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RESUMEN

En este art́ıculo se estudia la formación de un disco, que resulta del colapso
de una nube rotando ŕıgidamente. El plano perpendicular al eje de la velocidad
angular que contiene a la estrella es la superficie donde el material que cae de
ambos lados se encuentra, formando aśı una estructura de choque de dos capas. El
material chocado se mueve casi paralelo a este plano, siendo éste el material que
forma el disco. Desarrollamos una simulación axi-simétrica e isoterma usando como
condición inicial una aproximación baĺıstica para las trajectorias de las part́ıculas
localizadas en la vecindad de la estrella. La evolución dinámica de este material,
incluyendo el material que continuamente se incorpora de la nube, lleva al disco a
una configuración estacionaria que consta de dos anillos densos de momento angular
espećıfico constante que se encuentran en una posición kepleriana. Un rasgo como
éste puede cambiar el espectro de estos discos en etapas muy embebidas.

ABSTRACT

In this paper, the formation of a disk resulting from the collapse of a rigidly-
rotating cloud is studied. The plane perpendicular to the angular velocity axis
that contains the star is the locus where materials falling from both sides face each
other with the consequent formation of a double layer shock structure. The shocked
material that moves almost parallel to this plane is the material that forms the disk.
A hydrodynamical axisymmetric and isothermal simulation is developed using as
initial condition a ballistic approximation for the trajectories of the particles located
in the vicinity of the star. The dynamical evolution of this material, including
the material that is continuously incorporated from the cloud, drives the disk to a
stationary configuration composed of two dense rings with constant specific angular
momentum that sit on Keplerian positions. A feature like this can change the
spectra of disks in deeply embedded stages.
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1. INTRODUCTION

One of the main topics in interstellar studies is
the formation of a star from material of a molecu-
lar cloud. Another result of this process is the for-
mation of a rotating disk around the stellar system.
This part of the phenomenon is a natural outcome
of the collapse of a cloud with angular momentum
(Shu, Adams, & Lizano 1987). Observationally, the
presence of a disk is by now accepted for many ob-
jects (Padgett, Stapelfeldt, & Sargent 2000; Hayashi,

Ohashi, & Miyama 1993; Strom, Edwards, & Skrut-
skie 1993; Mundy, Looney, & Welch 2000), owing
to the information of infrared and millimeter wave-
lengths that trace dust or molecular gas in the vicin-
ity of the star. The natural state of the disk is that in
which its material is moving in circular orbits around
the star with Keplerian velocity, slowly accreting to-
wards the star via viscosity dissipation (Lynden-Bell
& Pringle 1974), working on a slower time scale than
the free-fall time of the collapse of the cloud (Tschar-
nuter & Boss 1993) to form the star-disk system.
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258 NAGEL

The lack of information on the early stages of disk
formation is surmounted with collapse calculations
using numerical codes (Larson 1972; Hueso & Guil-
lot 2002, 2005; Tscharnuter & Boss 1993; Shu et al.
1987) or with the semi-analytic description of the in-
fall from a cloud with angular momentum (Terebey,
Shu, & Cassen 1984). The description of the forma-
tion of a disk requires a solution that is valid near the
star which asymptotically joins the similarity solu-
tion given in Terebey et al. (1984). A disk will form
from the collapse of a cloud with some rotation, a
problem which was solved by Terebey et al. (1984).
They solve the collapse in an intermediate zone be-
tween a marginally stable configuration far from the
star and the innermost part of the cloud where rota-
tion becomes essential for describing the kinematics.
The inner solution was developed by Ulrich (1976)
and Cassen & Moosman (1981) and due to super-
sonic velocities, pressure effects can be neglected so
that two-body solutions (Cassen & Moosman 1981;
Ulrich 1976) correctly represent the trajectories of
the particles that are falling from a rigidly rotating
cloud. This solution for material that falls into a
disk was used by Lin & Pringle (1990) and recom-
mended in Stahler et al. (1994) as a natural initial
condition for simulations addressing the problem of
disk formation and evolution. The main assump-
tion required to use the solution described in Ulrich
(1976) is that the mass of the star rules over the
mass in a disk, or over the material in the falling
envelope; besides it is not relevant in which stage of
the evolution the system is. An essential difficulty
in numerical studies of the collapse of a cloud is that
the range in density spans several orders of magni-
tude (Bate 2000), and if one also wants to study
the dynamical details of the evolution in the inner
part of the cloud on small time-scales, the problem
demands a titanic effort. Thus, some kind of approx-
imation is always required, such as using the density
and velocity field in Ulrich (1976). However, the ar-
guments and papers referred to above are enough to
allow these expressions to be taken as initial condi-
tions in the hydrodynamical simulation described in
§ 4.

In this paper we are interested in the formation
and early evolution of a disk. Formation means
the stage where material falls from the cloud to
the plane perpendicular to the angular momentum
vector which contains the star, and early evolution
means the description of the motion of the material
that arrives to this plane at some time and moves
parallel to it. As long as we have a thin proto-disk,
at least an order of magnitude less massive than the

star, and material is still falling from the cloud, then
at this particular time, early evolution can be de-
scribed. The angular velocity axis defines a symme-
try plane called orbital plane, which is perpendicular
to this axis and contains the star. Thus, a collapse
of a cloud naturally produces shocks almost parallel
to this plane (Yorke & Bodenheimer 1999; Laughlin
& Bodenheimer 1994; Cassen & Moosman 1981; Bo-
denheimer & Laughlin 1995), above and below the
disk that is forming.

In previous works a detailed study of this stage is
missing (Nakamoto & Nakagawa 1994; Lin & Pringle
1990; Cassen & Moosman 1981), because of the de-
mand that the material falling from the cloud to the
disk would quickly dissipate energy and the radial
component of its velocity would smoothly incorpo-
rate to a Keplerian disk with the help of strong tur-
bulent interactions in the post-shock region. The en-
ergy resulting from dissipation of the velocity compo-
nent perpendicular to the orbital plane has an easy
explanation using a symmetry argument; however,
the vanishing radial velocity is a fact that one can
expect, because circular orbits are the obvious con-
figuration, but requires a more detailed study, like
the one carried out here. Stahler et al. (1994) tell
us more about this early stage by solving the invis-
cid and pressure-free fluid equations on the orbital
plane with a term that represents the contribution
from the material that falls from the cloud with the
solution given by Cassen & Moosman (1981). Using
typical quantities, the partial time derivatives can
be neglected, ending up with a steady state solution
as a good approximation. This estimation allows us
to describe the system as quasi-statically evolving
from one steady state to another, where the mass of
the star continuously increases. In the same way, in
Nagel (2007) a similar argument is presented to ar-
gue that the pattern in the disk can survive a certain
time until eventually it is destroyed by gravitational
instabilities. Interesting enough is the formation of
a dense ring, a feature always present in the disk
description of Stahler et al. (1994), and also in our
hydrodynamical simulation.

The existence of dense structures inside a disk
is relevant to the study of the formation of planets
or companion stars. Many cloud collapse simula-
tions (Tohline 1980; Pickett, Mej́ıa, & Durisen 2003;
Boss 1980; Larson 1972; Black & Bodenheimer 1976;
Bodenheimer & Tscharnuter 1979) have as an out-
come the formation of rings. The idea behind this
process (for details see Tohline 1980) is that certain
configurations allow the existence of a zone where
positive forces (centrifugal, pressure...) can compete
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with net gravitational forces, which in a collapse situ-
ation always point in the negative direction, towards
the center of mass.

At a certain location inside this region, positive
and negative forces cancel each other. During some
span of time, after the fulfillment of the last situa-
tion, some material moves in the opposite direction,
sweeping particles on its way out and getting denser,
to become a well-defined structure.

Gravitational instabilities are recognized as a ma-
jor cause of outward transport of angular momentum
with the corresponding accretion of mass towards the
star. Also Shu, Najita, & Ostriker (1994) speculate
that these instabilities self-regulate the amount of
mass in the disk during the stage of infall of ma-
terial from the cloud to the disk. In other words,
massive disks easily develop instabilities that trans-
port mass to the star until the disk is well below a
threshold mass. This kind of instability is observed
in numerical simulations (Bodenheimer & Laughlin
1995; Yorke & Bodenheimer 1999; Nakamoto & Nak-
agawa 1994; Boss 1998) of a rotating disk and is
studied analytically in Hunter (1963), clearly iden-
tifying an infinite number of axisymmetric and non-
axisymmetric modes in which a disk is unstable. Of
course, the details depend on the density and an-
gular velocity profile along the disk. Any of these
instabilities could be responsible for the destruction
of axisymmetric structures like rings; its relevance
to the problem at hand is beyond the scope of this
paper.

The aim of this paper is to fill a part of the gap
existing in the study of the very early stage of disk
formation. Most of the time, the disk exists in a state
of non-accretion from the cloud (Shu et al. 1994), so
observations will commonly show an evolved disk, es-
tablished in a Keplerian configuration, such as that
Mundy et al. (2000) use to describe their observa-
tions. However, in this paper we want to stress that
it is natural to think of other stationary disk con-
figurations to compare with observations. It is diffi-
cult to think that these dense features can be found
in non-embedded sources, where the disk has had
enough time to evolve; however, Piétu, Guilloteau,
& Dutrey (2005) observed the surroundings of AB
Auriga, and found non-Keplerian motion that they
say could be produced in an early stage of star forma-
tion. A centrally peaked spiral-like feature appears,
which cannot be explained in a traditional Keplerian
T Tauri disk, so the work of Piétu et al. (2005) found
a fine example of a system that apparently requires
mechanisms in previous stages which can form dense
structures. We do not intend to impose any kind of

assumption on the final configuration of the disk, but
allow it to find its way to a stationary configuration.
The basic idea of this work is to initially impose the
density and velocity field given in Ulrich (1976) on
the collapsing envelope around the star, allowing a
shock in the orbital plane to naturally form a disk,
and to follow this system until it comes to a station-
ary state.

This paper is organized as follows. § 2 gives a
detailed explanation of the problem at hand and of
all the ingredients its solution requires. § 3 gives
an analytic solution which allows us to describe the
evolution of a non-interacting ring of material in the
disk, as a function of angular momentum. The main
result is presented in § 4, where we describe an ax-
isymmetric 2D hydrodynamical simulation, using as
initial condition the density and velocity field given
in Ulrich (1976). Nagel (2007) gives a detailed ex-
planation of the arguments in favor of the viabil-
ity of this specific configuration using the fact that
the stationary configuration is reached in a relatively
short time as compared with the lifetime of the in-
fall stage. Nagel (2007) presents the results of a
Lagrangian simulation, that, with several assump-
tions, addresses the dynamic problem in the orbital
plane, in a quest to understand the involved physics
by means of a simple model. § 5 is a summary of our
study, while the conclusions are given in § 6.

2. GENERAL DESCRIPTION OF THE
PROBLEM

The two parts into which we divide the system
are the central star and the material that is falling in
due to the gravitational potential of the star. The in-
teractions between these parts are manifold, but the
one considered here is only the gravitational force
between an individual particle and the central mass.
A strong assumption is that the gravity between the
particles of the cloud around the star is weak as com-
pared to the interaction with the star itself. This is
true because in the inner portion of the cloud self-
gravity can be neglected (Terebey et al. 1984) and
ballistic trajectories (Cassen & Mossman 1981) can
be used as an initial conditions in a simulation.

We study the first stages of formation of a disk,
when material from the cloud is just arriving at the
vicinity of the star. The principal condition for a
disk to be formed is that the particles that fall in
shall have some angular momentum; otherwise, they
move directly into the central mass with no chance
for a disk to exist, or even to form.

The simplest assumption for the infalling cloud
is that it is rigidly rotating; it is the one we use here.
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A model with all these hypotheses was developed in
Ulrich (1976) where the particle begins at infinity
with null radial velocity and a total velocity that
is very low compared with the velocity acquired at
the time when it is reaching the vicinity of the star.
Thus, a good approximation is to set a null energy
to every particle (so, the trajectories are parabolas),
which is conserved in a central potential, as well as
a specific angular momentum. Ulrich (1976) found
the following velocity field,

vr = −

(

1

r

)
1

2

(

1 +
cos θ

cos θo

)
1

2

, (1)

vθ =

(

1

r

)
1

2 cos θo − cos θ

sin θ

(

1 +
cos θ

cos θo

)
1

2

, (2)

vφ =

(

1

r

)
1

2

(

1 −
cos θ

cos θo

)
1

2 sin θo

sin θ
, (3)

and the orbit is described by the equation

r =
sin2 θo

(1 − cos θ
cos θo

)
, (4)

and, finally, the density is given by,

ρ = r−
3

2

(

1 +
cos θ

cos θo

)−
1

2

(

1 +
3 cos2 θo − 1

r

)−1

,

(5)
where (r,θ,φ) are the spherical coordinates of a par-
ticular point in space, and θo is the angle with re-
spect to the rotational axis of the cloud that defines
the plane containing the trajectory of the particle.

The velocity, radius and density are given in units
of:

vo = (
GM

Rd

)
1

2 , Rd =
Γ2
∞

GM
, ρo =

Ṁ

4πR2

d
vo

, (6)

respectively, where Rd is the Keplerian radius for
a particle with specific angular momentum Γ∞, the
maximum value in a spherical shell of the cloud. For
the case of rigid rotation, the maximum occurs at the
equator; this plane also defines the orbital plane, the
locus where the disk is formed. These definitions
allow us to interpret vo as the Keplerian velocity
at radius Rd; this radius naturally represents the
typical radius of the disk. In Equation (6), Ṁ is the
mass accretion rate from the cloud, so ρo represents
the density of the material from a spherical shell of
radius Rd, moving with velocity vo.

If vo is the characteristic velocity, calculated with
Rd = 100 AU and M = 1M�, and if the velocity of
sound is calculated with T = 15K as the tempera-
ture of the cloud, we can conclude that the latter is

an order of magnitude smaller than the former, so
the flow can be considered as supersonic. Hence, the
pressure gradients can be neglected and therefore a
two-body model for the flow is a good approxima-
tion.

The orbital plane divides the space into two
parts, each being a “mirror image” of the other. The
solution of Ulrich (1976) gives two different velocities
for each point in the plane, with perpendicular com-
ponents having the same magnitude but in opposite
directions. When the particles associated with the
two velocities face each other, their velocities perpen-
dicular to the plane are lost in an inelastic collision.
In other words, two shocks are formed parallel to the
plane, forcing the velocity of the shocked material to
lie on that plane. Particles that are incorporated in
such a way will remain there and will belong to the
disk that is forming.

Using Equation (4) we can show that the orbits
intersect the orbital plane (θ = π/2) at a radius RI

given by,
RI = sin2 θo . (7)

This relation shows that the typical size of the
disk (Rd) is the maximum of RI. From this we can
conclude that the largest radius where the shock is
present is also the maximum position of a stable or-
bit, where stable has here the meaning of a Keplerian
orbit, the locus where the centrifugal force plus the
gravitational one give zero.

3. ANALYTICAL SOLUTIONS

Here, we describe the orbits in the orbital plane,
taking the velocity field given in Ulrich (1976) but
restricted to this plane. These velocities clearly rep-
resent the evolution in the orbital plane as long as
they remain supersonic. First of all, we substitute
the radius in Equation (7) in the set of Equations (1)
and (3) to obtain,

vRo
= −

(

1

RI

)
1

2

, vφo
= 1 , (8)

where we have also substituted θ = π/2.
Since the particle has lost the energy associated

with its velocity perpendicular to the disk, it now
has a negative total energy, which means that the re-
sulting orbits are ellipses. The energy of the shocked
particles is given by:

εo =
1

2
(v2

Ro
+ v2

φo
) −

1

RI

. (9)

Using Equation (8) in Equation (9) and express-
ing the result in terms of the specific angular mo-
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mentum γ, defined by γ = RIvφo
, we have

εo = −
1

2

(1 − γ)

γ
. (10)

We can now calculate the radial velocity of a par-
ticle characterized by γ and located at radius R by
using conservation of energy and angular momen-
tum. The energy per unit mass is given by

εo =
1

2
(v2

R + v2

φ) −
1

R
, (11)

and the next equation is just a definition,

γ = Rvφ . (12)

Substituting Equation (12) in Equation (11) and
solving for the radial velocity vR, we obtain,

vR = ±

[

2(εo +
1

R
) −

γ2

R2

]

1

2

. (13)

As we mentioned before, the orbits in the orbital
plane are closed; then we can calculate the mini-
mum and the maximum distance to the star. The
minimum and maximum distances are defined as the
point where vR = 0, and using Equations (13) and
(10) we get

Rmin,max =
γ(1 ±

√

1 − γ + γ2)

1 − γ
. (14)

Notice in Equation (13) that the solution of vR

has both signs (+ or −), representing either the sec-
tion of the orbit towards the star or the one in the
opposite direction. We see in Equation (8) that the
radial velocity is negative, indicating that the first
part of the trajectory is approaching the star, and
ending when the particles reach the minimum radius
(Rmin).

Without interactions the particles will get there
and start to move in the opposite direction. The
description of the approaching stage begins with the
solution of the equation given by

dR

dt
= vR , (15)

where vR is given by Equation (13). Because vR is
not a function of time, we transform the differential
equation into the following integral,

t =

∫

v−1

R dR , (16)

whose solution can be expressed as

t = ±
1

(−2εo)1/2
[−(R − Rmin)1/2(Rmax − R)1/2

−
1

2
(Rmin + Rmax)

atan(
(Rmin + Rmax) − 2R

2(R − Rmin)1/2(Rmax − R)1/2
)] . (17)

From the practical point of view, the difference in
the evaluation of t (Equation 17) for any two points
tells us, for material with angular momentum γ, the
time that a specific particle needs to travel the dis-
tance between these points. In other words, we know
the time of arrival of any ring of material at any po-
sition in the orbital plane. In the remaining part of
this section, the word “ring” refers to a thin circular
section of the disk. Due to the cylindrical symme-
try of the problem, the particles contained in a ring
evolve exactly in the same way.

The main drawback is that only the description of
the evolution of an isolated ring, labeled with the an-
gular momentum (conserved quantity), is obtained.
If there are processes that change this value, the de-
scription becomes more complicated. In a hydro-
dynamical simulation, a ring is always subjected to
artificial or explicit viscosity, so the assumption of
conservation of angular momentum has to be some-
what relaxed.

For Equation (17) to be of any practical use
the essential condition to satisfy is that the orig-
inal rings evolve long enough without interactions
between them. If we use Equation (17) to calculate
the time for the initial rings to get to Rmin, we see
that the time increases with γ. Because Rmin has
the same trend, we can confidently say that any ring
will arrive at Rmin earlier than any outside ring to its
minimum radius, which, in the latter case, is larger.
The physical conclusion is that when the material is
moving towards the star, a ring has no interactions
with any other ring. The first interaction for mate-
rial in the orbital plane occurs when a ring arrives at
R = Rmin, and begins its journey away from the star.
Eventually, this ring will encounter others, forming a
shock that will move along with it. Remember that
this does not take into account any hydrodynamical
effects that will be important when the typical ve-
locities become subsonic. This will happen at some
time because the radial velocity eventually will be-
come zero. Pressure forces are expected to change
only the location of the minimum radii, as will be
shown in § 4, so the block moving outwards is a real
feature. A hydrodynamical simulation is our next
subject.
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4. HYDRODYNAMICAL SIMULATION

4.1. Description of the code

For this simulation, we use the hydrodynam-
ical code written by Raga, Navarro-González, &
Villagrán-Muñiz (2000), named IGUAZU-A. Fluid
equations are numerically solved in a rectangular
grid that automatically refines when some criteria
are fulfilled. As an example, in a shock, some quan-
tities change rapidly with position, and to resolve
this, the code creates the necessary cells.

As the problem we want to address has cylindri-
cal symmetry, the simulation is made in a 2D grid
with R and Z as its axes. Assuming that the system
is isothermal, the equation of energy is reduced to
the statement that the temperature is constant. The
code requires an explicit viscosity term. The viscos-
ity coefficient is taken as small as possible so as not
to disturb the essential physics of the problem. The
assumption of a constant temperature of the disk is
not realistic because many processes are expected to
occur inside it that can change the temperature pro-
file. In the collapse calculations of Bodenheimer &
Laughlin (1995) a disk is found whose temperature
ranges between 500K near the star and 30K close
to the edge, and since the models of D’Alessio, Cal-
vet, & Hartmann (1997) used for the interpretation
of the HL Tau spectra require temperatures in that
same range, an isothermal assumption for the disk
sounds too optimistic. The argument in favor of an
isothermal disk for this simulation is that I only want
to point out the existence of a mechanism capable
of very quickly forming dense structures in the em-
bedded stage, when material is still falling from the
cloud. Detailed thermodynamics can change the ex-
act position where material halts its motion towards
the star or away from it, but the evolution is dom-
inated by gravitational and centrifugal forces. This
be seen in the stationary configuration described in
this section, where pressure forces (due to tempera-
ture and density gradients) are small compared with
either centrifugal or gravitational forces. Clearly, the
temperature in the material that falls from the cloud
is not relevant because in supersonic motion the in-
formation of the density gradients (where the tem-
perature is immersed) cannot communicate particles
which are moving so quickly. Thus, a constant tem-
perature throughout the grid can be imposed. Note
that this state implies radiation, something that it
is always expected.

4.2. Initial and boundary conditions

In § 2, we show that Equations (1), (2), (3) and
(5) represent a good approximation for the material

that is falling towards the star. Thus, we use the ve-
locity field and the density expressed there as initial
conditions for the simulation. The terms dependent
on θo are expressed in terms of r and θ using Equa-
tion (4).

To run the code we still have to define the bound-
ary conditions. Two of the sides of the grid are the
R-axis and the Z-axis; due to symmetry arguments
the perpendicular velocities of the particles are zero.
The two other boundaries are defined by Z = Zmax

and R = Rmax; there, the density and the velocity
field are always given by Equations (1),(2), (3) and
(5). Physically, this condition means that the mate-
rial is always fed from the cloud with Ulrich’s (1976)
solution.

4.3. Results

The simulation that we describe now has the
following parameters: Rd = 100 AU, M = 1M�,
Ṁ = 10−6 M�yr−1, T = 15K, µ = 1.0 (atomic hy-
drogen). Avoiding the singularity at the origin, we
define a radius (Racr) such that the material arriving
there is lost from the simulation. The physical di-
mensions of the axis that defines the computational
grid are: Rmax = 1000 AU and Zmax = 100 AU.
Each direction has the same number of cells, that is
512.

When a particular value for Racr is chosen (in
this case Racr = 0.1Rd ), the solution of Racr = Rmin

(Rmin described in equation 14) determines the min-
imum angular momentum (γmin) of the material that
remains in the plane after the accreting stage (this
statement is accurate at any time of the simulation),
so, the description of the trajectories since their ar-
rival to the orbital plane and their initial motion
towards the star can be described with the ballistic
approximation given in § 3. We take Equations (6) to
construct a time t = Rd/vo (in this case, t = 158 yr),
which we use as our unit. Using Equation (17), the
time of arrival is tmin = 0.197. Besides, the ring
with that particular angular momentum is the first
one to arrive to its minimum radius. As mentioned
in § 3, with no interactions of the rings when they
are moving towards the star, naturally the first in-
teraction occurs when the inner ring changes its di-
rection of motion. In other words, the ring with
γ = γmin produces the first interaction with the ma-
terial that is still falling onto the orbital plane, at
position R = Racr. The exact characteristics of the
interaction are not easily described.

In Figure 1 we plot, for times less than tmin, the
radial velocity as a function of position. At these
times the velocity is always negative, as expected,
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Fig. 1. Hydrodynamical simulation: From top to
bottom radial velocity vR, angular momentum γ and
log(density, ρ) vs cylindrical radius R in the mid-plane
of the disk (Z = 0), for times t = 0 (solid line), t = 0.063
(dotted line), t = 0.126 (dashed line), and t = 0.189 (dot-
dashed line). Also the Keplerian radius (Rk) is shown as
a function of γ (γ = R2

k) as a dot-long-dashed line. The
dot-dashed line represents Rmin. R,vR, γ and ρ are given
in units of Rd, vo, γ∞ and ρo respectively (see text).

and we also notice that there is a tendency toward
a decrease in magnitude. The above statement is
an obvious result of the deceleration process that a
particle experiences when approaching Rmin, where
vR = 0.

For the same times, we plot in Figure 1 the an-
gular momentum as a function of radius. The im-
portant characteristic to describe is that as time in-
creases, the plot is moving towards the origin, nearly
preserving its original form, and giving a clear indi-
cation of the conservation of angular momentum. Of
course, every plot is to the right of the curve of min-

imum radius, which will be designated as the plot
γ vs Rmin (Equation 14) from now on. This result
just corroborates that pressure effects, at most, may
change the value of the minimum radius.

Figure 1 also shows the evolution of density in
terms of R. From the time t = tmin on, a different
picture evolves, the ring of material with γ = γmin

will begin to move away from the star. The particles
that it encounters will be absorbed into a working
surface, accumulating the angular momentum along
with the linear momentum. If we assume that the
material is perfectly mixed, the ring composed of
shocked material will move with the velocity of the
center of mass of the components, with a new asso-
ciated angular momentum, the weighted average of
the values of the components.

The evolution of the inner ring is ruled by the
material that gets into it from the orbital plane and
also from above it. Particles are continually arriv-
ing at the plane and interacting with the material
that is already in it. The results in § 3 just ana-
lyze the particles that initially arrive at the orbital
plane without mentioning any further feeding from
any other place. At this point of the simulation it is
crucial to consider the feeding because the positive
velocity of the inner ring creates a void that will in-
teract strongly with material external to the plane,
ending with particles that in some way are incorpo-
rated into it.

At this moment it is difficult to characterize with
precision the material that falls into the void that is
forming as a function of time. We can mention two
main reasons for that. The first one is that we do
not know for sure how the ring evolves in time, and
the second is that a well-defined disk is growing in
thickness. The thickness is at least an order of mag-
nitude smaller than the radial size of the disk but it
is not constant along the radius. The upper bound-
ary of the disk is the surface that divides the accret-
ing material that is not perturbed from the material
that already has strong interactions and is no longer
represented by the two-body solution (Ulrich 1976).
We can characterize precisely the material outside
the disk, but to say which particles are incorporated
into the disk at some radius demands a clear under-
standings of its structure.

Let’s follow the evolution of the material in the
disk for times t > tmin. In Figure 2, for a time a
little longer than tmin (tmin = 0.197), the innermost
part of the disk has positive velocities, representing
the ring that begins to move away from the star. As
time advances, a region opens up with the movement
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Fig. 2. Similar to Figure 1 but for times t = 0 (solid
line), t = 0.442 (dotted line), t = 0.569 (dashed line), and
t = 12.64 (dot-dashed line). The other curves represent
the same as in Figure 1.

of the inner ring and is fed with external material
that at some time begins to move towards the star.
This configuration clearly divides the ring and the
material that is incorporated into it, defined as the
pattern with positive velocities, from the particles
beside it, that have negative velocities and which
represent the material that avoids the ring.

Eventually, material in the innermost part of the
disk will move with positive velocities indicating that
there exists a point inside the disk where vR = 0. It
can be explained as a particular region of the disk
which is fed with external material from the inside of
it with positive velocity particles, and from the out-
side of it with negative velocity particles. Looking at
Figure 2, where density vs radius is plotted, we di-
rectly identify that region as a dense ring that early
in the evolution achieves a stationary configuration

around the position R = 0.2Rd. In Figure 2, we also
show radius vs angular momentum for t > tmin. The
ring moves from an angular momentum plateau to
another with a larger value, indicating that a per-
fect mix is occurring with the material that incor-
porates into it, permitting to associate a constant
angular momentum to the ring, which increases in
time. We can visually identify in a 2D graph (R,Z
plane) the statements made before. In Figure 3, at
time t = 0.569, we can see how the ring moves away
from Racr towards regions of steep gradient in an-
gular momentum. Here, the ring is characterized by
a maximum in density and constant specific angular
momentum.

The information that could be extracted from
Figure 3 must be taken with care, in particular in
what refers to the thickness of the disk. This feature
strongly depends on the details of the heating and
cooling mechanisms that are not taken into account
here. However, the surface density as a function of
radius in the plane of the disk can be compared with
real disks.

Figure 2 also shows the stationary configura-
tion to which the system arrives, at a time around
t = 12.64. The disk consists of two dense rings on
Keplerian orbits at positions around R = 0.2Rd and
R = 0.6Rd. Between them, a minimum density ring
is also at a Keplerian position (R = 0.4Rd) but it
is not characterized by a plateau of angular momen-
tum; instead, it is a region of transition between both
plateaus (constant angular momentum).

Returning to the visualization of the system in
the R-Z plane for a time t = 1.264, Figure 3 shows
the next qualitative step in the evolution, where a
dense ring, formed with material coming from the
cloud, can be seen located inside the ring formed
earlier. At this time, all the material that originally
falls into the orbital plane had been added to the
external ring that is still forming. From now on, the
feeding of that ring from the orbital plane proceeds
only with material with γ = 1.0. Particles with less
angular momentum come from beyond that plane.
The positive velocity pattern is restricted to radius
of less than one; it means that the system has not
enough lineal momentum to push it beyond radius
one. From the results of this simulation it can be
concluded that the material accreting in the orbital
plane is responsible for stopping the outer dense ring
and that other assumptions about the thermal state
of the disk may only change the typical size of the
structure, but it is very unlikely that the dense struc-
ture will not survive.
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Fig. 3. A RZ plane in the hydrodynamical simulation is
shown with contours of equal ρ (solid line) and contours
of equal γ (dotted line). The values of the density (ρ)
contours are given by ρo/2a (a = 3, 4, 5, 6, 7, 8). The
values of the γ contours are: 0.1, 0.2,..., 0.7, 0.71, 0.73,
0.75, 0.77, 0.79, 0.8, 0.9 from left to right. Plots are
made at times t = 0.569, t = 1.264 and t = 12.64 from
top to bottom. At t = 12.64 a stationary configuration
is reached. The arrows represent the velocity field, with
magnitudes proportional to the size of the arrow.

Figure 3, for t = 12.64 (the plot for the station-
ary situation), shows that the disk is restricted to
R < 1 as expected, and that the thickness of the
external part of the disk is about three times that
of the internal one. The contours of constant angu-
lar momentum give us an idea about the way the
material is incorporated into the disk. In order to
extract this information we supposed that by follow-
ing a specific contour, the trajectory of the particle
is also followed. For the last sentence to be true, the
flux must be time-independent and the conservation
of angular momentum should be valid for every par-

40

30

20

10

1.21.00.80.60.40.2

Σ

R

Fig. 4. Surface density S vs radius R is shown for a disk
with a mass Md = 0.02 M�. R is given in units of Rd

and S in g cm−2. This surface density corresponds to an
axisymmetric disk viewed pole-on.

ticle, true for stationary fluxes with cylindrical sym-
metry in the case of unimportant viscous torques.

Supposing the preceding is true, we can conclude
that when the material intersects the disk, the di-
rection of the flow is deflected by a shock, finally
sliding along the surface of the disk until it finds its
way to the orbital plane. Remembering the form
of the disk, the main position where the material is
being channeled to the orbital plane is the radius as-
sociated with the minimum in density, that is, the
region between the two dense rings, as we can see in
Figure 3.

In Figure 4 we show the surface density (S) in
the disk as a function of radius (R), calculated by
vertical integration of the volume density extracted
from the hydrodynamical simulation. In this way
the thickness of the disk is irrelevant, and we ob-
tain a quantity that can be compared with results
of observations of disks. The mass of the simu-
lated disk presented at the bottom of Figure 3 is
Md = 8X 10−4 M�. The fact that the disk is in
a stationary configuration can be used to scale the
mass to any value. Kikuchi, Nakamoto, & Ogochi
(2002) find a disk-model with Md = 0.02M� for HL
Tau, capable of explaining the spectral energy dis-
tribution (SED) for the surroundings of this star in
a range of frequencies. The scaled simulated disk
has densities around 10 g cm−2, as the modeled
disk in Kikuchi et al. (2002). Lay, Carlstrom, &
Hills (1997), Adams, Emerson, & Fuller (1990), and
Kikuchi et al. (2002) use power-law density profiles
corresponding to surface densities (S) in the same
range as the ones obtained in this work. D’Alessio et
al. (1997) show a detailed model for a disk around
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HL Tau, which fits the SED for wavelengths from
sub-mm to radio. There, an expression for S is
found, consistent with a stationary configuration. In
the spatial range of interest S < 100 g cm−2 is also in
agreement with the simulated disk shown in this pa-
per. Note that the difference between minimum and
maximum densities in Figure 4 is more than an order
of magnitude; thus, the pattern should be identified
observationally.

The plot in Figure 3 also shows the velocity field,
represented by arrows with longitude proportional
to the magnitude; so, the rings have been fed with
material both from the left and from the right of the
center of each ring located at an equilibrium posi-
tion. Notice that at that point the pressure gradient
is zero, because the position corresponds to a maxi-
mum in density. Allowing the presence of this hydro-
dynamical force, a Keplerian radius is still in equi-
librium at the center of the ring. Because each ring
as a whole is not moving, the addition of lineal mo-
mentum from right and left must cancel. Although
the condition says something about the kinematics of
the incoming material, it cannot disentangle the pe-
culiarities in the velocity of every piece of material
with a particular value of the angular momentum.
As a matter of fact, the velocities of the particles
that are just entering the ring have no direct (ana-
lytic) connection with the known solution of Ulrich
(1976), therefore we are unable to characterize that
material.

4.4. About initial conditions and changes in the

parameters

For sure, initial conditions can change the out-
come of the simulation. However, the relevant grav-
itational mechanism forming the pattern with two
rings in the disk dominates initial conditions, since
a lower-mass disk has already formed. One way to
face the problem is to think that a stationary con-
figuration, as the one found here, can act as a initial
configuration that would naturally preserve the fea-
tures of the disk. However, this configuration will
not last, because after a certain time the disk will
have accumulated enough mass, arriving at a con-
figuration prone to gravitational instabilities. After
the action of the instability, the disk will achieve a
stable state that, as a first guess, can be described
with a power-law density profile.

Thus, a natural initial condition (other than no-
disk) to test in a simulation is a disk with a surface
density of the form S = S0R

−3/2, where the constant
S0 is fixed by the choice of the mass of the disk. The
chosen exponent is selected according to Kikuchi et

al. (2002) who used it to fit the flat-spectrum of T
Tauri stars. Besides, the fitting of HL Tau by Lay et
al. (1997) also requires an exponent of less than mi-
nus one. As a matter of fact, changing the exponent
does not change appreciably the typical densities in
the disk; therefore, this simulation attempts to be
characteristic. The initial velocity field is Keplerian.
The disk is thin, with a thickness of ∆Z = 1AU ;
the mass of the disk is Md = 0.01M�. The simula-
tion was followed until a time t = 9.48. It is shown
in Figure 5 for the radial velocity (VR), specific an-
gular momentum (γ) and density(ρ) on the orbital
plane, in terms of radius (R). The times shown are
t = 3.16, 6.32, 9.48.

The simulation was run for a time sufficient to al-
low to look for trends. The density of the initial disk
is larger than the typical density in the cloud. Thus,
a strong discontinuity in the boundary between disk
and cloud is responsible for a transient in the simula-
tion, not seen in the main simulation. At the top of
Figure 5, the feature of positive radial velocity close
to the star can be seen at the three times, analogous
to the same plot in Figure 2. At t = 9.48, there
are three positions where VR = 0, corresponding to
places where the inner and outer rings are fed. At
the bottom of Figure 5 the presence of the former
becomes obvious, while the latter is in the process
of formation. The middle plot in Figure 5 clearly
shows that the dense rings sit at a Keplerian radius
according to their specific angular momentum. As a
conclusion, a not very massive disk initially seeded
shows no qualitative changes to the picture already
formed, as shown in Figure 5.

The problem depends on dimensionless parame-
ters; in this case, size of the disk, mass of the star, an-
gular velocity of the cloud and mass accretion rate of
the cloud into the star-disk system are variables that
can be given any value; the results are just scaled to
the new configuration. However, there is another
variable that should be treated separately, that is
Racr, the radial size of the inner region of the mesh,
where the material is lost.

For computational convenience, a specific value
for Racr was chosen to remove material from the cen-
ter of the disk. As stressed in § 3, Racr allows us to
estimate the specific angular momentum of the in-
nermost material that turns around in the early evo-
lution of the particles in the disk. Afterwards this
material will become the outer ring, and the material
that falls from the cloud with values of specific angu-
lar momentum around this value will eventually form
the inner ring. As noted, the general features of this
process do not depend on the value of Racr; thus, the
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Fig. 5. Similar to Figure 1, but for times t = 0 (solid
line), t = 3.16 (dotted line), t = 6.32 (dashed line),and
t = 9.48 (dot-dashed line). The other curves represent
the same as in Figure 1. A Keplerian disk with power
density profile is given as an initial condition. The thick-
ness of the disk is ∆Z = 1 AU and the mass of the disk
is Md = 0.01 M�.

two-dense-rings-pattern disk will form, with the only
difference that the rings will be located at different
positions.

In order to check this theoretical statements, a
simulation with Racr = 0.2Rd was run (twice the
value used). Figure 6 shows VR,γ and ρ vs R, in the
middle of the disk, for t = 3.16, 6.32, 25.28. At the
first two times, the transition towards the configura-
tion shown at the last time, t = 25.28 is shown. The
radial velocity plot in Figure 6 shows the same fea-
tures as in the stationary configuration of Figure 2.
The density profile clearly shows the two dense rings,
which as expected, are shifted to larger radii, because
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Fig. 6. Similar to Figure 1, but for times t = 0 (solid
line), t = 3.16 (dotted line), t = 6.32 (dashed line), and
t = 25.28 (dot-dashed line). The other curves represent
the same as in Figure 1. The difference with the simula-
tion presented in Figure 1 is that Racr = 0.2 Rd instead
of Racr = 0.1 Rd.

the average γ in the disk is larger than the one in the
case with Racr = 0.1Rd. The middle plot in Figure 6
again shows that the specific angular momentum of
the rings is constant and that they sit on Keplerian
radii.

This result proves that Racr is irrelevant for the
formation of the pattern in the disk, changing only
the equilibrium positions of the rings.

5. DISCUSSION

As mentioned in the introduction and pointed out
by many authors (Bodenheimer & Laughlin 1995;
Yorke & Bodenheimer 1999; Nakamoto & Nakagawa
1994; Boss 1998), the formation of gravitational in-
stabilities in a disk is present at the early stages of
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the formation of planets. Thus, the axisymmetric
configuration obtained in the simulation of § 4 will be
subjected to perturbations that can break the rings.
The two-dense-rings pattern forms naturally, consid-
ering a continuous accretion from the cloud. The
outer ring is constructed by sweeping the original
matter in the orbital plane, and reaches an equilib-
rium configuration due to all the material that is still
falling from the cloud.

The inner ring is composed mostly of particles
with angular momentum around γmin, and is almost
completely fed with material that comes from above
the orbital plane. As the details of its formation are
complex, we decided not to follow further this path.

The hydrodynamical simulation (see § 4) avoids
the identification of a precise radius where the outer
ring stops, but surely it is less than, but close to,
one.

By now, a qualitative picture can be extracted
from the way the material in the orbital plane is be-
ing incorporated into the ring at the first stage, find-
ing a stationary position later on, when continuous
feeding of the cloud is assumed (see § 4). In sum-
mary, the aim of this paper is just to point out that
there exists a robust mechanism for forming dense
structures during the stage when material is falling
into the disk from the cloud. We leave a study of a
realistic thermic scheme for the future.

6. CONCLUSIONS

The collapse of a core (observational characteris-
tics of the cloud in Jijina, Myers, & Adams 1999) is
studied with the purpose of describing the formation
and early evolution of a disk. We examine a situa-
tion where a central mass exists inside the cloud,
and is responsible for the main force that the parti-
cle experiences. Neglecting self-gravity and pressure
is a valid assumption if we consider a disk much less
massive than the central object, with typical super-
sonic velocities. All these assumptions are naturally
taken into account in the collapse solution of Ulrich
(1976). So, in § 4 this solution is used as an initial
condition for an axisymmetric hydrodynamical sim-
ulation. The material falls to the orbital plane with
the subsequent formation of a disk, by way of two
shocks, one at the top of the disk and the other at
the bottom. Afterwards, all the material moves to-
wards the star until the inner part of the disk (we
call it the inner ring) begins to move in the oppo-
site direction. This ring begins to sweep material
that is still accreting towards the central mass, fi-
nally finding an equilibrium position at a Keplerian
radius (Rk = 0.6, see Figure 3).

The matter incorporated into this dense ring
mixes perfectly, imparting to it its linear and angu-
lar momentum. The first quantity is a contribution
to the velocity of the shocked ring and the last one
allows to associate to the ring just one value of its
specific angular momentum. From this value we can
assign a Keplerian radius to this ring.

The positive velocity stage of the ring creates a
region inside it, fed with material that is still falling
from the cloud. These particles have restricted possi-
bilities for the specific angular momentum, with val-
ues close to γmin (see § 3). Early in the evolution this
material evolves to form a dense ring with constant
specific angular momentum that sits at the appro-
priate Keplerian radius (Rk = 0.2, see Figure 3).

Formation of rings (Tohline 1980; Pickett et al.
2003; Boss 1980; Larson 1972; Black & Bodenheimer
1976; Bodenheimer & Tscharnuter 1979) is an im-
portant outcome if we are interested in mechanisms
forming denser zones in disks as progenitors of plan-
ets or companion stars. But the question we always
ask is the life-time of the feature (Boss 1980), since
its viability for forming a stable structure such as a
planet depends on it. Thus, in Nagel (2007) we use
the isothermal spherically symmetric collapse model
of Shu (1977), and obtain a similarity solution in
terms of the disk radius at any time (as a first or-
der approximation), as well as a typical value for
the time required for the collapse, at least a couple
of orders of magnitude larger than the time for the
formation of the stationary two-dense-rings-pattern
disk; so, a quasi-stationary picture can easily be con-
sidered, where a stationary disk will continuously
evolve from one configuration to another. However,
this configuration naturally produces rings that are
continually increasing in mass, and so, at some point,
gravitational instabilities will break up the rings, giv-
ing rise to the formation of a set of dense regions
that will leave an imprint on later stages, with zones
prone to planet formation. All the arguments used
in this explanation require the material to continue
falling from the cloud. So, if the cloud is exhausted,
the survival of the two-dense-rings-pattern disk for
longer times is not clear, thus reducing the possibil-
ities of observation. To clarify this doubt, we use
the simulation of § 4 and after the formation of the
pattern, we reduce the density of the falling material
by a factor of 10 in order to simulate the exhaustion
of the cloud. We see that after 40000 yr, the dense
rings are still there, but located at different posi-
tions, still within R < 1.0. Therefore, in some cases,
this feature can be observed if we can detect a disk
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deeply embedded in its parental cloud. As a matter
of fact, Piétu et al. (2005) found a bright, spiral-like
feature at about 140AU from AB Auriga that could
be produced in an early stage of star formation.

Using a typical value for the time required for the
formation of the two-dense-rings pattern (§ 4) we can
argue that the positions of the two rings and the ra-
dius of the disk expand as t3. In Stahler et al. (1994)
a similar structure, but with just one ring, expands
in the same way. The position of the ring in Stahler
et al. (1994) (R = 0.345) is closer to the minimum
density on the orbital plane that coincides with the
boundary between the two dense rings, as shown by
the simulations of § 4. The conjecture about the
reason for the nonexistence of the two rings (that we
found here) in Stahler et al. (1994) is that there the
formation of the ring is linked to the assumption that
the material at the left of this ring strongly dissipates
energy inside a turbulent layer, before coming finally
to a Keplerian orbit. What we say here is that the
streamlines of the “outer disk” (see details in Stahler
et al. 1994) intersect at the position of the ring,
making it unable to change the sense of its move-
ment to face this established part of the disk. This
means that the outer ring in Figure 3 is represented
by the ring in Stahler et al. (1994). According to the
construction, an inner ring in the “inner disk” (the
Keplerian part of the disk) in Stahler et al. (1994)
cannot exist.

The main idea for the formation of the ring in the
simulation of § 4 is that at some point the material in
the disk is halted, so afterwards a positive net force
dominates (here, the centrifugal dominates over the
gravitational), driving this ring to a larger radius.
Arguments like this for explaining the ring forma-
tion are not new (Tohline 1980; Boss 1980; Larson
1972; Black & Bodenheimer 1976; Bodenheimer &
Tscharnuter 1979), but the purpose there was only
to study this formation in cloud collapse without any
central mass. In the simulations (Tohline 1980; Boss
1980; Larson 1972; Black & Bodenheimer 1976; Bo-
denheimer & Tscharnuter 1979) the gravitational po-
tential comes from self-gravity; in our work the gravi-
tational contribution comes only from the proto-star,
although the ideas used for explaining the ring for-
mation are the same in both cases.

Returning to the outer ring formation, the sim-
ple idea that we follow is that the first material that
turns around to begin a positive velocity evolution
is the seed of the ring that evolves outwards. The
simulation shows the ring at radius of less than one;
essentially, this fact means that these dense features

are restricted to a smaller radius than the radius of
the disk, defined as the position of the larger Keple-
rian orbit.

The radial velocities in the stationary configura-
tion are small as compared with the angular veloci-
ties in a Keplerian disk; so, a kinematic observation
of the disk can easily overlook the small radial ve-
locities to conclude that the observed disk is Keple-
rian. Therefore, we hope that this result can moti-
vate an effort to estimate radial velocities in disks, to
be compared with the state found here. Such a pat-
tern in the disk has more chances to exist in sources
deeply embedded in a cloud, where observations are
more difficult. However, recent results (Velusamy,
Langer, & Goldsmith 2002) show methanol emission
tracing an infall-disk interface; so we expect that fu-
ture observations can constrain embedded disks. An
observational consequence of the disk here described
occurs if the dense rings are optically thick while the
remaining of the disk is optically thin. In such a situ-
ation the emission of radiation should be dominated
by the rings, producing a peculiar energy spectrum
with certain preferred frequencies.
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México, D. F., México (enagel@astroscu.unam.mx).

2000, RevMexAA, 36, 67
Shu, F. H. 1977, ApJ, 214, 488
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A,

25, 23
Shu, F. H., Najita, J., & Ostriker, E. 1994, ApJ, 429, 781
Stahler, S. W., Korycansky, D. G., Brothers, M. J., &

Touma, J. 1994, ApJ, 431, 341
Strom, S. E., Edwards, S., & Skrutskie, M. F. 1993, in

Protostars and Planets III, ed. E. H. Levy & J. I.
Lunine (Tucson: Univ. of Arizona Press), 837

Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529
Tohline, J. E. 1980, ApJ, 236, 160
Tscharnuter, W. M., & Boss, A. P. 1993, in Protostars

and Planets III, ed. E. H. Levy & J. I. Lunine (Tuc-
son: Univ. of Arizona Press), 921

Ulrich, R. K. 1976, ApJ, 210, 377
Velusamy, T., Langer, W. D., & Goldsmith, P. F. 2002,

ApJ, 565, L43
Yorke, H. W., & Bodenheimer, P. 1999, ApJ, 525, 330


