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RESUMEN

Se sugieren 5 métodos anaĺıticos para encontrar una ley que caracterice el
decremento de la velocidad a lo largo del chorro. Los 2 primeros son modelos
simples que examinan la variación de la velocidad en presencia de la resistencia
de Newton o de Stoke. Se resuelve la ecuación que representa la conservación del
momento a lo largo de un sector piramidal desde un punto de vista anaĺıtico (tercer
modelo). La aplicación de la conservación del flujo del momento total nos permite
deducir la velocidad de la galaxia como función del tiempo para velocidades clásicas
(cuarto modelo) y para velocidades relativistas (quinto modelo). La variación de
la velocidad a lo largo del chorro combinada con una adecuada composición de
la velocidad de precesión del chorro, con la velocidad rotacional de la galaxia y
con la dispersión de velocidades de la galaxia en el cúmulo nos permite trazar el
patrón geométrico de las fuentes de radio con cabeza y cola. La aplicación de
la teoŕıa/código desarrollado a las radiogalaxias NGC1265, NGC4061, NGC326, y
Cygnus A nos da una dispersión de velocidades aproximada de la galaxia central en
la dirección perpendicular al chorro. Introducimos una transición desde las galaxias
cabeza-cola a las clásicas radiogalaxias dobles como función del incremento de la
potencia mecánica del chorro.

ABSTRACT

In order to find a law characterising the decrease of velocity along a jet,
five analytical methods are suggested. The first two simple models examine the
variation of velocity in the presence of Newton’s or Stoke’s resistance. The equation
that represents the conservation of the momentum along a pyramidal sector is
solved from an analytical point of view (third model). The application of the
conservation of the total momentum flux allows us to deduce the velocity of the
galaxy as a function of time for classical velocities (fourth model) and relativistic
velocities (fifth model). The variation of velocity along the jet combined with an
adequate composition of jet precession velocity, rotational velocity of the galaxy,
and galaxy velocity dispersion in the cluster allows us to trace the geometrical
pattern of the head-tail radio sources. Application of the developed theory/code to
the radio galaxies NGC1265, NGC4061, NGC326, and Cygnus A gives the central
galaxy’s approximate dispersion velocities in the direction perpendicular to the jet.
A transition from head–tails to classical double radio galaxies as a function of the
increasing jet’s mechanical power is introduced.

Key Words: GALAXIES: JETS — RADIO CONTINUUM: GALAXIES

1. INTRODUCTION

The extragalactic radio sources are classified on the basis of the position of the brightest radio emitting
regions with respect to the channel: FR-I have hot spots that are more distant from the nucleus (typical
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example Cygnus A), FR-II radio galaxies have emission uniformly distributed along the channel (typical example
3C449). The physical parameter that governs this classification is the radiated power, the more powerful radio
galaxies being classified as FR II, see Fanaroff & Riley (1974) for details. The classification then becomes more
complicated in the presence of complex morphologies and two classifications are introduced: NAT (Narrow
Angle Tail) and WAT (Wide Angle Tail). But a closer look at NGC 1265 reveals that the angle subtended by
the two channels is not so “narrow”, see Figure 1 of Odea & Owen (1986); possibly, in this case a distinction
should be made between internal regions of the channel where the patterns are similar and the extended regions
where conversely the division in WAT and NAT is more evident.

For more details on the classification scheme the interested reader is advised to refer to the book by De Young
(2002). The X-ray observations of the Galactic black hole XTE J1118+480 are consistent with extended jets
being the source of the hard X-ray flux. In this hypothesis the disc would then simply represent a small solid
angle as seen from the emission region, see Miller et al. (2002). This point of view is not new and has been
explored by Mendoza, Hernández, & Lee (2005) who suggested a unified model for quasars and mu-quasars.
In general, the shapes seem to be independent from (or weakly correlated to) the cluster parameters, such as
physical position in the cluster, number of galaxies, cluster richness, cluster morphology and x-ray emission.
Some of the models that can explain the bending of the jets will now be briefly reviewed:

• The geometrical models started with Jaffe & Perola (1973) where two models were developed to explain
the formation of “tailed” radio sources like 3C 129. They continued inserting precession and relativistic
effects in SS433, see Hjellming & Johnston (1982). An analytical model was presented for the evolution of
a powerful double radio source on a small scale, see Alexander (2000).

• Euler’s equation model, where bending is produced by the ram pressure ρICMV 2
j of the intra-cluster

medium, is analysed by Burns & Owen (1980) in order to explain the structure of 1638+538 (4C53.57),
and by Venkatesan et al. (1994) in order to understand the behaviour of NAT in poor clusters of galaxies.
Further, a hydro-dynamical code was built in order to explain the NAT sources, see Norman, Balsara, &
O’Dea (1994). From an observational point of view it is interesting to note that the velocities of the NAT
galaxies are inadequate for producing the ram pressure necessary to bend the radio jets, see Bliton et al.
(1998).

• The slingshot ejection model consists in the ejection of black holes from the host galaxy: the bending is
obtained from the oscillations about the center of the merged galaxy, see for example Valtonen & Kotilainen
(1989).

• The 3-dimensional magneto-hydrodynamic (MHD) simulations, based on the Sweeping Magnetic-Twist
model Nakamura, Uchida, & Hirose (2001), produce a wiggly structure of AGN radio jets.

• The interaction of a jet with a stratified cloud, see Raga & Cantó (1996), or with a spherically symmetric
pressure stratification, see Cantó & Raga (1996), can lead to a final configuration in which the jet has
bored a hole through the cloud, or large deflections are obtained.

• A jet can generate an internal shock wave by adopting either a non-relativistic framework, see Icke (1991)
or a relativistic framework, see Mendoza & Longair (2002).

• From a relativistic point of view Mendoza & Longair (2001) showed that bending relativistic jets is much
more difficult than bending non-relativistic ones. This is the reason why most FR-II radio galaxies appear
straight.

The already cited models concerning the bending leave a series of questions unanswered or partially an-
swered:

• Is it possible to deduce a law of motion in the presence of viscosity in laminar and turbulent jets?

• Is it possible to trace the jet velocity on the basis of physical parameters such as linear density of energy
of the radio source and constant density of the IGM (Inter Galactic Medium)?



©
 C

o
p

yr
ig

ht
 2

00
7:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o
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• Is it possible to develop a consistent theory in which, at a given time, the jet opening angle increases
abruptly?

• Is it possible to include relativistic effects in turbulent jets that generalise the work made by Raga & Cantó
(1996) and Cantó & Raga (1996) on the interaction between a jet and a stratified cloud?

• Once the main jet trajectory is obtained, could other kinematical components be added such as jet pre-
cession, galaxy rotation and galaxy bulk velocity?

• Does the developed theory match the observed patterns traced by the radio sources?

• Could the transition FR-I ⇒ FR-II be simulated by increasing the total jet luminosity?

In order to answer these questions in Section 2 the equations of motion are derived in the presence of Stoke’s
law of resistance, Newton’s law of resistance and turbulent eddy viscosity. Some analytical computations on
the momentum conservation in an extra-galactic pyramidal sector advancing in a surrounding medium are
developed in Section 3. In Section 4 the theory of the two-phase beam is set up. The theory of relativistic
turbulent jets is developed in Section 5. The theory for the composition of the velocities in a head-tail radio
source is developed in Section 6. The application of the developed theory to well-specified radio sources such
as NGC1265, NGC4061, NGC326 and Cygnus A is reported in Section 7. A power transition is simulated in
Section 7.5 replacing the energy with the total power in the law of motion. The theory of the Kelvin-Helmholtz
instabilities is reviewed and implemented on the radio-sources in Section 9.

2. VISCOSITY MODELS

When a laminar jet moves through the IGM or the ISM a retarding drag force Fdrag is applied. If v is the
instantaneous velocity the simplest model which is usually considered is that with

Fdrag ∝ vn , (1)

with n as an integer. Here the case of n = 1 and n = 2 is considered. In classical mechanics n = 1 is referred
to as Stoke’s law of resistance and n = 2 as Newton’s law of resistance. We now consider two laminar jets and
the turbulent case separately.

2.1. Stoke’s behaviour

Consider a slice of the jet with mass m. The equation of motion is given by

m
dv

dt
= −bv (2)

or
dv

dt
= −Bv , (3)

where B = b/m. The temporal behaviour of the velocity turns out to be

v = v0e
−Bt , (4)

where v0 is the initial velocity. The distance at the time t is

x =
v0

B
(1 − e−Bt) , (5)

and this can be considered the first law of motion. The velocity space dependence is

v − v0 = −Bx . (6)
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The velocity of the jet is allowed to vary between a maximum value at the beginning (the inner region),
v = v0 = c

cf
with cf a number larger than one, and a minimum value at the end (the outer region), for example

v = c
10000 . In this way the coefficient B can be found by identifying x with the jet’s length x1

B =
v0 − c/10000

x1
. (7)

The lifetime of the radiosource, tStoke
RS , can be derived from equation (4) once the numerical value of B is known

tStoke
RS =

ln v0×10000
c

B
, (8)

that becomes

tStoke
RS =

ln 10000
cf

B
. (9)

2.2. Newton’s behaviour

The equation of motion is now

m
dv

dt
= −av2 , (10)

or
dv

dt
= −Av2 , (11)

where A = a/m. The temporal behaviour of the velocity turns out to be

v =
v0

1 + v0At
, (12)

and the distance

x =
ln(Av0t + 1)

A
, (13)

which can be considered the second law of motion. The velocity space dependence is

x =
−ln

vcf

c

A
. (14)

The coefficient A can be found by inserting v
c = 1/10000 which corresponds to v = 30 km s−1 while L, the

length of the jets is equal to x, later called x1.
Here, the lifetime of the radiosource, tNewton

RS , can be derived from equation (12) once the numerical value
of A is known

tNewton
RS =

( c

cfv
− 1
) cf

cA
. (15)

2.2.1. Parameters of the artificial viscosity from a sample of WAT

A sample of 7 radio-galaxies classified as Wide Angle Tails (WAT) was imaged sensitively at high resolution
by Hardcastle & Sakelliou (2004). This sample is here considered as a source of data that allows us to derive
the parameters of Section 2.2 and Section 2.1, see Table 1. The parameters of the first two laws of motion
are found once the averaged velocity at the beginning of the jet (alias cf ) and at the end of the jet are fixed
by observational arguments. The spectroscopic measurements are a good candidate to find the jet’s velocity
but attention should be paid to the fact that at a given position x the velocity can vary considerably from the
boundary to the center of the jet, see equation (21).
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TABLE 1

ARTIFICIAL VISCOSITY PARAMETERS OF SEVEN WAT1

Radio name x1 [kpc] tStoke
RS [106year] B[1/year] tNewton

RS [106year] A[1/pc]

0647+693 81 2.9 3.10×10−6 2.8×102 1.1 ×10−4

1231+674 35 1.25 7.13×10−6 1.2×102 2.56×10−4

1333+412 20 0.79 1.24×10−5 71 4.49×10−4

1433+674 49 1.76 5 ×10−6 1.7×102 1.83×10−4

2236−176 44 1.58 5.67×10−6 1.5×102 2.0 ×10−4

3C465 28 1.0 8.9 ×10−6 99 3.2 ×10−4

1610−608 13 0.46 1.8 ×10−5 46 6.9 ×10−4

1cf = 1.25 and velocity at the end v/c=1/10000. The value of cf is chosen in order to have
relativistic velocities in the initial stage (inner region) of the jet.

2.3. Turbulent jets

The theory of turbulent jets emerging from a circular hole can be found in different books with different
theories, see Bird, Stewart, & Lightfoot (2002), Landau (1987), and Goldstein (1965). The basic assumptions
common to the three already cited approaches are

1. The rate of momentum flow, J , represented by

J = const × ρb2v2
x,max , (16)

is constant; here x is the distance from the initial circular hole, b(x) is the jet’s diameter at distance x,
vx,max is the maximum velocity along the the centerline, const is

const = 2π

∫

∞

0

f2ξdξ , (17)

where

f(ξ) =
vx

vx,max
with ξ =

x

b1/2
, (18)

and ρ is the density of the surrounding medium, see equation (5.6-3) in Bird et al. (2002).

2. The jet’s density ρ is constant over the expansion and equal to that of the surrounding medium.

When omitting the details of the computation, an expression can be found for the average velocity vx, see
equation (5.6-21) in Bird et al. (2002),

vx =
ν(t)

x

2C2
3

[

1 + 1
4 (C3

r
x )2
]2 , (19)

where ν(t) is the kinematical eddy viscosity and C3, see equation (5.6-23) in Bird et al. (2002),

C3 =

√

3

16π

√

J

ρ

1

ν(t)
. (20)

An important quantity is the radial position, r = b1/2, corresponding to an axial velocity one-half of the
centerline value, see equation (5.6-24) in Bird et al. (2002),

vx(b1/2, x)

vx,max(x)
=

1

2
=

1
[

1 + 1
4 (C3

b1/2

x )2
]2 . (21)
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64 ZANINETTI

Fig. 1. Mean velocity profile vs. channel radius in a circular jet in turbulent flow. The velocity distribution is a function
growing from zero (at the wall of the channel) to a maximum value in the central region.

The experiments in the range of Reynolds number, Re, 104 ≤ Re ≤ 3106 (see Reichardt 1942; Reichardt 1951;
Schlichting 1979) indicate that

b1/2 = 0.0848x , (22)

and as a consequence

C3 = 15.17 , (23)

and therefore
vx(r)

vx,max(r)
=

1
[

1 + 0.414 (r/b1/2)2
]2 . (24)

Figure 1 reports the behaviour of the velocity distribution as given by equation (24).
The average velocity, vx, is ≈ 1/100 of the centerline value when r/b1/2 = 4.6 and this allows us to say

that the diameter of the jet is

b = 2 × 4.6b1/2 . (25)

On introducing the opening angle α, the following new relationship is found

α

2
= arctan

4.6b1/2

x
. (26)

The generally accepted relationship between the opening angle and Mach number, see equation (A33) in
De Young (2002), is

α

2
=

cs

vj
=

1

M
, (27)

where cs is the sound velocity, vj the jet’s velocity and M the Mach number. The new relationship (26) replaces
the traditional relationship (27). The parameter b1/2 can therefore be connected with the jet’s geometry

b1/2 =
1

4.6
tan(

α

2
)x . (28)

If this approximate theory is accepted, equation (22) gives α = 42.61◦: this is the theoretical value that
originates the so called Reichardt profiles. The value of b1/2 fixes the value of C3 and therefore the eddy
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viscosity is

ν(t) =

√

3

16π

√

J

ρ

1

C3
=

√

3

16π

√
const bvx,max

1

C3
. (29)

In order to continue, the integral that appears in const should be evaluated, see equation (17). A numerical
integration gives

∫

∞

0

f2ξdξ = 0.402 , (30)

and therefore
const = 2.528 . (31)

On introducing typical parameters of jets like α=5◦, vx,max=v100 = v[km s−1]/100, b = b1 where b1 is the
momentary radius in kpc, it is possible to deduce an astrophysical formula for the kinematical eddy viscosity

ν(t) = 0.0028 b1v100
kpc2

107year
when C3 = 135.61 . (32)

This paragraph concludes underlining the fact that in extragalactic sources it is possible to observe both a
small opening angle, ≈ 5◦, see Section 7.4, and large opening angles, i.e. ≈ 34◦ in the outer regions of 3C31
Laing & Bridle (2004).

3. A CONTINUOUS MODEL

The jet is now explained as due to a continuous flow in a given direction.
The constrained basic elements of our theory are the mean spread rate of the jet measured on the radio

maps, the linear density of energy and the initial jet radius ri. The turbulent hyper-sonic flow, Mach number
> 6, is one of the most complicated problems in fluid mechanics. Here the key assumption is that due to
the turbulent mass transfer, the density in the jet is the same as in the surrounding medium, see for example
equation (10.25) in Hughes & Brighton (1967). This allows the jet law of motion to be expressed in terms of
the IGM’s density. We identify our jet with a pyramidal section characterised by a solid angle ∆ Ω and overall
length x1. From a practical point of view, α0 (the first opening angle) is reported in the captions. The solid
angle dΩ in spherical coordinates (r, θ, φ) is

dΩ = sin(θ)dθdφ . (33)

On shifting to the finite differences, the following is obtained

∆Ω = (cos(0) − cos(α0
2π

360
))(α0

2π

360
) st , (34)

that when the angles are small becomes

∆Ω ≈ 1

2

(

α02π

360◦

)3

st , (35)

where α0 represents the limit of the integration and is expressed in degrees.
As an example, when α0=10◦, ∆ Ω = 2.65 10−3 st. A plot that depicts the assumed geometry is reported

in Figure 2.
The approximate advancing area of the jet of momentary length x, Aj , will therefore be

Aj ≈ x2∆Ω . (36)

The jet is divided in many slices perpendicular to the direction of motion, each one of thickness ri (the initial
radius); the number of slices, nj , is therefore

nj = NINT (
x1

ri
) , (37)
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Fig. 2. Two-dimensional view of the continuous jet; the physical parameters are the same as the simulation of NGC4061,
see Figure 5.

where NINT denotes the nearest integer. The volume of slice, Vs, is

Vs = x2∆Ωri , (38)

and the mass acquired by a slice from the external medium of density ρ is

∆M = ρ × Vs = ρx2∆Ωri . (39)

The hypothesis of a jet in which ρ is constant is used in the theory of turbulent jets, see Section 2.3. The
equation that represents momentum conservation is:

d

dt
(∆Mẋ) = px2∆Ω , (40)

where p is the pressure. In the case of constant density, equation (40) becomes

d

dt

(

x2ẋ
)

=
px2

ρri
. (41)

The pressure of the internal gas decreases according to the adiabatic law

p = pi(
Vi

V
)5/3 , (42)

where Vi is the volume of the first slice and

pi =
2

3

E/nj

Vi
. (43)

Under the adiabatic hypothesis, the differential equation (41) is transformed in

d

dt

(

x2ẋ
)

= Hx−4/3 , (44)

where

H =
1

ρ
pi

1

r
−7/3
i ∆Ω5/3

, (45)
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and

pi =
2/3 E

x1r2
i

. (46)

To integrate this equation, x2ẋ = Axα is used. After adopting the initial condition of x = 0 at t = 0 and
assuming ρ is constant, the equation representing the third law of motion is obtained

x =

(

13

18

(3α + 4)

α
Ht2

)3/13

, (47)

and since α = 5/6:

x =

(

507

90
Ht2

)3/13

. (48)

The velocity of the jet turns out to be:

v(t) = ẋ =
6

13

x

t
. (49)

The astrophysical quantities can now be introduced

x(t) = 2.541 kpc

(

t7
2E56

3

√

r1

i

x1

1
∆Ω5/3n0

)3/13

, (50)

where E56 =E/1056 ergs, r1
i = ri/1kpc, x1

1 = x1/1kpc, t7 = t/(107) year and ρ = n0 mH with n0 representing
the number of particles in a cubic centimetre and mH the hydrogen mass. A similar formula is deduced for the
velocity

Ṙ = 114.92 km s−1

(

E56
3

√

r1

i

x1

1
∆Ω5/3n0

)3/13

t
−7/13
7 . (51)

In the case of SNR a comparison can be made with the radius R(t) ∝ t2/7 of the adiabatic phase of the SNR,
see for example McCray (1987), and with R(t) ∝ t2/5 of the so-called Sedov solution, see Sedov (1959) and
Landau (1987):

R(t) =
(25

4

E t2

π ρ

)1/5
, (52)

where t represents the time, E is the energy injected in the explosion, and ρ is the density of matter. When
the jets are analyzed a comparison can be made with the solution presented in Kaiser & Alexander (1997). In
their model the density ρx of the gas surrounding the jets scales as

ρx = ρ0(
d

a0
)−β , (53)

where d is the radial distance from the core of the source, ρ0 is the initial density, a0 is the scale length and β
a parameter comprised between 0 and 2. Their length of the jet Lj scales as

Lj ∝ t3/5−β , (54)

and explains the division between FRI and FRII objects in jet power.

4. TWO–PHASE CONTINUOUS MODEL

The starting point is the conservation of the momentum’s flux in a “turbulent jet” as outlined in Landau
(1987, p. 147). The initial point is characterised by the following section:

A0 = π r2
0 . (55)
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Once α0 the first opening angle, x0 the initial position on the x–axis and v0 the initial velocity are introduced,
section A at position x is

A(x) = π
(

r0 + (x − x0 ) tan
[

(1/2)α0

])2
. (56)

The conservation of the total momentum flux states that

ρv2
0A0 = ρv(x)2A(x) , (57)

where v(x) is the velocity at position x. The previous equation is valid if the pressure along the jet is constant
and viscosity effects are either not considered or have the same effect on the whole momentum flux along the
jet. Due to the turbulent transfer, the density ρ is the same on both sides of equation (57). The trajectory of
the jet as a function of time is easily deduced from equation (57)

x = −
−x0 tan

[

(1/2)α0

]

+ r0 −
√

r0
(

r0 + 2 tan
[

(1/2)α0

]

v0 t
)

tan
[

(1/2)α0

] , (58)

and this can be considered the fourth law of motion. The velocity turns out to be

v(t) =
v0 r0

√

r0
(

r0 + 2 tan
[

(1/2)α0

]

v0 t
)

. (59)

In the applications of equation (58) and (59) r0, r, x0 and x will be expressed in kpc, the time t in units of
107 year, v0 and v(x) in kpc/107 year. The velocity v0 can be parametrised as a function of the velocity of
light c as v0 = c

cf
where cf is an input parameter allowed to vary between 1.2 and 10.

It is now possible to introduce the two-phase beam in which, due to a certain physical phenomenon, for
example the evolution of the K-H instabilities, the beam abruptly increases the opening angle, that from
α0 (first opening angle) becomes α1 (second opening angle). This phenomenon happens at a given time t1
(t1 < t2) and a corresponding length x1 (x1 < x2): here t2 denotes the age of the radio-source and x2 its
global length. In this second phase the trajectory is

x = −−x1 tan [(1/2)α1] + r1 −
√

r1 (r1 + 2 tan [(1/2)α1] v1 (t − t1))

tan [(1/2)α1]
, (60)

and the velocity

v(t) =
v1 r1

√

r1 (r1 + 2 tan [(1/2)α1] v1 (t − t1))
. (61)

5. TWO–PHASE RELATIVISTIC MODEL

The starting point is the energy momentum tensor, T ik,

T ik = wuiuk − pgik , (62)

where ui is the 4-velocity, i varies from 0 to 3, w is the enthalpy for unit volume, p is the pressure and gik

the metric of the manifold, see Landau (1987). The condition for momentum conservation in the presence of
velocity, v, along one direction states that

(

w(
v

c
)2

1

1 − v2/c2
+ p

)

A = const , (63)

where A is the considered area in the direction perpendicular to the motion. The enthalpy per unit volume is

w = c2ρ + p , (64)

where ρ is the density, and c the light velocity. The reader may be puzzled by the Γ2 factor in equation (63),
where Γ2 = 1

1 − v2/c2 . However it should be remembered that w is not an enthalpy, but an enthalpy per unit

volume: the extra Γ factor arises from a “length contraction” in the direction of motion.
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With the assumption of turbulent jets, p = 0, the momentum conservation law is obtained

(

ρv2 1

1 − v2/c2

)

A = const . (65)

This equation is equal to equation (A.32), the jet “thrust”, in De Young (2002). Note the similarity between
the previous formula and condition (135.2) in Landau (1987) concerning the shock waves: when A=1 they are
equal.

In two sections of the jet we have:

ρ v0
2π r0

2 1

1 − v0 2/c2
= ρ v2

[(

π r0
2 + π r0 xα0 + O(α0

2)
)] 1

1 − v2/c2
, (66)

where v is the velocity at position x, v0 the velocity at x=0, and α0 the opening angle of the jet. Also here
due to the turbulent transfer, the density ρ is the same on both sides of equation (66) and the following second
degree equation in β = v

c is obtained:

β2r0 + β2xα0 − β2β0
2xα0 − β0

2r0 = 0 (67)

where β0 = v0

c . The positive solution is:

β =

√
r0β0

√

r0 + xα0 − β0
2xα0

. (68)

From equation (68) it is possible to deduce the distance x1/2 after which the velocity is half of the initial value:

x1/2 = −3
r0

α0

(

−1 + β0
2
) . (69)

In FR-II’s radio-galaxies the velocity is thought to be relativistic until termination at hot-spots; equation (69)
states that the typical distance over which the jet is relativistic is a function of the three parameters α0, r0

and β0.
The trajectory of the relativistic jet as a function of the time can be deduced from equation (68) and is

∫ x

0

√

r0 + xα0 − β0
2xα0√

r0β0

dx = ct . (70)

On integrating it is possible to obtain the equation of the trajectory

2/3
r0

3/2 −
(

r0 + xα0 − β0
2xα0

)3/2

α0

(

−1 + β0
2
)√

r0β0

− ct = 0 . (71)

After some manipulation equation (71) becomes

(

−3α0
3β0

2 + 3α0
3β0

4 − β0
6α0

3 + α0
3
)

x3 +
(

3 r0 α0
2 − 6 r0 α0

2β0
2 + 3 r0 β0

4α0
2
)

x2 +
(

−3 r0
2β0

2α0 + 3 r0
2α0

)

x −
9/4 c2t2α0

2r0 β0
6 − 3 r0

2ctα0 β0 + 3 r0
2ctα0 β0

3 −
9/4 c2t2α0

2r0 β0
2 + 9/2 c2t2α0

2r0 β0
4 = 0 . (72)

The parameter p, see Appendix 10.5, that regulates the solutions of the cubic equation is now evaluated. When
equation (72) is considered we have p = 0 and therefore we have one real root that is (the fifth law of motion):

x(t) = −1/2
−2 r0 + 3

√
2 3
√

r0

(

2 r0 + 3 ctα0 β0 − 3 ctα0 β3
0

)2/3

α0

(

−1 + β0
2
) . (73)
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The velocity of the relativistic jet as function of the time is

v(t) =
cβ0

3
√

r0
3
√

2
3

√

2 r0 + 3 ctα0 β0 − 3 ctα0 β3
0

. (74)

The velocity v0 can be parametrised as a function of the parameter β0, a parameter allowed to vary between
0.1 and 0.99999. The two previous equations can be expressed in astrophysical units once r1

0 = r0/1kpc and t7
= t/(107)year are introduced

x(t) = 1/2
2 r1

0 − 3

√

2 3

√

r1
0

(

2 r1

0
+ 9180.0 t7 α β0 − 9180.0 t7 α β0

3
)2/3

α
(

−1 + β0
2
) kpc , (75)

and

v(t) = 299788.2
β0

3

√

r1
0

3

√

2

3

√

2 r1

0
+ 9180.0 t7 α β0 − 9180.0 t7 α β0

3
km s−1 . (76)

The transition from relativistic to classical velocity is still represented by equations (60) and (61) but x1,r1

and v1 are the parameters at the end of the relativistic phase.

6. THE CHANGE OF FRAMEWORK

The wide spectrum of observed morphologies that characterises the head-tail radio galaxies could be due to
the kinematical effects as given by the composition of the velocities in different kinematical frameworks such
as decreasing jet velocity, jet precession, rotation, and proper velocity of the host galaxy in the cluster. These
effects were partially analysed in Zaninetti (1989); here part of the developed theory and symbols will be used,
and will now be briefly reviewed in order to represent the law of motion through a matrix. Of particular interest
is the evaluation of various matrices that will enable us to transform from the inertial coordinate system of the
jet to the coordinate system in which the host galaxy is moving in space. The various coordinate systems will
be x=(x, y, z), x

(1)=(x(1), y(1), z(1)), . . . x
(5)=(x(5), y(5), z(5)). The vector representing the motion of the jet

will be represented by the following 1 × 3 matrix

G =











0

0

L(t)











, (77)

where the jet motion L(t) is considered along the z-axis.
The jet axis, z, is inclined at an angle Ψprec relative to an axis z(1) and therefore the 3×3 matrix, representing

a rotation through the x axis,is given by:

F =











1 0 0

0 cos (Ψprec) sin (Ψprec)

0 − sin (Ψprec) cos (Ψprec)











. (78)

From a practical point of view Ψprec can be derived by measuring the half-opening angle of the maximum of
the sinusoidal oscillations (named wiggles) that characterises the jet.

If the jet is undergoing precession around the z(1) axis, Ωprec can be the angular velocity of precession
expressed in radians per unit time; Ωprec is computed from the radio maps by measuring the number of
sinusoidal oscillations that characterise the jet. The transformation from the coordinates x

(1) fixed in the
frame of the precessing jet to the non-precessing coordinate x

(2) is represented by the 3 × 3 matrix

E =











cos (Ωprec t) sin (Ωprec t) 0

− sin (Ωprec t) cos (Ωprec t) 0

0 0 1











. (79)



©
 C

o
p

yr
ig

ht
 2

00
7:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

MORPHOLOGY OF EXTRAGALACTIC JETS 71

The arbitrary orientation of the precession axis relative to the central galaxy at rest, necessitates a transforma-
tion from the coordinate frame x

(2) to the frame x
(3). The relative orientations are assumed to be characterised

by the Euler angles (Φj ,Θj ,Ψj). There is no uniform agreement on the designation of the Euler angles and the
manner in which they are generated. We have chosen here to use the conventions found in Goldstein, Poole,
& Safko (2002) and the 3 × 3 matrix, DE , is

DE =






cosΨjcosΦj − cosΘjsinΦjsinΨj cosΨjsinΦj + cosΘjcosΦjsinΨj sinΨjsinΘj

−sinΨjcosΦj − cosΘjsinΦjcosΨj −sinΨjsinΦj + cosΘjcosΦjcosΨj cosΨjsinΘj

sinΘjsinΦj −sinΘjcosΦj cosΘj






. (80)

On assuming that Φj = 0◦, Ψj = 0◦ and Θj = 90◦ we have the simple expression

DE =











1 0 0

0 0 1

0 −1 0











. (81)

Another 3 × 3 matrix is introduced which represents the transformation from (x3) to (x4) and is defined
by a rotation through the axis z(3) of an angle ΩGt where ΩG is the angular velocity of the galaxy expressed
in radians/time units; the total angle of rotation of the galaxy being α = ΩG tmax:

C =











cos (ΩG t) sin (ΩG t) 0

− sin (ΩG t) cos (ΩG t) 0

0 0 1











. (82)

In the astrophysical applications ΩG = 0 because the rotation period of a typical elliptical galaxy is less than
the lifetime of a typical radio source; only in the case of NGC326 ΩG 6= 0, see discussion in Section 7.3.

The last translation represents the change of framework from (x(4)), which is co-moving with the host galaxy,
to a system (x(5)) in comparison to which the host galaxy is in uniform motion. It should be remembered
that the velocity dispersion in the cluster (not to be confused with the recession velocity) is ≈ 600 km s−1, see
Table 1 in Venkatesan et al. (1994). The relative motion of the origin of the coordinate system (x(4), y(4), z(4)) is
defined by the Cartesian components of the galactic velocity vG, and the required 1× 3 matrix transformation
representing this translation is:

B =











v x

v y

v z t











. (83)

On assuming, for the sake of simplicity, that vy=0 and vx=0, the translation matrix becomes:

B =











0

0

v z t











. (84)

In other words, the direction of the galaxy motion in the IGM and the direction of the jet are perpendicular.
From a practical point of view the galaxy velocity can be measured by dividing the length of the radio galaxy
in a direction perpendicular to the initial jet velocity by the lifetime of the radio source; an example of such
measurement is reported in Section 8.2.
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TABLE 2

THE DATA FROM THE RADIO MAP OF NGC1265

Lrad[ergs/sec] mean spread rate [degree]

1.1 × 1040 10

Fig. 3. Continuous three-dimensional trajectory of NGC1265: the three Eulerian angles (English notation) characteris-
ing the point of view are Φ=80◦, Θ=80◦ and Ψ=10◦. The precession is characterised by the angle Ψprec=2◦ and by the
angular velocity Ωprec=54.00[◦/107year]. The three Eulerian angles are: Φj=0◦, Ψj=0◦ and Θj=90◦. The angle of rota-
tion of the galaxy is αG=0◦. The physical parameters characterising the jet motion are: E56=0.02, t1=10.00×107year,
n0=0.01 particles/cm3, x1=18.00 kpc, ri=0.90 kpc, α0=10◦.

The final 1×3 matrix A representing the “motion law” can be found by composing the six matrices already
described

A = B + (C · DE · E · F · G)

A =











(cos (ΩG t) sin (Ωprec t) sin (Ψprec) + sin (ΩG t) cos (Ψprec))L(t)

(− sin (ΩG t) sin (Ωprec t) sin (Ψprec) + cos (Ω galaxy t) cos (Ψprec))L(t)

v z t − sin (Ψprec) cos (Ωprec t)L(t)











. (85)

The three components of the previous 1× 3 matrix A represent the jet motion along the Cartesian coordinates
as given by the observer that sees the galaxy moving in uniform motion.

7. APPLICATION OF THE CONTINUOUS MODEL

The continuous beam model developed in Section 3 is basically represented by equations (50) and (51) and
can be easily implemented in a code; this is now applied to various radio–sources.

An attempt to reproduce the mechanical power dependence in the jet trajectory is carried out in Section 7.5.



©
 C

o
p

yr
ig

ht
 2

00
7:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

MORPHOLOGY OF EXTRAGALACTIC JETS 73

TABLE 3

THE PHYSICAL PARAMETERS AS OUTPUT OF THE SIMULATION ON NGC1265

x1 [kpc] vz [km s−1] ∆z [kpc]

18.7 84.55 10.3

Fig. 4. Figure 1 of Odea & Owen (1986) representing NGC1265 at 4873 MHz superimposed on the theoretical trajectory
represented by Figure 3.

TABLE 4

THE DATA FROM THE RADIO MAP OF NGC4061

Lrad[ergs/sec] mean spread rate [degree]

0.06 × 1040 10

7.1. The first part of NGC1265

The first target chosen for our simulation was the radio source NGC1265 at 6 cm. Some basic input
parameters extracted from Odea & Owen (1986) are reported in Table 2.

The result of the simulation is reported in Figure 3 and in Figure 4 with the radio map superimposed on
the simulation; the adopted input parameters are given in the caption.

The output data as obtained from the code concerning the overall jet length, the perpendicular-displacement,
and the galaxy velocity of NGC1265 are reported in Table 3.

7.2. The first part of NGC4061

We have chosen the radio source NGC4061 at 21 cm, see Figure 5b in Venkatesan et al. (1994) for a
radio map; the basic data as extracted from the radio observations are reported in Table 4. The result of the
simulation is visualised in Figure 5 and in Figure 6 with the radio map superimposed on the simulation; the
caption of the Figure shows the adopted input parameters while the output data are reported in Table 5.

In this case we know that the velocity dispersion in the cluster is 485 km s−1, see Table 1 in Venkatesan
et al. (1994).
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Fig. 5. Continuous three-dimensional trajectory of NGC4061: the three Eulerian angles (English notation) characterising
the point of view are Φ=100◦, Θ = −85◦ and Ψ = −10◦. The precession is characterised by the angle Ψprec = 5◦ and
by the angular velocity Ωprec = 60.00[◦/107year]. The three Eulerian angles are: Φj=0◦,Ψj=0◦ and Θj=90◦. The
angle of rotation of the galaxy is αG=0◦. The physical parameters characterising the jet motion are: E56=0.02,
t1=12.00×107year, n0=0.01 particles/cm3, x1=20.00 kpc, ri=1.00 kpc, α0=10◦.

Fig. 6. Figure 5b of Venkatesan et al. (1994) representing NGC4061 at 21 cm superimposed on the theoretical trajectory
represented by Figure 5.

The velocity vz in our model is 119.08 km s−1 implying an angle of ≈ 14.2◦ between the direction of the
galaxy motion and the initial direction of the jet. A typical plot of the jet velocity as a function of the time is
reported in Figure 7.
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TABLE 5

THE PHYSICAL PARAMETERS OUTPUT OF THE SIMULATION ON NGC4061

x1 [kpc] vz [km s−1] ∆z [kpc]

20.9 78.65 14.6

Fig. 7. The numerical relationship between velocity and t1 in NGC4061. Parameters as in Figure 5.

7.3. The first part of NGC326

Another test of our code is the radio galaxy NGC326; in particular we refer to the image at 1.4GHz as given
in Figure 6 (bottom panel) of Murgia et al. (2001): the basic input data as deduced from the radio map are
reported in Table 6.

In this case, the optical observations with HST reveal two cores, one coincident with the origin of the radio
galaxy, and the other at the projected distance of 4.8 kpc. In this case, it is assumed that the rotation of the
host galaxy is due to gravitational interaction, the total angle of rotation being αG=90◦. Figure 8 reports on
the obtained simulation and Figure 9 reports the radio map superimposed on the simulation; Table 7 gives the
output data from the simulation.

7.4. A sample of WAT

A sample of 7 radio–galaxies has already been presented in Section 2.2.1 and is now considered as a test
of the theory developed in Section 3. A first look at the radio–maps shows a nearly constant opening angle of
≈ 5◦. On assuming that a constant ratio E/x1 = E56/1kpc = 10−3 characterises the motion, the terminal
velocity v1 and the age of the jets, t1, see Table 8, can easily be found through an iterative procedure; the length
of the jet being provided in Table 7 of Hardcastle & Sakelliou (2004). From Table 8 the terminal velocities
can be compared with the central galaxy velocity dispersion in the cluster.

Most of the jets here considered are distinctly one sided over the length modelled, and this fact is here
justified by the flip-flop mechanism rather than assuming that they are relativistic over the whole length.

7.5. Power transition

The morphological transition between FR–I and FR–II objects can be explained under the assumption of
constant power P , i.e. negligible synchrotron losses. Equation (50) can be modified by inserting the total power
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Fig. 8. Continuous three-dimensional trajectory of NGC326: the three Eulerian angles (English notation) characterising
the point of view are Φ=110◦, Θ=65◦ and Ψ=-40◦. The precession is characterised by the angle Ψprec=2◦ and by
the angular velocity Ωprec= 51.43 [◦/107year]. The three Eulerian angles are: Φj=0◦, Ψj=0◦ and Θj=90◦. The
angle of rotation of the galaxy is αG=-90◦. The physical parameters characterising the jet motion are: E56=0.03,
t1=14.00×107 year, n0=0.01 particles/cm3, x1=30.00 kpc, ri=1.50 kpc, α0 = 6◦.

TABLE 6

THE DATA FROM THE RADIO MAP OF NGC326

Lrad[ergs/sec] mean spread rate [degree]

0.5 × 1040 6.45

P = E/t and typical parameters of the jet previously adopted such as α0 = 5◦ and n0= 0.001 particles/cm3:

x(t7) = 36.78 kpc

(

t7
3P33

3
√

ri

L1

)3/13

, (86)

where P33 = P/1033 Watt. Only the velocity of the host galaxy in the direction perpendicular to that of the
jet is here considered

y(t7) = 4.05kpc t7 v400 , (87)

where v400 = v[km s−1]/400. When a comparison of equation (86) and (87) is made, it is clear that an increase
in the mechanical power of the galaxy corresponds to an increase in the elongation along x of the phenomena.
A typical plot that tentatively reproduces the power transition is reported in Figure 10.

There are many ‘straight’ FR-I’s, NGC315 is a good example. This can happen when the galaxy’s velocity
is lower than the standard value here adopted of 400 km s−1 or from a particular point of view of the observer.

8. APPLICATION OF THE TWO–PHASE BEAM

The two-phase beam developed in Sections 4 and 5 is now applied to two radio-sources: in one, Cygnus A,
the relativistic-classic transition is applied and in the other, 0647+693, the classic-classic transition.
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Fig. 9. Figure 6 (bottom panel) of Murgia et al. (2001) superimposed on the theoretical trajectory represented by
Figure 8.

TABLE 7

THE PHYSICAL PARAMETERS OUTPUT OF THE SIMULATION ON NGC326

x1 [kpc] vz [km s−1] ∆z [kpc]

30.6 98.71 16.8

8.1. Relativistic Cygnus A

A good introduction to the classical double radio sources, as well as to Cygnus A, can be found in chapter 6
of De Young (2002). The main physical parameters characterising the jet in Cygnus A, as presented in Perley,
Dreher, & Cowan (1984b), are summarised in Table 9; here xobs

1 is the distance between nucleus and hot-spots,
αobs

0 is the first opening angle (measured on the radio map) and tobs
age, the age of the radio–galaxy, as deduced

on the basis of the spectral steepening of the lobe emission.
Once the t2 = tobs

age is inserted in the code, the other input parameters are varied in order to obtain x1 ≈ xobs
1 ;

this is obtained by solving numerically the integral equation (73). The results of the simulation (as outlined
in Section 5) are reported in Figure 11 and in Figure 12 with the radio map superimposed on the simulation;
Table 10 reports the data.

8.2. Classic 0647+693

A radio–map of 0647+693 in the 8.5 GHz band can be found in Hardcastle & Sakelliou (2004) where two
radio-images were traced at the resolution of 0.3 × 0.6 arcsec and 2 arcsec. The influence of the motion of the
host galaxy is evident from the maps and can be visualised in the following way:

• A line is traced between the two hot-spots.

• The perpendicular to the previous line that intersects the nucleus is traced. The distance along the
perpendicular to the previous line turns out to be ≈ 36.8 kpc.

From Figure 1 of Hardcastle & Sakelliou (2004) it is also possible to measure the second opening angle, α1

that turns out to be ≈ 25◦ .
The results of the simulation (as outlined in Section 4) are reported in Figure 13 (red points) and in

Figure 14, with the radio map superimposed on the simulation; Table 11 reports the data.
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TABLE 8

THE SEVEN WAT1

Radio name x1 [kpc] v1 [km s−1] t1 [107year]

0647+693 81 113 32

1231+674 35 263 6.0

1333+412 20 461 1.95

1433+674 49 188 11

2236−176 44 209 9.5

3C465 28 329 3.8

1610−608 13 708 0.82
1α0 = 5◦, ri [kpc] = x1 [kpc]/100, n0 = 10−3 particles/cm3

and E56/1 kpc = 10−3.

Fig. 10. Three jet trajectories as a function of the power. P33=100 (dot-dash line), P33=1 (dashed line) and P33=0.01
(solid line). The other parameters in common to the three trajectories are α0 = 5◦, n0=0.001 particles/cm3, L1=60,
ri=L1/20, t7=5.0 and v400=1. The three Eulerian angles are: Φj=0◦, Ψj=0◦ and Θj=90◦. The three Eulerian angles
(English notation) characterising the point of view are Φ=90◦, Θ=90◦ and Ψ=0◦.

In order to reproduce the long trails of 0647+693 visible in Figure 1 of Hardcastle & Sakelliou (2004), the
simulation is now performed at a value of t1 which is larger by factor of four with respect to the previous run,
see Figure 13 (green points) and Figure 15, where the radio map is superimposed on the simulation.

9. THE KELVIN-HELMHOLTZ INSTABILITIES

The very small opening angles of observed extra-galactic radio–jets, if interpreted as free expansion, in
many cases imply a Mach number M > 6 and existing theories are briefly reviewed. Some basic questions can
be posed on the stability of such highly supersonic jets:

• Is the jet unstable against perturbations with a wavelength smaller than the radius?

• Is the jet stable over long distances?

• If the jet is unstable, how does the distance over which an instability grows by a factor of e depend upon
M and the density contrast between the jet and the external medium?
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TABLE 9

THE OBSERVED DATA ON CYGNUS A

xobs
1 [kpc] αobs

0 [◦] tobs
age [107year]

60 5 0.6

Fig. 11. Projected 3D trajectory of Cygnus A: the three Eulerian angles (English notation) characterising the point of
view are Φ=90◦, Θ=0◦ and Ψ=-20◦. The precession is characterised by the angle Ψprec=1◦ and by the angular velocity
Ωprec=600.00 [◦/107 year]. The three Eulerian angles are: Φj=0◦, Ψj=0◦ and Θj=90◦. Parameters of the two-phase
continuous model: x0=0.0 kpc, r0=0.02 kpc, β0=0.8, t2=0.6×107 year, t1= 0.161×107 year, α0=5◦ and α1=35◦.

• Are the helical instabilities with an azimuthal number m=1 and the pinch instabilities, m=0, enough to
build a theory on the lateral growth of the jet due to an increase of energy in the perturbations?

In order to study these questions, we must analyse the Kelvin-Helmholtz instability of an axisymmetric
flow along the z-axis when the wavelengths λ = 2π

k (k is the wave-vector) are smaller or greater than the jet
radius a, which is taken to be independent of the position along the jet. The velocity, U0, is assumed to be
rectangular. The internal (external) fluid density is represented by ρ0i (ρ0e), the internal sound velocity is s
and ν0=

ρ0i

ρ0e
. The analysis is therefore split in two parts.

9.1. Small wavelengths

If the growth rate of the envelope of the reflecting modes is analysed, it is possible to deduce the following
approximate relationship for the imaginary (γKH) and real (ωr) part of the perturbations when M > 1

γKH = γad
s

a
(88)

with

γad ≈ 0.17(ln(kaM))1.21(
2

ν0 + 1/ν0
)0.06(ka)0.7 , (89)

and

ωr ≈ M

2
ν0.21
0 ka

s

a
. (90)

More details can be found in Zaninetti (1986).
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Fig. 12. Cygnus from the NRAO Image Gallery (white) superimposed on the theoretical trajectory represented by
Figure 11 (black).

TABLE 10

THE PHYSICAL PARAMETERS OUTPUT OF THE SIMULATION ON CYGNUS A

Physical quantity\index 0 1 2

x [kpc],distance 0.0 60.01 106.18

r [kpc],radius 0.02 5.25 19.81

v [km s−1],velocity 240000 24577 6518

t [107year],time 0 0.161 0.6

9.2. Large wavelengths

Starting from the equations of motion and continuity, and assuming both fluids to be adiabatically com-
pressible, it is possible to derive and to solve the dispersion relation numerically, see Zaninetti (1987).

We then start from observable quantities that can be measured on radio-maps such as the total length Lobs,
the wavelength λ1

obs of the wiggles (m=1) along the jet, the distance λ0
obs (m=0) between knots, and the final

offset ∆Lobs of the center of the jet.
These observable quantities are identified with the following theoretical variables:

λ1
max = λ1

obs , (91)

λ0
max = λ0

obs , (92)

A0 exp
( 2Lobs

Mtada
) = ∆Lobs , (93)

nle = Lobs , (94)

where tad = tmin · si/a and A0 is the amplitude of the perturbed energy. The result is a theoretical expression
for tmin, the minimum time scale of the instability, λmax, the wavelength connected with the most unstable
mode and le, the distance over which the most unstable mode grows by a factor e, see Zaninetti (1987). These
parameters can then be found through the set of nonlinear equations previously reported. By choosing three
objects, M87 (Owen, Hardee, & Bignell 1980), NGC6251 (see Perley, Bridle, & Willis 1984) and NGC1265 (see
Odea & Owen 1986) the observational parameters can be measured on the radio image, see Table 12.

The four nonlinear equations are then solved and the four theoretical parameters are found, see Table 13.
An application of the results here obtained is reported in Figure 16 where the wavelength of the pinch

modes (m = 0) and the oscillations of the helical mode (m = 1) as reported in Table 13 are simulated by
identifying the lateral growth of energy with the precession. Figure 17 reports the radio map superimposed on
the simulation of the pinch modes.
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Fig. 13. Projected 3D trajectory of 0647+693 (red points): the three Eulerian angles (English notation) characterising
the point of view are Φ=10◦, Θ=80◦ and Ψ=-10◦. The precession is characterised by the angle Ψprec=5◦ and by the
angular velocity Ωprec= 22.50 [◦/107 year]. The three Eulerian angles are: Φj = 0◦, Ψj = 0◦ and Thetaj=90◦. Parame-
ters of the two–phase continuous model: x0=0.0001 kpc, r0=0.0600 kpc, cf=5.0, t2=8.00×107 year, t1= 4.00×107 year,
α0 = 5◦ and α1 = 25◦. The green points represents the same trajectory after t2=32.00×107 year.

Fig. 14. Figure 2 of Hardcastle & Sakelliou (2004) superimposed on the theoretical trajectory represented by Figure 13
(red points).
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TABLE 11

THE PHYSICAL PARAMETERS OUTPUT OF THE SIMULATION ON 0647+693

Physical quantity\position 0 1 2

x [kpc],distance 0.0001 80.7 104.4

r [kpc],radius 0.060 3.6 8.8

v [km s−1],velocity 60000.0 1004.7 407.6

t [107 year],time 0 4.0 8.0

Fig. 15. Figure 1 of Hardcastle & Sakelliou (2004) superimposed on the theoretical trajectory represented by Figure 13
(green points).

10. SUMMARY

10.1. New Physics

The concept of deceleration is both an explanation of observed properties of a sample of radio-galaxies,
see Laing et al. (1999), as well as a working hypothesis to explain the deceleration of a relativistic jet of
electrons and positron pairs by mass injection, see Laing & Bridle (2002b), or by adiabatic models that require
coupling between the variations of velocity, magnetic field and particle density, see Laing & Bridle (2002b).

Here two new laws of motion for extra-galactic jets in the presence of laminar flow are derived, equation (5)
and equation (13), once the two canonical laws of resistance are introduced.

The introduction of momentum conservation along a solid angle that characterises the extra-galactic jet
allows us to find:

• An analytical law, equation (47), for the velocity and length of the jet as a function of the other structural
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TABLE 12

PARAMETERS OF THE OBSERVED OSCILLATIONS IN RADIO–GALAXIES
EXPRESSED IN AVERAGED RADIUS UNITS

Geometrical misuration M87 NGC6251 NGC1265

Lobs [averaged radius units] 48 58.75 20

λ0
obs[averaged radius units] 4.0 4.89 4

λ1
obs[averaged radius units] 19.2 17.5 13.3

∆Lobs [averaged radius units] 0.96 5.87 2

TABLE 13

THEORETICAL PARAMETERS FROM OSCILLATIONS DEDUCED
FROM THE FOUR NONLINEAR EQUATIONS

Theoretical variable M87 NGC6251 NGC1265

n 2.75 2.88 1.1

M 17.28 19.44 17.93

ν0 9.61 28.05 9.4

A0 5.57 10−3 8.2 10−3 0.25

parameters, which are: the involved linear density of energy, the initial radius, the elapsed time and the
solid angle. This is the third law of motion.

• An analytical law for the velocity if conversely the conservation of the momentum flux in a turbulent jet
is assumed, equation (58). This is the fourth law of motion.

• An integral equation (73) of motion if the conservation of the relativistic momentum flux in a turbulent
jet is assumed. This is the fifth law of motion.

The new equation (20) connects the turbulent eddy viscosity with the jet’s opening angle.

10.2. Morphological Results

The introduction of the law of motion allows us to find a space trajectory on introducing the jet precession,
the velocity and rotation of the galaxy, and the inclination of the jet with respect to the plane of the galaxy.

It can therefore be suggested that the hydrodynamical effects necessary to bend the jet (see for example
Section 4.4.5 of De Young 2002, or the discussion in Odea 1985) can also be explained as an artifact of a change
in the system of reference combined with precession effects of the jet, as well as decreasing jet velocity. From
an observational point of view it is not easy to discriminate between the bending of the radio-galaxy due to the
dynamic pressure, see equation (A35) in De Young (2002) and the bending due to the decreasing jet velocity.
Both models require a virial speed of the host galaxy ≈ 1000 km s−1 and differ only in the requirement for
the jet velocity which is constant in the traditional approach and variable in the models here adopted. This
dilemma will be solved when measurements of the jet velocity independent from the radio-models become
available. The spectroscopic observations for radio galaxies having ultra steep radio spectra, for example, show
velocity shifts ranging from 100 to almost 1000 km s−1, see Roettgering et al. (1997).

10.3. Other approaches

In FR-I jets, which are thought to decelerate, the profile of this deceleration appears in other models that
are now briefly reviewed:
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Fig. 16. Parameters as in Figure 3, but with superimposition of the pinch mode (m = 0).

• In Bowman, Leahy, & Komissarov (1996) a detailed study of the dynamical effects of entraining cool
(thermally sub-relativistic) material into hot (thermally relativistic) jets is presented. The dissipation
associated with entrainment causes only a modest loss of kinetic energy flux, and it is shown that relativistic
jets are affected much less by dissipation than are classical flows. Their equation (41) represents the flux of
kinetic energy, but no analytical results are given for the relativistic law of motion such as our equation (73).

• In Laing & Bridle (2002a) the conservation of particles, energy and momentum is applied in order to
derive the variations of pressure and density along the jets of the low-luminosity radio galaxy 3C 31.
Their self-consistent solutions for deceleration by injection of thermal matter can be compared with our
equation (47).

• In Canvin & Laing (2004) some functional forms are introduced to describe the geometry, velocity, emis-
sivity and magnetic-field structure of the two low-luminosity radio galaxies B2 0326+39 and B2 1553+24
and an accurate comparison between models and data is presented. Their solutions are purely numerical
and analytical solutions such as our formula (73) are absent.

10.4. Analytical results and hydrodynamical codes

A comparison with the hydrodynamical codes is tentatively made on the following key-points:

• The hydrodynamical codes are usually performed with a family of parameters given by Mb, which is the
beam Mach number, while ρb is the inside/outside density contrast and t is the time over which the
phenomenon is followed. Due to the fact that the hydrodynamical codes do not give the possibility of
closing the equations with parameters deduced from the observations, many figures should be produced
in order to find the one that better approximates the radiosource chosen to be simulated, see for exam-
ple Norman (1996) and Balsara & Norman (1992). Conversely, the analytical approach developed here, see
equations (5), (13), (50) and (51), gives position and velocity once a few input parameters are provided.



©
 C

o
p

yr
ig

ht
 2

00
7:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

MORPHOLOGY OF EXTRAGALACTIC JETS 85

Fig. 17. Figure 1 of Odea & Owen (1986) representing NG1265 at 4873 MHz superimposed on the pinch mode represented
by Figure 16.

• The treatment here adopted cannot follow the nonlinear development of the K-H instabilities in 3D, see
for example Hardee, Clarke, & Howell (1995) where the simulation was performed at Mb=5; but despite
this inconvenience, the concept of developed turbulence with its consequent constant density along the jet
is widely used, see Section 3 and Section 4.

10.5. Average density

Here we have assumed that the density of the jet is constant and equal to its surrounding medium. This is
certainly something that is not necessarily the case for many astrophysical jets. Some properties can be deduced
about the medium surrounding the elliptical galaxies from the X-ray surface brightness distribution. Assuming
that the gas is isothermal, the following empirical law (Fabbiano 1989) is used for the electron density:

ne(r) = ne(0)
[

1 + (
r

ax
)2
]

−3β/2

, (95)

here β ∼ 0.4 − 0.6, ne(0) ∼ 0.1 cm−3 and ax ∼ 1 − 3 kpc. On adopting this radial dependence for proton
density we can evaluate the average density when ne(0) = 0.1 cm−3, ax = 2.0 kpc and β = 0.4. The average
value of n0, n0, when evaluated over 10000 points in the interval 0-100 kpc is n0 = 6.74 10−3 cm−3. This is
the theoretical value of n0 that should be used, for example, in equation (50).

APPENDIX A

The roots of a cubic

To solve the cubic polynomial equation

a0x
3 + a1x

2 + a2x + a3 = 0 , (96)

for x, the first step is to apply the transformation

x = y − 1/3
a1

a0
. (97)

This reduces the equation to
y3 + py + q = 0 , (98)
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where

p =
1

3

3 a2a0 − a1
2

a0
2

q =
1

27

27 a3a0
2 + 2 a1

3 − 9 a2a1a0

a0
3

.

The next step is to compute the first derivative of the left hand side of equation (98) calling it f(y)′

f(y)′ = 3y2 + p . (99)

In the case in which p ≥ 0, in the range of existence −∞ < y < ∞, the first derivative is always positive and
equation (98) has only one root that is real, more precisely,

y = 1/6
3

√

−108 q + 12
√

12 p3 + 81 q2 − 2
p

3

√

−108 q + 12
√

12 p3 + 81 q2

, (100)

or equation (96) has the solution in terms of a0,a1,a2 and a3

1/6
3

√

√

√

√−36
3 a2a0 − a1

2

a0
2

+ 12

√

4/9
(3 a2a0 − a1

2)
3

a0
6

+ 9
(3 a2a0 − a1

2)
2

a0
4

−2/3
(

3 a2a0 − a1
2
)

a0
−2 1

3

√

−36 3 a2a0−a1
2

a0
2 + 12

√

4/9 (3 a2a0−a1
2)3

a0
6 + 9 (3 a2a0−a1

2)2

a0
4

. (101)

(102)
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Torino, Italy (zaninetti@ph.unito.it).


