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RESUMEN

El campo escalar con un potencial cosh se comporta en el régimen lineal justo
como la materia oscura fŕıa (CDM). Aśı, la hipótesis de materia oscura escalar
(SFDM) predice la misma formación de estructura que CDM. Los parámetros libres
del modelo SFDM se fijan con observaciones cosmológicas. En un trabajo anterior
mostramos que con dichos valores, la SFDM se colapsa y forma objetos estables
con masa del orden de 1012M�. En este trabajo utilizamos soluciones anaĺıticas
para las ecuaciones de Einstein-Klein-Gordon en el caso plano y en el ĺımite de
campo débil y mostramos que el perfil de densidad de SFDM corresponde al de una
densidad central casi plana y que coincide con el del modelo de CDM en una amplia
zona de la región exterior. Este resultado podŕıa resolver el problema de los picos
de densidad de CDM sin ninguna hipótesis adicional, lo que apoya la viabilidad del
modelo de SFDM.

ABSTRACT

Scalar fields endowed with a cosh potential behave in the linear regime, exactly
as the cold dark matter (CDM) model. Thus, the scalar field dark matter (SFDM)
hypothesis predicts the same structure formation as the CDM model. This means
that CDM and SFDM are equivalent from the cosmological point of view. The free
parameters of the SFDM model are determined by cosmological observations. In
previous work we showed that if we use such parameters, the scalar field collapses
forming stable objects with a mass around 1012M�. In the present work we use
analytical solutions of the flat and weak field limit of the Einstein-Klein-Gordon
equations and show that the SFDM density profile corresponds to a halo with an
almost flat central density and that it coincides with the CDM model in a broad
outer region. This result could solve the problem of the density cusp DM halo
in galaxies without any additional hypothesis, thus supporting the viability of the
SFDM model.

Key Words: dark matter — galaxies: formation — galaxies: halos

1. INTRODUCTION

The Lambda Cold Dark Matter (ΛCDM) model
has recently shown an enormous predictive power. It
can explain the structure formation of the Universe,
its accelerated expansion, the micro Kelvin fluctua-
tion of the cosmic microwave background radiation,
etc. Nevertheless, around this model some issues re-
lated to the formation of galaxies have arisen since
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2Instituto de Ciencias Nucleares, Universidad Nacional
Autónoma de México, Mexico.
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the time it was originally proposed and remain to
date. The CDM paradigm predicts a density pro-
file which corresponds to the Navarro-Frenk-White
(NFW) profile (Navarro, Frenk, & White 1997) given
by

ρNFW =
ρ0

r
r0

( r
r0

+ 1)2
. (1)

However, this profile seems to differ somewhat from
the observed profiles of LSB galaxies. In this work
we show that a flat central profile naturally arises
within the scalar field dark matter hypothesis, im-
plying that the central region of galaxies can distin-
guish between CDM and SFDM.
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150 BERNAL, MATOS, & NÚÑEZ

We work within the specific context of the so-
called ‘strong, self-interacting scalar field dark mat-
ter’ (SFDM) hypothesis that has been developed by
several authors (Guzmán & Matos 2000; Matos &
Ureña-López 2000, 2001; Ureña-López, Matos, & Be-
cerril 2002; Matos & Guzmán 2001; Alcubierre et
al. 2002, 2003; Ureña-López 2002; Böhmer & Harko
2007; see also Peebles 2000). A first proposal of the
SFDM hypothesis appeared in a couple of papers
by Ji & Sin 1994. They took a massive scalar field
and were able to fit observations from some galaxies,
taken into account also the contribution of baryons.
A key point in this work was the use of the so-called
excited configurations in which the radial profile of
the scalar fields has nodes. From that, they deter-
mined that the mass of the scalar field should be of
order of ∼ 10−24 eV.

The next proposal appeared in a paper by
Schunck (1998). He shows that a massless complex
scalar field can be used as a dark matter model in
galaxies to fit the rotation curves. In this model the
internal frequency of the field plays the role of an
adjustable parameter, and the radial profile of the
scalar field also has nodes.

However, as pointed out in Guzmán & Ureña-
López (2005; see also Guzmán & Ureña-López 2004),
this last proposal cannot be realistic because a mass-
less scalar field (whether real or complex as in
Schunck 1998) cannot form a gravitationally bound
configuration (see Seidel & Suen 1994).

The key idea of the SFDM scenario is that the
dark matter responsible for structure formation in
the Universe is a real scalar field, Φ, minimally
coupled to Einstein gravity with the self-interaction
parametrized by a potential energy of the form (see
also Sahni & Wang 2000)

V (Φ) = V0 [cosh(λ
√

κ0Φ) − 1] , (2)

where V0 and λ are the only two free parameters of
the model, κ0 = 8πG, and we employ natural units
h̄ = c = 1. The effective mass of the scalar field is
given by m2

Φ = κ0V0λ
2.

The advantage of the SFDM model is that it is
insensitive to initial conditions and the scalar field
behaves as CDM once it begins to oscillate around
the minimum of its potential. In this case, it can be
shown (see Matos & Ureña-López 2000, 2001) that
the SFDM model is able to reproduce all the suc-
cesses of the standard ΛCDM model above galactic
scales.

Furthermore, it predicts a sharp cut-off in the
mass power spectrum due to its quadratic nature,

thus explaining the observed dearth of dwarf galax-
ies, in contrast with the possible excess predicted
by high resolution N-body simulations with standard
CDM (see Matos & Ureña-López 2001).

The best-fit model to the cosmological data can
be deduced from the current densities of dark matter
and radiation in the Universe and from the cut-off in
the mass power spectrum that constrains the number
of dwarf galaxies in clusters. The favored values for
the two free parameters of the scalar field potential
are found to be (Matos & Ureña-López 2001):

λ ' 20 ,

V0 ' (3 × 10−27 mPl)
4 , (3)

where mPl ≡ G−1/2 ≈ 10−5g is the Planck mass.
This implies that the effective mass of the scalar

field should be mΦ ' 9.1× 10−52 mPl = 1.1× 10−23

eV.
Let us explain why we suspect that the scalar

field could be the dark matter at galactic scales as
well. There are three main reasons.

The first reason is that numerical simulations
suggest that the critical mass for the case considered
here, using the scalar potential (equation 2), and the
parameters given by equation (3), is approximately
(Alcubierre et al. 2002)

Mcrit ' 0.1
m2

Pl√
κ0V0

= 2.5 × 1013M� . (4)

This was a surprising result. The critical mass
of the model shown in Matos & Ureña-López (2000,
2001) is of the same order of magnitude of the dark
matter content of a standard galactic halo. Observe
that the parameters of the model, equation (3), were
fixed using cosmological observations. The surpris-
ing result consisted in the fact that using the same
scalar field for explaining the dark matter at cosmo-
logical scales, it will always collapse with a preferred
mass which corresponds to the halo of a real galaxy.
Thus, this result is a prediction of the cosmological
SFDM model for galaxy formation.

The second reason is that during the linear
regime of cosmological fluctuations, the scalar field
and a dust fluid, like CDM, behave in the same way.
The density contrast in CDM and in the SFDM mod-
els evolve in exactly the same form, and thus both
models predict the same large scale structure for-
mation in the Universe (see Matos & Ureña-López
2001). The differences between the CDM and SFDM
models begin to appear in the non-linear regime of
structure formation, so that there will be differences
in their predictions of galaxy formation.
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The third reason is the topic of this work. A
scalar field object (e.g. an oscillaton) contains a flat
central density profile, as seems to be the case in
galaxies.

In the case of the SFDM, the strong self-
interaction of the scalar field results in the formation
of solitonic objects called ‘oscillatons’, which have a
mass of the order of a galaxy (see for example Ureña-
López 2002; Ureña-López et al. 2002; Alcubierre et
al. 2003; also Seidel & Suen 1991, 1994; Hawley &
Choptuik 2000; Honda & Choptuik 2001). In this
work we will show that these models contain an al-
most flat central density profile, i .e., they do not
exhibit the cusp density profiles characteristic of the
standard CDM hypothesis.

Before starting with the description, we want to
emphazise the fact that the scalar field has no in-
teraction with the rest of the matter; thus, it does
not follow the standard lines of reasoning for the
particle-like candidates for dark matter. The scalar
field was not thermalized, that is, the scalar field
forms a Bose condensate, and thus behaves strictly
as cold dark matter from the beginning.

The rest of the paper is organized as follows. In
the next section we use the fact that Galaxies have
a weak gravitational field and thus their space-time
is almost flat. The main goal of this section is to
study the physics provoking the flat behavior of the
density profiles at the center of the oscillatons. Some
results of this section intersect with those presented
by Ji & Sin (1994), where they studied the behav-
ior of the weak field limit of a complex scalar field.
We remark that we do our analysis for a real scalar
field and some differences do arise due to a different
current conservation. In § 3 we present our con-
tribution making an analysis of the Einstein-Klein-
Gordon (EKG) equations in the relativistic weak
field limit, and we solve them for the perturbed met-
ric coefficients. Then, we compare these solutions
with the ones obtained by solving numerically the
complete EKG system and, using the whole poten-
tial (equation 2), we show that the relativistic weak
field limit is indeed a very good approximation. In
§ 4 we compute the energy density of the scalar field
obtained in § 3, and compare it with actual obser-
vations of LSB galaxies from which the density is
inferred from the rotation curves, showing a good
match in the external regions and a match at least
similar in some of the internal regions, in any case,
better than a fit with a cusp-like behavior of the
density. Finally in § 5 we give our conclusions.

2. PHYSICS OF THE SCALAR FIELD. FLAT
SPACE-TIME CASE

In this section we derive the physics of the scalar
field in an analogous way as it was done for the com-
plex scalar field by Ji & Sin (1994) (see also Lee &
Koh 1996). In a normal dust collapse, as for exam-
ple in CDM, there is in principle nothing to prevent
that the dust matter collapses all the time. There
is only a radial gravitational force that provokes the
collapse, and to stop it one needs to invoke some viri-
alization phenomenon. In the scalar field paradigm
the collapse is different. The energy momentum ten-
sor of the scalar field is

Tµν = Φ,µΦ,ν − gµν

2
[Φ,αΦ,α + 2V (Φ)] . (5)

We will consider spherical symmetry, and work with
the line element

ds2 = −e2νdt2 + e2µdr2 + r2dΩ2 , (6)

with µ = µ(r, t) and ν = ν(r, t), being this last func-
tion the Newtonian potential. The energy momen-
tum tensor of the scalar field has then the compo-
nents

−T 0
0 = ρΦ =

e−2νΦ̇2 + e−2µΦ′2

2
+ V (Φ) , (7)

T01 = PΦ = Φ̇Φ′ , (8)

T 1
1 = pr =

e−2νΦ̇2 + e−2µΦ′2

2
− V (Φ) , (9)

T 2
2 = p⊥ =

e−2νΦ̇2 − e−2µΦ′2

2
− V (Φ) ,(10)

and also T 3
3 = T 2

2 . These different components are
identified as the energy density ρΦ, the momentum
density PΦ, the radial pressure pr and the angular
pressure p⊥. The integrated mass is defined by

M(x) = 4π

∫ x

0

ρΦ(X)X2dX . (11)

The radial and angular pressures are two nat-
ural components of the scalar field which stop the
collapse, avoiding the cusp density profiles in the
centers of the collapsed objects. This is the main
difference between the normal dust collapse and the
SFDM one. The pressures play an important role
in the SFDM equilibrium. In order to see this, and
considering that galaxies are almost flat, we conclude
that the Newtonian approximation should be suffi-
cient to describe the processes. In this section we
will take the flat space-time approximation.

Thus, we study a massive oscillaton without self-
interaction (i.e. with potential V = 1/2(m2

ΦΦ2)),
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152 BERNAL, MATOS, & NÚÑEZ

in the Minkowski background (µ ∼ ν ∼ 0). Even
though it is not a solution to the Einstein equations
as we are neglecting the gravitational force provoked
by the scalar field, the solution is analytic and it
helps us to understand some features that appear in
the non-flat oscillatons.

In a spherically symmetric space-time, the Klein-
Gordon equation ηαβ∂α∂β Φ − dV/dΦ = 0, (where
ηαβ∂α∂β stands for the D’Alambertian), reads

Φ′′ +
2

r
Φ′ − m2

ΦΦ = Φ̈ , (12)

where over-dot denotes ∂/∂t and prime denotes
∂/∂r. The exact general solution for the scalar field
Φ is

Φ(t, r) =
e±ikr

r
e±iωt , (13)

and we obtain the dispersion relation k2 = ω2 −m2
Φ.

For ω > mΦ the solution is non-singular and vanishes
at infinity. We will restrict ourselves to this case.
It is more convenient to use trigonometric functions
and to write the particular solution in the form

Φ(t, x) = Φ0
sin(x)

x
cos(ωt) , (14)

where x = kr. It oscillates in harmonic manner
in time. The scalar field can be considered to be
confined to a finite region (see Ureña-López 2002;
Ureña-López et al. 2002).

The analytic expression for the scalar field energy
density derived from equation (14) is

ρΦ =
Φ0

2 k2

2x2

[(

(

sin(x)

x
− cos(x)

)2

−k2 sin2(x)

)

cos2(ω t) + ω2 sin2(x)

]

, (15)

which oscillates with a frequency 2ωt. Observe that
close to the central regions of the object, the density
of the oscillaton behaves like

ρΦ ∼ 1

2
Φ0

2k2
[

ω2 − k2 cos2 (ω t)
]

+ O(x2) , (16)

which implies that when x → 0 the central density
oscillates around a fixed value.

On the other hand, the asymptotic behavior
when x → ∞, is such that ρΦ ∼ 1/x2, i.e., far away
from the center, in this approximation, the flat oscil-
laton density profile behaves like the isothermal one.
The mass function oscillates around M ∼ x, as usual
for the galactic halos.

0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30

ρ S
FD

M
 

r (kpc)

t=0
t= 15

Fig. 1. The energy density profile for the Scalar Field
Dark Matter model. The parameters used in this plot
are mΦ = 20, ω = 20.001, Φ2

0 = 5 × 10−2. The density is
given in arbitrary units and r is given in kpc.

In order to understand what is happening within
the object, observe that the KG equation can be
rewritten in a more convenient form in terms of the
energy density, as

∂ρΦ

∂t
− 1

r2

∂

∂r

(

r2PΦ

)

= 0 . (17)

This last equation has a clear interpretation:
Since its form looks like the conservation equation,
ρ̇ + ∇ · ~J = 0, equation (17) represents the conser-
vation of the scalar field energy. It also tells us that
there is a scalar field current given by

~JΦ = −PΦ~r

= Φ2
0

kω

2

[

x cos(x) − sin(x)
] sin(x) sin(2ωt)

x3
~r.

Observe that the quantity involved in this current
is the scalar field momentum density (equation 8).
Although the flux of scalar radiation at large dis-
tances does not vanish, there is no net flux of en-
ergy, as it can be seen by averaging the scalar current
over a period of a scalar oscillation. We also see that
the only transformation process is that of the scalar
field energy density into the momentum density, and
viceversa. For the realistic values (equation 3) this
transfer is very small.

In Figure 1 we show the behavior of the SFDM
density profile for a typical galaxy and in Figure
2 we show the comparison between the NFW, the
isothermal and the SFDM density profiles for the
same galaxy. Observe that the SFDM and NFW
profiles remain very similar up to 10 kpc, then the
SFDM profile starts to follow the isothermal one.
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Isothermal Profile
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Fig. 2. Comparison between the energy density profile for
the Scalar Field Dark Matter model with the NFW and
the Isothermal models. The parameters for the isother-
mal model are ρIso = 0.3/(r2 + 82) and for the NFW
profile are ρNFW = 10/(r(r +8)2). The parameters used
for the SFDM model are the same as in the previous
figure.

In the next section we will see that if the grav-
itational force is taken into account, the oscillaton
is more confined (see also Ureña-López 2002; Ureña-
López et al. 2002; Alcubierre et al. 2003). The pa-
rameters used in the figures correspond to a medium
size galaxy.

3. WEAK FIELD LIMIT EQUATIONS

In this section we derive a novel method for in-
tegrating the perturbed EKG equations and show
that the solutions are in very good agreement with
the numerical ones. This allows us to use these so-
lutions to fit the rotation curves of several observed
LSB galaxies.

Within general relativity, the evolution of the
scalar and gravitational fields is governed by the cou-
pled EKG equations, the last one appearing from the
conservation of the energy-momentum tensor

Rαβ = κ0Sαβ , (18)

Tαβ ;β = Φ,α(∇2 − m2)Φ = 0 , (19)

here Rαβ is the Ricci tensor, Sαβ = Tαβ −
(1/2)gαβTλ

λ, and ∇2 = (1/
√−g)∂µ[

√−ggµν∂ν ] is
the covariant D’Alambertian operator.

For simplicity, we continue to consider the non-
static spherically symmetric case, given by equa-
tion (6). As usual in the weak field limit, we suppose
the metric to be close to the Minkowski metric ηαβ

gαβ = ηαβ + hαβ , (20)

where |hαβ | � 1, then we will consider an expansion
of the functions in the metric of the form

e2ν(t,r) = 1 + ε22V (t, r) + O(ε4) ,

e2µ(t,r) = 1 + ε22U(t, r) + O(ε4) , (21)

where ε is an expansion parameter. We also consider
that the spatial and time derivatives of the geometric
quantities are regarded like

∂

∂t
∼ ∂

∂r
. (22)

Then to first order in ε2 the Ricci tensor components
are, respectively,

Rtt = V,rr −U,tt +
2

r
V,r ,

Rrr = U,tt −V,rr +
2

r
U,r ,

Rtr =
2

r
U,t . (23)

On the other hand, the source is computed in the
flat space in this case as well, thus the scalar field
satisfies to ε2 order equation (12), as in the previous
section.

It is important to emphasize that the relation
(equation 22) is the lowest one in the geometric
fields, but it does not consider small velocities for the
sources. This is different from the Newtonian limit
where the derivative relation for the scalar field is
∂r ∼ ε∂t and ∂t ∼ ε∂r for the geometric fields (see
Seidel & Suen 1990; Guzmán & Ureña-López 2004).

Consistent with the Tαβ computed in the flat
space-time, the right hand side elements in Einstein’s
equations are written as

Stt = Φ,t Φ,t −
1

2
m2|Φ|2 ,

Srr = Φ,r Φ,r +
1

2
m2|Φ|2 ,

Str = Φ,r Φ,t . (24)

In this case it is convenient to introduce the dimen-
sionless quantities

x = mr , τ = mt , Ω =
ω

m
, (25)

where we note that the bosonic mass m is the natural
scale for time and distance. In terms of these new
variables the general solution to equation (13) takes
the form

Φ(τ, x) =
1

x
exp

(

± ix
√

Ω2 − 1
)

exp
(

± iΩτ
)

. (26)
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The physical properties of the solution depend on
the ratio Ω ≡ ω/m. For Ω < 1 the solution decays
exponentially but it is singular at r = 0. On the
other hand, Ω > 1 allows for non-singular solutions
which vanish at infinity. We will restrict ourselves
to this case. We will write the particular solution in
the form

√
κ0Φ(τ, x) = φ(x) cos(Ωτ) , (27)

where the spatial function is given by

φ(x) = φ0
sin(x

√
Ω2 − 1)

x
. (28)

Because of the functional form of the scalar field
(equation 27) we introduce the following ansatz for
the metric perturbations (equation 21)

V (τ, x) = V0(x) + V2(x) cos(2Ωτ) ,

U(τ, x) = U0(x) + U2(x) cos(2Ωτ) . (29)

We adopt the following method to solve the EKG
equations. In the first approximation we substitute
the solution of a lower approximation (the flat case)
into the next approximation (with ε2) and solve the
resulting differential equations. As we will see, this
standard approximation works well in our case. In
terms of these expressions the Einstein’s equations
Rαβ = κ0Sαβ finally read

ε2
[

4

x
U2

]

=
1

2
φφ,x , (30)

ε2
[

V0,xx +
2

x
V0,x

]

=
1

2

(

Ω2 − 1

2

)

φ2 ,

ε2
[

V2,xx +
2

x
V2,x +4Ω2U2

]

= −1

2

(

Ω2 +
1

2

)

φ2,

ε2
[

−V0,xx +
2

x
U0,x

]

=
1

2

(

φ,2x +
1

2
φ2

)

,

ε2
[

−V2,xx +
2

x
U2,x −4Ω2U2

]

=
1

2

(

φ,2x +
1

2
φ2

)

.

3.1. Scaling properties

From System (30) we know that the scalar field’s
maximum amplitude φ(0) = φ0

√
Ω2 − 1 could be

taken as the expansion parameter ε and in this case
Ω must be of order 1. Then it is always possible to
solve the System (30) ignoring ε and replacing φ by
its normalized function

φ̂(x) =
sin(x

√
Ω2 − 1)

x
√

Ω2 − 1
. (31)

Solutions φ̂, U0, U2, V0, V2 of this normalized system
depend only of the arbitrary characteristic frequency

Ω which modulates the wave length of φ̂. On the
other hand, for each value of Ω there is a complete
family of solutions of the scalar field φ and the metric
perturbations hαβ which are related to each other by
a scaling transformation characterized by φ0

√
κ0Φ = φ0

√

Ω2 − 1φ̂ cos(Ωτ) , (32)

hrr = φ2
0(Ω

2 − 1)[2U0 + 2U2 cos(2Ωτ)] ,

htt = −φ2
0(Ω

2 − 1)[2V0 + 2V2 cos(2Ωτ)] ,

In this context the weak field limit condition hαβ �
1 translates into

φ2
0(Ω

2 − 1)|2V | � 1, φ2
0(Ω

2 − 1)|2U | � 1 . (33)

Here we will introduce a specific notation for the
spatial functions of the metric perturbations:

h(0)
rr = φ2

0(Ω
2 − 1)2U0 , (34)

h(2)
rr = φ2

0(Ω
2 − 1)2U2 ,

h
(0)
tt = φ2

0(Ω
2 − 1)2V0 ,

h
(2)
tt = φ2

0(Ω
2 − 1)2V2 .

3.2. Metric perturbations solutions

The system of equations (30) can be solved and
the spatial functions of the metric perturbations
have analytic solutions given by

U2 =
1

8(Ω2 − 1)

[

− sin2(x
√

Ω2 − 1)

x2

+

√
Ω2 − 1

2

sin(2x
√

Ω2 − 1)

x

]

,

V0 =
(2Ω2 − 1)

8(Ω2 − 1)

[

sin(2x
√

Ω2 − 1)

2x
√

Ω2 − 1

− Ci(2x
√

Ω2 − 1)

+ ln(2x
√

Ω2 − 1)

]

− CV 01

x
+ CV 02,

V2 =
1

8(Ω2 − 1)

[

√
Ω2 − 1

2

sin(2x
√

Ω2 − 1)

x

+ Ci(2x
√

Ω2 − 1)

− ln(2x
√

Ω2 − 1)

]

+ CV 22,

U0 =
1

8(Ω2 − 1)

[

− 1

2x2
+

1

2

cos(2x
√

Ω2 − 1)

x2

− 1

2

sin(2x
√

Ω2 − 1)

x
√

Ω2 − 1

]

+
CV 01

x
+ CU01, (35)

where Ci is the cosine integral function and CV 01,
CV 02, CV 22, and CU01 are integration constants.
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3.3. Weak Field Validity Range

From equation (13) it is evident that, in the limit
in which we are working, the KG equation is decou-
pled from Einstein equations. Imposing regularity at
the origin and asymptotic flatness to the KG solu-
tion we have chosen equation (27) with equation (28)
as our scalar field particular solution where φ0 and
Ω > 1 are still free parameters.

On the other hand, regularity at x = 0 requires
hrr(x = 0, τ) = 0 which implies

CV 01 = 0, CU01 =
Ω2

8(Ω2 − 1)
; (36)

then for the perturbations CV 02 and CV 22 are still
free integration constants. Now we will describe the
asymptotic behavior of these perturbations. Due to
U2 being at least one order of magnitude smaller
than U0 and its value oscillating around zero, it
is U0 which determines the behavior of hrr. The
U0 value starts to oscillate, very near to the origin,
around CU01 maintaining this behavior asymptoti-
cally. Then the asymptotic value of hrr is the finite
CU01 value. Contrary to this htt, due to the loga-
rithm terms in V0 and V2, htt, is singular at infinity.
Thus, the weak field condition (equation 33) is ful-
filled only in a finite spatial region around the origin,
i.e., due the the approximation the solution is con-
tained in a box, for which the walls are sufficiently
far away from the center of the solution. We will say
that this is the region where our weak field approxi-
mation is valid.

Unique solutions for the EKG system will be ob-
tained fixing the φ0 and Ω parameters and the con-
stants CV 02 and CV 01 within the validity range of the
approximation. As it is known, the measurement of
potentials does not have physical sense by itself; then
unique solutions will be determined through metric
dependent observable quantities. Using the expres-
sions given by equations (34), we can obtain the per-
turbed metric functions in terms of these solutions.
In Figure 3 we present a plot of these metric per-
turbation functions, as well as of the scalar field, for
two values of Ω.

It is important to mention that the width of the
validity region where equation (33) is fulfilled, de-
pends on Ω and φ0. This is because it is the fac-
tor φ2

0 which modulate the perturbations, (see equa-
tion (32)). What it is not evident until the solutions
(equation 35) are observed is that the Ω value, in-
dependently from φ0, could make the validity range
width bigger. This is because in the logarithm argu-
ment there is the expression

√
Ω2 − 1, then as Ω is

closer to one the logarithm terms rise more slowly.

Fig. 3. Profiles of φ(x), h
(2)
rr (x), h

(0)
rr (x), h

(2)
tt (x) and

h
(0)
tt (x) with φ0 = 1; see text for details.

The order of magnitude for the other parameter
in the metric perturbations, φ0, can be naturally de-
termined from the asymptotic value taken by hrr,
which is reached very close to the origin

lim
x→∞

|hrr| =
φ2

0

4
Ω2 . (37)

As Ω is nearly 1 the magnitude of hrr is given by φ0.
It is well known that for weak field systems like our
Solar System the metric perturbations go like hαβ ∼
10−6. This value restricts our φ0 to be φ0 ∼

< 10−3.

3.4. Analytical Solutions vs Numerical Solutions

Analytical solutions φ0, h
(2)
rr (x), h

(0)
rr (x), h

(2)
tt (x)

and h
(0)
tt (x) are shown in Figure 3. The value of

φ0 is 1 in both plots. As already noted, the value
of Ω characterizes each family of solutions. Mainly
Ω determines the wave length of φ and the rate of

increase of h
(0)
tt and h

(2)
tt ; as Ω is closer to 1, this

rate is smaller. These characteristics are shown in
Figure 3.
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Fig. 4. (Top) Spatial function φ of the scalar field Φ.
Solid and dashed lines are analytical solutions with φ0 =
0.001/(Ω2

− 1)1/2 = 0.001591, and φ0 = 0.002/(Ω2
−

1)1/2 = 0.001946, respectively. The crosses are the
corresponding numerical solutions with φ1(0) = 0.001,
Ω = 1.181008 and φ1(0) = 0.002, Ω = 1.433822; see text

for details. (Bottom) Spatial functions h
(0)
tt and h

(2)
tt of

the metric perturbations.

The exact EKG equations for spherical symmetry
with a quadratic potential were solved numerically in
Ureña-López (2002) and Ureña-López et al. (2002),
where the so-called oscillatons where found. In those
works boundary conditions are determined by requir-
ing non-singular and asymptotically flat solutions,
for which the EKG become an eigenvalue problem.
The free eigenvalue is the scalar field’s central value
φ1(x = 0) which labels the particular equilibrium
configuration, and the fundamental frequency Ω is
an output value. In those works it was also noted
that weak gravity fields are produced by oscillatons
with φ1(x = 0) � 1. In Figure 4 we compare some
of these numerical solutions (NS) with the analytical
solutions (AS) within a central region. The constant
values of the AS are fixed to better fit the NS inside
the weak field validity range. From these plots we

Fig. 5. (Top) Energy-momentum density profiles for two
scalar field configurations, one with φ0 = 1.1591 × 10−3

and Ω = 1.181008, and the other with φ0 = 5.2225×10−3

and Ω = 1.153246. (Bottom) Difference between the
density profiles from the exact EKG equations (ρN ) and
the density computed in the flat space-time (ρ); see text
for details.

can conclude that our solutions are a very good ap-
proximation to the exact EKG equations in the weak
field limit. The principal advantage of this approxi-
mation is the analytical description of the solutions.

4. SCALAR FIELD AS DARK MATTER: HALO
DENSITY PROFILE

In this section we explore whether or not the
scalar field could account for the galactic DM ha-
los. Specifically, we compare the SFDM model den-
sity profile and the profiles inferred throughout the
rotation curves profiles of galaxies which are mostly
formed by DM.

As long as we are concerned with perturbations of
the flat space-time due to the scalar field, we do not
consider the baryonic matter gravitational effects, we
expect that our approximation will be better suited
for galaxies with very small baryonic component.
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TABLE 1

GALACTIC PARAMETER VALUES

Galaxy Ω φ0 χ2 ρ(r = 0) ∆ρ(0) T

[M�/pcs3] [M�/pcs3] [yrs]

ESO0140040 1+ 8 × 10−9 1.87 × 10−3 12.366 0.569 × 10−1 0.755 × 10−8 1.603382750 × 107

ESO0840411 1+ 6 × 10−9 5.95 × 10−4 1.338 0.433 × 10−2 0.147 × 10−9 1.603953416 × 107

ESO1200211 1+53 × 10−9 2.04 × 10−4 10.062 0.448 × 10−2 0.530 × 10−9 1.603382679 × 107

ESO1870510 1+12 × 10−9 3.28 × 10−4 3.190 0.265 × 10−1 0.699 × 10−8 1.603382570 × 107

ESO2060140 1+18 × 10−9 9.18 × 10−4 65.421 0.308 × 10−1 0.206 × 10−8 1.603382735 × 107

ESO3020120 1+29 × 10−9 6.88 × 10−4 16.099 0.279 × 10−1 0.170 × 10−8 1.603382718 × 107

ESO3050090 1+40 × 10−9 4.72 × 10−4 1.224 0.181 × 10−1 0.243 × 10−8 1.603382699 × 107

ESO4250180 1+ 4 × 10−9 1.27 × 10−3 5.221 0.132 × 10−1 0.105 × 10−8 1.603382757 × 107

ESO4880049 1+ 3 × 10−9 7.86 × 10−4 11.410 0.377 × 10−1 0.212 × 10−8 1.603382715 × 107

Fig. 6. Density profile fits for the galaxies ESO0140040, ESO2060140. The right panel is a zoom of the central region,
plotted in order to visualize complete error bars. Units for the horizontal axes are kpc, for the vertical axes M�/pc3.
See text and Table 1 for fit details.

We will compare the energy-momentum density
for the scalar field given by equation (7), in the rela-
tivistic weak limit approximation, where for the met-
ric functions, equation (21), we use the solutions to
the perturbations given by equations (29) and (35).

This is consistent with the fact that gravity does
not modify the scalar field behavior. This approxi-
mation in the weak gravitational field limit is very
good as we can see in Figure 5. In the plots we
show the energy-momentum density profiles for two
scalar field configurations with different maximum
amplitudes at the origin φ(0) = φ0

√
Ω2 − 1. It is

important to notice that as φ(0) decreases the gravi-
tational field gets weaker, and the difference between
the density from the complete EKG equations and
from our approximation becomes smaller.

The density profile fits allow us to obtain an es-
timation of the parameters at the galactic level: the
fundamental frequency Ω and the scalar field con-
stant φ0. The third parameter involved in the den-
sity profiles is the scalar field mass; we will fix it to be
m = 10−23 eV. This value was fitted for the SFDM
model from cosmological observations in Matos &
Ureña-López (2001).
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Fig. 7. The same as Figure 6, but for the galaxies ESO3020120, ESO3050090.

Fig. 8. The same as Figure 6, but for the galaxies ESO4250180, ESO1200211.

4.1. Density Profile Fits

The first qualitative feature of the energy-density
profile that we want to emphasize is that in the cen-
tral region it is non-cuspy (see Figure 5). It is im-
portant to take into account that instead of density
profiles, rotation curves are the direct observable for
galaxies. Nevertheless, for galaxies dominated by
DM, their rotation curves could model the DM den-
sity profile more trustfully. We choose a subset of
galaxies from the set presented in McGaugh, Rubin,
& de Blok (2001), the common characteristic for the

selected galaxies is that the luminous matter velocity
contribution to the rotation curves is almost null.

With the scalar field mass m fixed, the profile
fits were made for the Ω and φ0 values with a good
χ2 statistic, see Table 1. In most of the cases the
non-central observational data were the better fitted
points; those data points also had smaller error bars.
The density profile fits are depicted in Figures 6, 7,
8, 9, where we show several galaxies with the density
computed from the observed rotational profile versus
the density obtained with our SFDM description. In
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some of them we were able to compare regions within
less than 0.5 kpc.

In Table 1 the fundamental frequency Ω is listed
for each galaxy. We found that the temporal de-
pendence for the energy-momentum density profile
is harmonic with a temporal period T = π/Ω. The
column ∆ρ(0) corresponds to the maximum change
in the central density for a period of time T . Finally
for all the galaxies the φ0 value lies well inside of the
weak gravitation field limit φ0 ∼

< 10−3.

5. CONCLUSIONS AND FUTURE PROSPECTS

We have found analytic solutions for the EKG
equations, for the case when the scalar field is con-
sidered as a test field in a Minkowski background,
and in the relativistic weak gravitational field limit
to first order in the metric perturbations. With these
solutions we have shown that non-trivial local behav-
ior of the scalar field holds the collapse of an object
formed from scalar field matter. The scalar field con-
tains non trivial, natural effective pressures which
stop the collapse and prevent the centers of these
objects from having cusp-lke density profiles. Even
within this simple approximation it has been possi-
ble to fit, with relative success, the density profiles
for some galaxies showing non-cuspy profiles.

Together, all the features of the SFDM model al-
low one to consider this model as a robust alternative
candidate to be the dark matter of the Universe, as
was suggested by Guzmán & Matos (2000), Matos
& Guzmán (2000, 2001), and Matos, Guzmán, &
Núñez (2000). Furthermore, it has been shown pre-
viously that dark halos of galaxies could be scalar
solitonic objects, even in the presence of baryonic
matter (Hu, Barkana, & Gruzinov 2000; Lee & Koh
1996; Arbey, Lesgourgues, & Salati 2001, 2002; Sin
1994; Ji & Sin 1994). Actually, the boson mass esti-
mated in all these different approaches roughly coin-
cides with the value mΦ ∼ 10−23eV, even if the later
was estimated from a cosmological point of view,
Matos & Ureña-López (2001). We can appreciate the
non-trivial characteristics of the proposed potential
(equation 2): Its strong self-interaction provides a re-
liable cosmological scenario, while at the same time
it has the desired properties of a quadratic poten-
tial. Finally, the results presented here fill the gap
between the successes at cosmological and galactic
levels.
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Fig. 9. Density profile fits for the galaxies ESO1870510,
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