

4

4725
v4 −

2

155925
v6

+
97

510810300
v8 +

139

5108103000
v10 +

229

148864716000
v12

+
285689

4157791517880000
v14 + . . .

a2 =
8

15
+

16

315
v2 +

2

1575
v4 +

1

51975
v6

−
97

340540200
v8 −

139

3405402000
v10 −

229

99243144000
v12

−
285689

2771861011920000
v14 + . . .

a3 =
64

45
−

32

945
v2 −

4

4725
v4 −

2

155925
v6

+
97

510810300
v8 +

139

5108103000
v10 +

229

148864716000
v12

+
285689

4157791517880000
v14 + . . .

a4 =
14

45
+

8

945
v2 +

1

4725
v4 +

1

311850
v6

−
97

2043241200
v8 −

139

20432412000
v10 −

229

595458864000
v12

−
285689

16631166071520000
v14 + . . . (8)

The Local Truncation Error for the above differential method is given by:

L.T.E(h) = −
8h7

945

(

y(7)
n

+ w2 y(5)
n

)

. (9)

The L.T.E. is obtained expanding the terms yn±1 and fn±1 in (4) into Taylor series expansions and substituting
the Taylor series expansions of the coefficients of the method.

4. CLOSED NEWTON-COTES CAN BE EXPRESSED AS SYMPLECTIC INTEGRATORS

Theorem 1. A discrete scheme of the form:

(

b −a

a b

)(

qn+1

pn+1

)

=

(

b a

−a b

)(

qn

pn

)

, (10)

is symplectic.

Proof. We rewrite (3) as

(

qn+1

pn+1

)

=

(

b −a

a b

)−1(

b a

−a b

)(

qn

pn

)

.
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Define

M =

(

b −a

a b

)−1(

b a

−a b

)

=
1

b2 + a2

(

b2 − a2 2ab

−2ab b2 − a2

)

,

and it can easily be verified that

MT JM = J ,

thus the matrix M is symplectic.
Zhu et al. (1996) have proved the symplectic structure of the well-known second-order differential scheme

(SOD),

yn+1 − yn−1 = 2hfn ,

yn+2 − yn−2 = 4hfn . (11)

The above method has been produced by the simplest Open Newton-Cotes integral rule.

Based on the paper by Chiou & Wu (1997) we will try to write Closed Newton-Cotes differential schemes
as multilayer symplectic structures.

Application of the Newton-Cotes differential formula for n = 2 to the linear Hamiltonian system (1) gives:

qn+2 − qn−2 = s
(

a0 pn−2 + a1 pn−1 + a2 pn + a3 pn+1 + a4 pn+2

)

,

pn+2 − pn−2 = −s
(

a0 qn−2 + a1 qn−1 + a2 qn + a3 qn+1 + a4 qn+2

)

, (12)

where s = mh, where m is defined in (1).

From (11) we have that:

qn+2 − qn−2 = 4 s pn ,

pn+2 − pn−2 = −4 s qn , (13)

qn+1 − qn−1 = 2 s pn ,

pn+1 − pn−1 = −2 s qn , (14)

q
n+ 1

2

− q
n−

1

2

= s pn ,

pn+ 1

2

− pn−
1

2

= −s qn . (15)

Substitution of the approximation which is based on (15) for (m + 1)-step to (13) gives:

qn+1 + qn−1 =
(

qn + s pn+ 1

2

)

+
(

qn − s pn−
1

2

)

,

= 2 qn + s
(

p
n+ 1

2

− p
n−

1

2

)

=
(

2 − s2
)

qn . (16)

Similarly we have:
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pn+1 + pn−1 =
(

pn − s q
n+ 1

2

)

+
(

pn + s q
n−

1

2

)

,

= 2 pn − s
(

q
n+ 1

2

− q
n−

1

2

)

=
(

2 − s2
)

pn . (17)

Substituting (16) and (17) into (12) and considering that a0 = a4 and a1 = a3 we have:

qn+2 − qn−2 = s
[

a0

(

pn−2 + pn+2

)

+ a1

(

2 − s2 + a2

)

pn

]

,

pn+2 − pn−2 = −s
[

a0

(

qn+2 + qn−2

)

+ a1

(

2 − s2 + a2

)

qn

]

,

and with (13) we have:

qn+2 − qn−2 = s
[

a0

(

pn−2 + pn+2

)

+ a1

(

2 − s2 + a2

) qn+2 − qn−2

4 s

]

,

pn+2 − pn−2 = −s
[

a0

(

qn+2 + qn−2

)

+ a1

(

2 − s2 + a2

) [

−
qn+2 − qn−2

4 s

]]

,

which gives:

(

qn+2 − qn−2

)[

1 −
a1

(

2 − s2
)

+ a2

4

]

= s a0

(

pn−2 + pn+2

)

,

(

pn+2 − pn−2

)[

1 −
a1

(

2 − s2
)

+ a2

4

]

= −s a0

(

qn+2 + qn−2

)

.

The above formula in matrix form can be written as:

(

T (s) −s a0

s a0 T (s)

)(

qn+2

pn+2

)

=

(

T (s) s a0

−s a0 T (s)

)(

qn−2

pn−2

)

,

where

T (s) = 1 −
a1

(

2 − s2
)

+ a2

4
, (18)

which is a discrete scheme of the form (10) and hence it is symplectic.

We note here than in Chiou & Wu (1997) have re-written Open Newton-Cotes differential schemes as
multilayer symplectic structures based on (11).

5. NUMERICAL EXAMPLE

5.1. Harmonic Oscillator

In order to illustrate the performance of open Newton-Cotes differential methods consider the equations of
motion of a harmonic oscillator given by the system of equations:

q̇ = p ,

ṗ = −q , (19)

and the initial conditions are given as:

q(0) = 1, p(0) = 0 .
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0 4000 8000 12000 16000 20000 24000
Number of Function Evaluations (NFE)
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M ethod [a]

M ethod [b]

M ethod [c]

M ethod [d]

M ethod [e]

Fig. 1. Errmax for several values of Number of Function Evaluations for the Hamiltonian for the Harmonic
oscillator problem solved by Method [a]-[e].

The Hamiltonian (or energy) of this system is:

H(t) =
1

2

(

p2(t) + q2(t)
)

.

For comparison purposes we use:

• The classical closed Newton-Cotes differential method of order four (which is indicated as Method [a])2.

• The classical closed Newton-Cotes differential method of order six (which is indicated as Method [b]).

• The newly developed trigonometrically-fitted closed Newton-Cotes differential method of order six (which
is indicated as Method [c]). For this problem we have w = 1.

• The fifth order predictor-corrector Adams-Bashfoth-Moulton method (which is indicated as Method [d]).

• The seventh order predictor-corrector Adams-Bashfoth-Moulton method (which is indicated as Method
[e]).

The integration interval is [0, 1000].

In Figure 1 we present the absolute errors of the Hamiltonian:

Errmax = log10

[

max
(

‖He(t)calculated − He(t)theoretical‖, , t ∈ [0, 1000] , (20)

2With the term classical we mean the closed Newton-Cotes differential method with constant coefficients.
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0 10000 20000 30000 40000 50000
Number of Function Evalutions (NFE)

-16

-12

-8

-4

0

E
rr
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M ethod [a]

M ethod [b]

M ethod [c]

M ethod [d]

M ethod [e]

Fig. 2. Errmax for several values of Number of Function Evaluations for the Methods [a]-[e] for the problem of
Stiefel and Bettis. The nonexistance of a value of Errmax indicates that for these values Errmax is positive

where
He(t) = H(t) − H(0) , (21)

for the methods mentioned above and for several values of the Number of Function Evaluations. For Method
[c] the absolute error Errmax is not actually bounded due to roundoff errors.

5.2. A Problem by Stiefel and Bettis

The “almost” periodic orbit problem studied by Stiefel & Bettis (1969) is the next problem, which is
considered.

y′′ + y = 0.001 eix, y(0) = 1, y′(0) = 0.9995 i, y ∈ C , (22)

whose equivalent form is:

u′′ + u = 0.001 cos(x), u(0) = 1, u′(0) = 0, (23)

v′′ + v = 0.001 sin(x), v(0) = 0, v′(0) = 0.9995 . (24)

The analytical solution of the problem (22) is following:

y(x) = u(x) + i v(x), u, v ∈ R , (25)

u(x) = cos(x) + 0.0005 x sin(x) , (26)

v(x) = sin(x) − 0.0005 x cos(x) . (27)
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M ethod [d]

M ethod [e]

Fig. 3. Errmax for several values of Number of Function Evaluations for the Methods [a]-[e] for the nonlinear
orbit problem. The nonexistance of a value of Errmax indicates that for these values Errmax is positive

The solution Eqs. (25)-(27) represents motion of a perturbation of a circular orbit in the complex plane.

The system of Eqs. (23) and (24) has been solved for 0 ≤ x ≤ 1000 using the five methods mentioned above.
For this problem we have also w = 1. The numerical results obtained for the five methods mentioned above
were compared with the analytical solution. Figure 2 shows the absolute errors.

Errmax = log10

[

max
(

‖u(x)calculated − u(x)theoretical‖ ,

‖v(x)calculated − v(x)theoretical‖
)]

, x ∈ [0, 1000] , (28)

for several values of the Number of Function Evaluations.

5.3. A Nonlinear Orbit Problem

Consider the nonlinear system of equations:

u′′ + ω2 u =
2u v − sin

(

2ωx
)

(

u2 + v2
)

3

2

, u(0) = 1, u′(0) = 0 , (29)

v′′ + ω2 v =
u2 − v2 − cos

(

2ωx
)

(

u2 + v2
)

3

2

, v(0) = 0, v′(0) = ω . (30)

The analytical solution of the problem (22) is following:

u(x) = cos(ω x), v(x) = sin(ω x) . (31)



©
 C

o
p

yr
ig

ht
 2

00
6:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

NEWTON-COTES TRIGONOMETRICALLY-FITTED FORMULAE 177

The system of Eqs. (29) and (30) has been solved for 0 ≤ x ≤ 1000 and ω = 10 using the five methods
mentioned above. For this problem we have w = 10. The numerical results obtained for the five methods
mentioned above were compared with the analytical solution. Figure 3 shows the absolute errors Errmax

defined in (28) for several values of the Number of Function Evaluations.

6. CONCLUSIONS

The presentation of the closed Newton-Cotes differential methods as multilayer symplectic integrators and
their application on the Hamiltonian system (1) is presented in this paper. The result from the above investi-
gation is that the Hamiltonian energy of the system remains almost constant as the integration proceeds.

We also developed trigonometrically-fitted methods. We applied the newly developed methods to linear and
nonlinear problems and we compared them with well known integrators from the literature. Based on these
illustrations we conclude that trigonometrically-fitted methods are more efficient than well known methods of
the literature.

The author wishes to thank the anonymous referee for his/her careful reading of the manuscript and his/her
fruitful comments and suggestions which helped to improve this paper.
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