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RESUMEN

Desde el punto de vista anaĺıtico, un asunto natural de estudio en un sistema
binario en órbita circular es la consecuencia de la conservación de la constante de
Jacobi (CJ). La implicación principal es que para cada part́ıcula existen zonas
permitidas y prohibidas. Este esquema es válido al incluir interacciones entre las
part́ıculas; esto únicamente significa que CJ y el espacio de configuración permitido-
prohibido depende del tiempo. La formación y evolución inicial de un disco alrede-
dor de una estrella aislada se interpreta de acuerdo con este marco. Extendemos
este modelo para el caso en el cual se tiene una estrella secundaria pequeña. Las
estimaciones observacionales de la razón entre las masas del disco circunprimario y
circunbinario son congruentes con un conjunto de simulaciones SPH en el cual la
razón entre la separación entre las estrellas y el radio del disco es el parámetro que
cambia. Se usa GW Ori como ejemplo.

ABSTRACT

The consequences of the conservation of the Jacobi constant (CJ) are studied
here analytically for a circular binary system. The main result is that for every
particle there are prohibited and allowed zones. This scheme is valid with the
inclusion of interactions between the particles in the orbital plane of the binary
system; this means that CJ and the allowed-prohibited configuration space are
time-dependent. The formation and initial evolution of a disk around an isolated
star is interpreted according to this work. We extend this model for the case where
there is a small secondary star and argue that observational estimates of the ratio
between circumprimary and circumbinary disk masses are consistent with a set of
SPH simulations in which the ratio between the separation of the stars and the disk
radius is the parameter that varies. GW Ori is used as an example.
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1. INTRODUCTION

Specific values of disk masses clearly depend on
the details of their formation, including the charac-
teristics of the parent cloud, and also the interactions
between the disk and the binary system, or any other
external influence. Additionally, direct observations
of disks require very high spatial resolution. This
is a difficult task, and in fact for the same system,
circumstellar or circumbinary disks have not been
resolved yet by observations. On top of that, the es-
timation of disk masses is clearly model-dependent
(see § 2).

Numerical simulations (Bate 2000) of binary sys-
tem formation suggest that a continuous infall from
the cloud feeds the system until it arrives at its final

stable configuration. During this time a disk forms
and continually loses material to the star, resulting
in angular momentum transport, which is necessary
for the material to accrete. This argument suggests
that the final disk, formed during a characteristic
time ∆t � tff (where tff is the free fall time for
the last section of the cloud that forms the binary
system), and the double dense ring pattern disk de-
scribed in Nagel (2007a) is the expected outcome.

We describe the formation of disks in the state
when material is still falling from the cloud into the
orbital plane; thus, the system is in the embedded
stage. Only now are observational techniques avail-
able that allow a system deep inside its parental
cloud to be seen. An example of such a system is
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86 NAGEL

NGC 1333 IRAS 4 (Smith et al. 2000), which is
resolved as a binary system with a common enve-
lope around both components. Hence, the idea of
cloud material falling towards a binary seems rea-
sonable. One of the components is the binary it-
self; its elongated shape can be interpreted as a cir-
cumbinary disk (Smith et al. 2000). A circumbi-
nary disk is present in the collapsing stage, consis-
tent with the configuration we are describing in this
paper. The infall-disk interface has been observed in
methanol emission (Velusamy, Langer, & Goldsmith
2002); thus, present technology permits the study of
this kind of object.

Following Nagel (2007a), it is possible to estimate
disk masses by dividing the material that falls from
the cloud during the time ∆t in three parts. The in-
ner part of the cloud, which corresponds to material
with the smallest values of specific angular momen-
tum, is absorbed by the star. An intermediate zone
of the cloud is associated to an inner ring (see Nagel
2007a). However, the material in this ring arrives
later in the evolution; thus, it is not considered here.
In this work, we consider a slab of material that lands
in the orbital plane at some time, and represents all
the mass accreted during a time ∆t. The external
part of the cloud with larger values of specific an-
gular momentum will feed the outer dense ring as
described in Nagel (2007a). In this paper we try to
convince the reader that most of this material set-
tles in the circumbinary disk; the remaining material
finds its way to a circumstellar disk. In this way, we
can assign relative masses to the circumbinary and
circumstellar disks; this is described in § 4.4. All
these parts correspond to the different ranges in the
specific angular momentum (γ) of the cloud. If the
scheme of an isolated star is assumed, then the mass
of the secondary star (Ms) is much less than the mass
of the primary star (Mp).

This paper approximates the problem as three-
body interactions (a falling particle and two stars)
assuming Ms � Mp, in order to explore the conse-
quences of the conservation of the Jacobi constant
(CJ). All this leads us to configurations with al-
lowed and prohibited regions, where the zero-velocity
surfaces (Szebehely 1967; Murray & Dermott 1999)
are the boundaries between these zones. Relevant
configurations are the ones that restrict some of the
material inside the orbit of the secondary to form a
circumprimary disk, and outside of it, to form a cir-
cumbinary disk. Similar ideas are applied in general
to a planetary system around a binary system (Sze-
behely 1980) looking for stability of planets and for

outer planetary systems by Szebehely & McKenzie
(1981).

The material associated with the circumprimary
disk will be shared between both circumstellar disks
when the secondary star is present. Our assumption
is that Ms � Mp allows for the larger mass star
to attract most of this material. In this sense, the
amount of material associated with a circumstellar
disk correlates with the mass of the star. In our
analysis, we do not generate any estimation for the
secondary disk mass; thus, we cannot determine how
small it is compared with the other two disks.

The radii where the curves of zero-velocity are
located in the orbital plane are given in units of the
separation between the stars (a). The ratio between
a and the other distance of the problem, Rd, is called
y = a/Rd. Here, Rd is a typical disk size. y mea-
sures the importance of angular momentum trans-
port processes during the binary system formation
(see § 3.2). Finally, we present a set of simulations
for various values of this parameter y.

Thus, the aim of this paper is to give an es-
timation for the circumprimary and the circumbi-
nary disk masses. For a precise estimation for both
masses, a model including the interactions between
particles and between the particles and the stars will
be necessary.

We have organized the paper as follows: § 2 gives
a review of the difficulties and uncertainties for the
disk mass estimations from the observational point
of view. The next section (§ 3) characterizes the
falling cloud, pointing out the processes of angular
momentum transport required for the material to
arrive at the star. In § 4 we give a description for
the restrictions obtained from the conservation of CJ

when the 3-body approximation is used. § 5 analyzes
a series of simulations that confirm the idea that the
influence of the secondary star is able to restrict the
material to circumprimary and circumbinary disks.
The next section (§ 6) contains the main conclusions.

2. OBSERVATIONAL ESTIMATES OF DISKS
MASS

From the observational viewpoint, at present it is
not possible to easily disentangle the mass contribu-
tion of each disk from the total flux that is detected.
The first targets were isolated stars, where it is eas-
ier to separate the flux from the disk from that of
the star with the use of a model for the disk (Osorio
et al. 2003; D’Alessio, Calvet, & Hartmann 1997).
Both the identification and characterization of a disk
in isolated stars or in binary systems require a model
for the disk. An estimation of the disk mass, for in-
stance of a disk seen edge-on, which hides some of
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the radiation of the star (Stapelfeldt et al. 1998, for
HK Tau/c) requires the assumption of some charac-
teristics of the disk, such as temperature and opacity
of the material.

In many cases the disk is not resolved; thus the
spectral energy distributions (SEDs) should be in-
terpreted with a model for the disk (designating sur-
face density, temperature, inner and outer radius,
opacity, etc.), which have many free parameters to
fix. Isolated star studies are highly successful (Os-
orio et al. 2003; D’Alessio et al. 1997). However,
for the binary systems, the number of free parame-
ters increases (there are more disks), and the uncer-
tainty attached to them makes the estimates unreli-
able (Mathieu 1994).

Some observations, mainly from mm to radio
(Jensen & Akeson 2003; Weintraub, Zuckerman, &
Masson 1989; Guilloteau, Dutrey, & Simon 1999), re-
solve the disk and impose very strong restrictions on
the spatial distribution of material, at least a min-
imum value for the size of this region (undetected
material outside it could exist). However, an as-
sumption about the optical characteristics of the disk
material is still required. On the other hand, tracing
all the disk material from the intensity observed can
be done with the assumption that all the material
is optically thin (Jensen, Koerner, & Mathieu 1996;
Jensen & Akeson 2003 for HK Tau, DK Tau and UX
Tau and Mathieu et al. 1995 for GW Ori), which is
commonly used. Thus, a given value for the opacity
is always required; in GW Ori (Mathieu et al. 1995),
a typical error in this quantity implies a factor of 3
in the estimate of the disk mass. Another parameter
to fix is the temperature. Mass estimates in Math-
ieu et al. (1995) vary by a factor of two when the
temperature does the same.

In unresolved disks, a common model is an op-
tically thick α-disk (α prescription for the viscosity,
Shakura & Sunyaev 1973) for the adjustment of the
SED. In the case of UY Aur (Close et al. 1998),
a suitable α gives disk-mass accretion rates in the
range Ṁ ≈ 10−8 to 10−7 M� yr−1 and disk masses
ranging from Md ≈ 10−6 M� to 10−5 M�, account-
ing for both circumstellar disks.

The simplest disk configuration in a binary sys-
tem is a disk around the primary; a gap that contains
the orbit of the secondary which mimics the clear-
ing effect of the binary (see Artymowicz & Lubow
1994), and a circumbinary disk (Mathieu et al. 1995;
Jensen & Mathieu 1997). This configuration corre-
sponds to the Ms = 0 case (see § 4.3).

The binary system GW Ori is analyzed impos-
ing this configuration in Mathieu et al. (1995), who

find Mp ≈ 2.5M� and Ms ≈ (0.3 − 1.3)M�. Thus,
taking the lower limit for Ms, it is reasonable to as-
sume that Ms = 0. Moreover, the eccentricity of the
binary orbit can be taken as ε = 0 (ε = 0.04 ± 0.06
is given in Mathieu, Adams, & Latham 1991). Both
choices (circular orbit and no secondary star), allow
the application of the conclusions in § 4.3 and § 4.4
to this system for the comparison between both disk-
mass estimates.

From the observational point of view, an ad hoc

system has not been found until now because there
are no images for circumstellar or circumbinary disks
in the same system. This information is required to
get a better estimate for both disk-masses. In conclu-
sion, the observational estimations of these masses
are strongly model-dependent, as well as the com-
parison of these results and the analysis presented in
this paper.

Binary systems with separations of only a frac-
tion of an AU are also very useful for our pur-
poses, because such a configuration allows to easily
find circumbinary disks (Bate 2000; Mathieu et al.
1995). One such system is UZ Tau E, for which
ε = 0.237 ± 0.030 (close to a circular orbit) and
q = Ms/Mp = 0.28 ± 0.01. Remember that ε = 0
and q � 1 are necessary assumptions in the models
presented in § 4.3 and § 4.4.

Another important assumption throughout this
work is that the circumbinary disk and the binary or-
bit are coplanar. T Tau is a system extensively stud-
ied (Hogerheijde et al. 1997; Weintraub et al. 1989),
for which the masses of the circumstellar and cir-
cumbinary disks are estimated. Unfortunately there
is evidence that the binary orbit and disks are not
in the same plane (Hogerheijde et al. 1997). For HK
Tau (Duchene et al. 2000), a 1.3 mm flux is observed
either around the secondary or around the primary,
but the material in the latter is not detected in the
optical or near-infrared. Thus, for this system, it is
suggested that the disks are not coplanar. It should
be remembered that material falling from a rigidly
rotating cloud (see § 3.1) naturally defines a symme-
try plane (orbital plane), where the stars and disks
should lie.

Four spectroscopic binary systems (a < 1 AU)
are studied in Jensen & Mathieu (1997); the system
that can be described by the method presented here
is V4046 Sgr, (a = 0.04AU), which is circular. De-
pletion of emission in the near-infrared suggests the
existence of a gap cleared by the binary. Jensen &
Mathieu (1997) use the radii for the boundaries of
the gap, Rin = 0.4a and Rout = 1.8a, given in Arty-
mowicz & Lubow 1994. The observed SED cannot
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be reproduced by a disk with this size. They allow
variations in Rin and Rout and the best fit requires
Rin = R? (R? is the star radius) and Rout = 0.18AU;
thus, in their interpretation for this system, only a
circumbinary disk is present. This does not contra-
dict our conclusions or typical observations (Dutrey,
Guilloteau, & Simon 1994), because circumbinary
disks are always present, and they are at least an
order of magnitude more massive that the circum-
stellar ones (Duvert et al. 1998).

3. MAIN STATEMENTS

3.1. Characterization of material that falls from the

cloud

The next step is to characterize the material that
falls from the cloud towards the stellar system; this
material will ultimately form the disk. The matter
begins its collapse far away from the stars. Assum-
ing that the cloud is rigidly rotating, the solution of
Ulrich (1976) can be used to describe the initial ve-
locity and trajectory of each particle. The cloud can
be taken as rigidly rotating because the magnetic
field lines tend to enforce it (Mouschovias & Pale-
ologou 1979). However, in this paper we ignore the
influence of the magnetic field, since the magnetic
pressure is not enough to halt the collapse.

For the initial condition, our assumption is that
a particle only feels the gravitational force of the
central object, and thus Ulrich’s solution can be
taken. A necessary condition to take this solution
is that Rd (the largest Keplerian orbit that can be
formed) is larger than a (distance between the stars
in a binary system). Here, this assumption is always
used. In Nagel (2007a) the velocity field and den-
sity on the orbital plane were deduced, and it was
also shown that the radius (in units of Rd) where
a particle first intersects the orbital plane is equal
to the specific angular momentum in units of γ∞,
which is the maximum specific angular momentum
on the orbital plane at the time of disk formation. As
described in Nagel (2007a), the angular momentum
completely determines the evolution of the particles
in this plane. For a disk in an isolated star this is
the model required. For a binary system, the an-
gular momentum is not an integral of motion, thus,
the description of this three body problem should be
done using the Jacobi constant CJ, which is the only
quantity that is conserved in the circular restricted
3-body model (two stars and a particle). Both here
and in the two-body problem, the conservation of
the angular momentum defines a prohibited region;
thus, material should not be at the left of the min-
imum radius curve (see Nagel 2007a for details). In

conclusion, in both cases, a conservation argument
puts restrictions on the space, specifying where the
material can exist.

3.2. Importance of angular momentum transport

processes

As stated before, it is of crucial importance to
compare the two characteristic distances of the prob-
lem, Rd and a. The latter is a parameter that can
be obtained directly from observations of a partic-
ular system. The disk radius (Rd) is observation-
ally difficult to establish. It depends on the cloud,
which must be related to a, because the binary sys-
tem forms from its collapse. A way to relate the two
quantities is to assume that the angular momentum
of the binary system (Γb) is equal to the angular
momentum contained in the inner region of a rigidly
rotating cloud (Γc); their expressions are given by:

Γb =
√

GM3
? a

q

(1 + q)2
, (1)

Γc =
2

5
M?Rc

2Ωc , (2)

where Ωc is the angular velocity of the cloud. The
stellar mass M? is contained within a spherical ra-
dius Rc and the cloud density prior to collapse is
assumed uniform. The use of another density profile
for the cloud changes the result quantitatively. How-
ever, the main conclusion is the same. Here, q is the
stellar mass ratio Ms/Mp. Using the following realis-
tic values: a = 40AU, Ωc = 3.13× 10−14 s−1 (Jijina,
Myers, & Adams 1999; Bate 2000) and M? = 2M�,
we find Rd = 0.4a, thus Rd < a.

This result is in conflict with the requirement
that the edge of the disk must lie outside the or-
bit of the star, in order to form a circumbinary disk.
Thus, the processes that transport angular momen-
tum outside of the cloud are extremely necessary.
Some momentum can be located in circumstellar and
circumbinary disks, but to form the latter it is clearly
required that Rd > a in the first place; thus, some
mechanisms are still required to remove the angular
momentum that remains.

A way to address this issue is to note that in the
problem of a particle falling towards a two body sys-
tem, the angular momentum is no longer constant,
but a detailed study is still necessary to quantify the
losses in such a case. These losses are calculated by
Bate (2000), where the evolution of a proto-binary
seeded at the center of a collapsing cloud is studied.
For the final configuration (all the mass of the cloud
has accreted) of the simulation of his test (1) (col-
lapse of a rigidly rotating, constant density, cloud),
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the angular momentum assigned to the binary sys-
tem is Γb = 1.469 × 1050 kg cm2 s−1, and for the
cloud it is Γc = 2.49 × 1050 kg cm2 s−1. The con-
dition Γc > Γb is necessary for the formation of a
disk. In the Bate (2000) simulation some angular
momentum is contained in a disk-like structure that
forms during the simulation. If it is assumed that it
rotates with a Keplerian velocity and lies between a
radius equal to a and 2a, (typical values extracted
from the configuration plots of Bate (2000), we find
Γcb = 1.003 × 1050 kg cm2 s−1 for the angular mo-
mentum associated to the circumbinary disk. The
conservation of angular momentum, Γb + Γcb = Γc

is not satisfied. From these calculations it can be
said that some of the angular momentum disappears
from the disk-stars system, fulfilling this requirement
for the real case.

Magnetic braking can be an extremely efficient
mechanism for outward transfer of angular momen-
tum (see model by Galli et al. 2006) in the col-
lapse of an isothermal magnetized rotating cloud. In
such a case, the angular momentum is completely
removed from the central part of the cloud. Thus,
neither a disk nor a companion star can be formed.
Dissipation of the magnetic field is required for the
formation of a disk (Shu et al. 2006), in order for
the existence of a state with not too extreme mag-
netic braking. Thus, at least there is this mechanism,
which allows the parameter y = a/Rd to decrease to
reasonable values.

3.3. Accretion of mass towards the star from a disk

During the collapse phase, a protobinary system
evolves with already formed disks, as there is nothing
to prevent it. The time (td) needed to transport a
typical amount of mass through the disk to the star
can be estimated using a typical value for the mass
accretion rate (Ṁ ≈ 5 × 10−8 M� yr−1, Hartmann
& Kenyon 1990) and for the mass of observed disks
(Md ≈ 2 × 10−2 M�, Beckwith et al. 1990). With
these values, we get td ≈ 4 × 105 yr, which is of the
same order as the free-fall time (tff).

Besides, the estimate of td takes into account
mass transfer mechanisms that occur slowly and con-
tinuously. However, at this early stage gravitational
instabilities are present (Bodenheimer & Laughlin
1995; Boss 1998; Nakamoto & Nakagawa 1994; Yorke
& Bodenheimer 1999) which are responsible for in-
termittent periods of enhanced transfer. Both argu-
ments indicate that a large amount of the mass that
falls on the orbital plane is driven to the star at the
end of the collapse.

The model developed in Nagel (2007a) shows that
a circumstellar disk contains a section of the cloud

whose angular momentum is between γ? and γ∞.
The first value depends on a characteristic radius
for the magnetosphere (Rmag) of the star which esti-
mates the inner edge of the disk. The magnetosphere
truncates the disk at a radius (Rmag) around 10 stel-
lar radii (Rmag = 0.1AU, Najita & Shu 1994; Shu
et al. 1994), two orders of magnitude less than the
value used in Nagel (2007a). The masses of the com-
ponents depend on this value, but the mechanism
for the distribution of the mass between the star,
circumprimary and circumbinary disks do not de-
pend on it. Taking the value used in Nagel (2007a),
γ? = 0.432 (Rmag = 0.1Rd) and assuming that the
disk and star form coevally, the mass of the star
reaches a value of M? = 0.246, and the disk accumu-
lates more than three times this value, Md = 0.754.
These masses are given in units of the total mass
that has fallen from the cloud since the beginning of
the collapse. A decrease in the value of Rmag will in-
crease the disk mass at the expense of the star mass.
The important thing to note is that this configura-
tion is far from an equilibrium state. Thus, eventu-
ally a gravitational instability arises, whose effect is
to transfer material from the disk to the star until
Md � M?. This instability could work to regulate
the mass of the disk (Shu et al. 1993), a fact required
from the observational point of view (Beckwith et al.
1990), where the last condition is always satisfied.

Another process that acts in the same sense
comes from thermal instabilities, which are com-
monly used in the context of dwarf-nova systems
(Lin, Papaloizou, & Faulkner 1985) and FU Orionis
outbursts (Clarke, Lin, & Pringle 1990). These in-
stabilities arise when the hydrogen ionization is not
complete; in this case the opacity strongly depends
on temperature and thermally-unstable regions are
produced (Lin et al. 1985). The result is that at
some time the mass accretion rate in the disk steeply
increases, showing epochs of high luminosity, which
can be sustained during ∼ 103 yr after the outburst
(see Clarke et al. 1990).

The conclusion is that the outcome of all the pro-
cesses presented is the transfer of mass from the disk
to the star, resulting in disks less massive than the
star, consistent with observations.

4. ESTIMATION OF DISK MASSES USING THE
JACOBI CONSTANT

4.1. Main ideas regarding the Jacobi constant

The main goal in this work is to use the formal-
ism of the circular restricted 3-body problem, to ob-
tain information about likely configurations for the
binary system disks. First, we assume that the sys-
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tem is well-represented by three bodies, thus, the
evolution of the particle would only depend on the
gravitational force exerted by the two stars. More-
over, if the orbit of the two stars is circular, then
CJ is constant and can be written in the coordinate
system rotating with the stars as:

CJ = x2 + y2 + 2(
Mp

rp
+

Ms

rs
) − v2 , (3)

where the units of mass, time and distance are de-
duced by choosing G = 1, M? = 1, and the distance
in units of the separation of the two stars. Here rp

and rs are the distances to a particular point (x, y, z)
from the primary and secondary stars, respectively
and, finally, v is the magnitude of the velocity of the
particle.

If the substitution v2 = 0 is made, then an im-
plicit relation is found, which represents, for a parti-
cle with an associated CJ, the locus of the so-called
surface of zero-velocity. This surface is the bound-
ary between zones where v2 < 0, and v2 > 0. The
former is non-physical while the latter represents a
possible physical state.

These restrictions are first studied for the case
that the mass of the secondary star (Ms) is zero;
i.e., an isolated star. The formation of a disk in
this case is studied by Nagel (2007a). That paper
describes the evolution of a dense ring evolving to-
wards a Keplerian radius as a constant angular mo-
mentum feature; the trajectory is always located in a
permissible region. Regarding the Ms � 1 case, we
hope to identify configurations that restrict a parti-
cle to a specific region in space. If the material is
located inside the orbit of the secondary it belong to
a circumprimary disk. If the material is outside the
secondary’s orbit it would correspond to a circumbi-
nary disk.

As the first step, we substitute v2 = 0 and Ms =
0 in equation (3), obtaining

CJ = R2 +
2√

R2 + Z2
. (4)

This implicit relation gives the location of the
zero-velocity surface for each value of CJ. This equa-
tion only depends on the cylindrical radius (R) and
the coordinate perpendicular to the plane of the disk
(Z). Thus, these surfaces have azimuthal symmetry,
as expected.

The orbital plane is located at Z = 0. Figure 1
shows some of these surfaces projected onto the RZ
plane for various values of CJ. The plots are pre-
sented for Z ≥ 0 as the curves below the orbital
plane are symmetric. A particle with CJ = 2 can

Fig. 1. Curves of zero-velocity in the RZ plane, for CJ =
2 (solid line), CJ = 2.5 (long-dashed line), CJ = 3 (short-
dashed line), CJ = 3.1 (dotted line) and CJ = 3.2 (dot-
dashed line) for the case Ms = 0.

only exist below the curve characterizing the parti-
cles’s value for CJ. Because the whole orbital plane
is an allowed region for this particle, its trajectory
when falling from the cloud could reach the star. In
other words, some of the cloud particles will end their
evolution in the star. A CJ = 3 particle has an as-
sociated surface of zero-velocity touching the orbital
plane, in this case at R = 1. For larger values of CJ,
a couple of intersections are found in this plane (Z1
and Z2), which satisfy Z1 > 1 and Z2 < 1. In the
orbital plane the allowed radii (R) are defined by the
locus where R > Z1 and R < Z2. For CJ < 3 all the
orbital plane is an allowed zone. Remember that for
this analysis, it is first required to choose a specific
particle, second, to calculate its CJ, and finally to
search for the corresponding curve in Figure 1.

Even in the case of one star, for particles with
CJ ≥ 3 there is an inner and an outer permitted
region. This configuration resembles a binary sys-
tem with a circumprimary and circumbinary disk;
note that in this case (Ms = 0) there is no circum-
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secondary disk. Such a model is used in Mathieu
(1994) and Mathieu et al. (1991, 1995) to describe
the spectral energy distributions (SEDs) of spectro-
scopic binaries such as GW Orionis. A gap between
these two regions represents the space cleared by the
binary, phenomenon studied numerically and analyt-
ically in Artymowicz & Lubow (1994).

However, in practice the particles falling from the
cloud will have a range in CJ. Thus, some of the
particles are able to populate this space cleared by
the binary. In the end we arrive at a continuous
configuration of matter; its details depend on the
particular initial configuration (see § 4.2).

From equation (4) and Z = 0, we obtain

R3 − CJR + 2 = 0 , (5)

a cubic equation that gives the location in the orbital
plane of the zero-velocity surface for particles with
given CJ.

Analytically, we can find the three solutions. As
expected, none of the solutions is real positive for
CJ < 3. For CJ ≥ 3, there are two real positive
solutions, that can be written as:

Z1 = 2(CJ/3)1/2 cos

[

arccos
[

− (3/CJ)
3/2

]

3

]

, (6)

Z2 = (CJ/3)
1/2

[

− cos

[

arccos
[

− (3/CJ)
3/2

]

3

]

+ 31/2 sin

[

arccos
[

− (3/CJ)
3/2

]

3

]]

. (7)

The first one satisfies Z1 ≥ 1 and the other Z2 ≤
1. The zone between these two radii is prohibited for
material with Jacobi constant equal to CJ.

4.2. Application to a rigidly rotating cloud

All the ideas expressed in the last section can
be applied to the collapse model developed in Ulrich
(1976), where the cloud is rigidly rotating and the
initial energy of the particles is zero. The expres-
sion for CJ using the inertial coordinate system is
CJ = 2(ΓZ−E), where ΓZ is the angular momentum
perpendicular to the orbital plane, and E is the en-
ergy. The Jacobi constant of the falling particles in
this case is given by:

CJ = 2

(

Rd

a

)1/2

sin2 θo , (8)

where θo is the angle between the plane of the par-
ticle trajectory and the Z-axis.

The results of the last section require a specific
value for Rd/a. In § 3.2, a first estimate gives
Rd/a � 1, which is smaller than required for the
formation of circumbinary disks. As stated in § 3.2,
the processes needed for angular momentum trans-
port are a key ingredient in raising the value for
Rd/a, in order to end with a reasonable configura-
tion. Magnetic braking could be extremely efficient
for the transfer of angular momentum from the inner
region of the collapsing cloud (Shu et al. 2006; Galli
et al. 2006), in order to form a larger disk composed
of an external shell in the rigidly-rotating cloud.

In the case Ms = 0, the distance a is meaningless,
as there is no secondary star. Therefore, the evolu-
tion of a particle within the velocity field given by
Ulrich (1976) is not subject to any restrictions due to
a particular value for CJ. Thus, the analytic solution
given in that paper is not changed. This conclusion
does not mean that at some time certain particles
will have CJ > 3. For such particles there exists a
zero-velocity surface that restricts their trajectory to
within an allowed zone.

4.3. Restrictions due to CJ in the Ms = 0 case

The next analysis treats the existence of zero-
velocity curves for a particle moving in the orbital
plane. The case Ms = 0 reduces to the problem of
formation and evolution of a disk around an isolated
star and is described in Nagel (2007a). The different
stages outlined by Nagel (2007a) are further explored
here. In the following, we treat the non-perturbed
case for the problem with a small secondary star, as
described in § 4.4.

4.3.1. Restrictions due to a shock in the orbital

plane

The material falls to the orbital plane with a CJ

given by equation (8); at its arrival there, a shock is
produced. The shock involves the dissipation of the
velocity perpendicular to this plane, which results in
a variation of CJ, that can be written as:

CJ = 2

(

a

Rd

)1/2

RI +

[

1 −
(

a
Rd

)

RI

]

RI
. (9)

In this relation RI is the radius where a given
particle intersects the orbital plane. The R and R−1

terms in equation (9) mean that CJ increases either
at large R or small R. This feature permits us to
find two solutions, RI±, where CJ = 3; they are
expressed as:

RI± =
(3 + y) ±

√

(3 + y)2 − 8y1/2

4y1/2
, (10)

where y = a/Rd.
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Because the condition for circumbinary forma-
tion is y−1 = Rd/a > 1, the physical range of y is
0 < y < 1. Thus, the range in RI− is [0.293, 0.347],
expressing that without any further interactions, the
material initially located at radii of less than 0.293
will be unable to reach positions larger than 1. For
RI+, the range is from 1.707 to infinity; thus, parti-
cles at initial positions larger than 1.707 cannot move
to radii less than 1. Remember that for CJ = 3,
the curve of zero velocity is located at R = 1. The
relevant space is restricted to RI+ < y−1 = Rd/a;
evaluating this expression using equation (10), we
obtain Rd/a ≥ 9/4. Those configurations satisfying
this last inequality will always have external material
with CJ > 3.

4.3.2. Motion towards minimum-radius curve

Nagel (2007a) provides a detailed analysis of the
implications of the minimum-radius curve. Here, we
only point out that it represents the minimum posi-
tion for particles evolving from RI, in the first stage
of disk formation. At the beginning, the material set-
tles in allowed regions, then the evolution will move
them also to allowed zones (v2 > 0). As a function of
time, the regions modify their size or even disappear,
depending on the particular value of CJ assigned to
the particle studied. Nagel (2007a) also showed that
the particles move all the way towards the minimum-
radius curve without interactions between them. In
this case, the CJ for each particle is conserved, and
the zero-velocity curves do not change their position.
An inner region of the disk is absorbed by the star;
the inner material of the remaining disk will even-
tually arrive to its minimum radius and will then
acquire a positive radial velocity. Further evolution
is described in Nagel (2007a); the main feature is
an inner dense ring moving outwards, stopping at a
Keplerian position. Our purpose in the rest of this
Section is the analysis of such a dense ring.

4.3.3. Dense ring formation

The time it takes for the ring to move to its equi-
librium position (teq) is assumed to be much less
than ∆t. Thus, there are three clearly separated
time-scales, related through teq � ∆t � tff . This
assumption means that the material falling from the
cloud onto the orbital plane during time teq may be
neglected; thus, we assume that the dense ring con-
tains all the material deposited in the orbital plane
during the time ∆t, which was not accumulated in
the star. At its equilibrium radius, the ring will accu-
mulate a clearly-defined section of the falling cloud,
continuously increasing its mass (see details in Nagel
2007a).

At this stage, the relevant feature is the inner
ring, which, moving outwards, becomes denser as it
captures material. Our next objective is to follow
the ring’s evolution of CJ. A model that resembles
the behavior of the ring as it evolves is required, that
is, a set of positions with appropriate velocity. Such
a model allows us to calculate the CJ for different
locations of the dense ring.

The model adopted is of a ring accumulating ma-
terial with specific angular momentum (γ) at posi-
tion Rmin(γ). The arguments in favor of this model
are found in Nagel (2007a) (for more details see
Nagel 2007b), using their Rγ plots. The radial veloc-
ity (vmin) required represents the velocity at which
the falling material arrive to Rmin. Besides, the use
of this model guarantees that the material located
at the minimum radii curve has zero radial veloc-
ity at the arrival of the dense ring; thus, the only
relevant feature is the dense ring moving along this
curve with v = vmin.

If we substitute the position (Rmin) and velocity
(vmin) into equation (3), we obtain:

CJ =

(

2

Rmin
− v2

min − γ2
a

R2
min

)

y + 2γay
−1/2 , (11)

where γa is the mean angular momentum of all the
material that has been absorbed by the ring (an ex-
pression for γa is deduced in Nagel (2007b). The
value of γa depends on γ, and thus CJ depends on
γ and y. If we change y, the size of the disk (Rd)
will be modified, and different positions for the ring
(R/a = (Rmin(γ)/Rd)y−1) are obtained, with new
values for CJ.

In equation 11, we can fix γ to see the behaviour
in terms of y. The relevant cases are obtained for
y corresponding to CJ ≥ 3. We look for config-
urations with restrictions given by the presence of
zero-velocity curves in the orbital plane.

The model is useful while γ < 1; the final config-
uration has the ring at Rmin(γ = 1). At this stage,
the ring contains material with some range in initial
angular momentum; there are two cases worth not-
ing: (1) 0.43 < γ < 1, and (2) γ = 1. These cases are
based on Nagel (2007a); in the first one the forma-
tion begins at R = Rmin(γ = 0.43) = 0.1Rd and ends
with all the material in the dense ring. The last case
represents a ring with γ = 1, resembling the material
that is continually arriving to this position.

The restricted state (CJ > 3) in case (1) puts the
ring at R/a > 1.65, and for the case (2) at R/a >
1.45. Both cases place the ring outside the curves
of zero-velocity, thus, the ring in principle can move
to any larger radius, but inwards evolution will be
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limited to the position of that curve. However, such
a conclusion can only be reached by assuming that
at later times the ring does not interact.

The process described by equation (11) can be
seen in another way: given a value for y, an increase
in γ means that the ring is moving outwards. Mak-
ing the choice y = 0.25 as typical, and γmin = 0.43
(the specific angular momentum of the innermost
ring that is not absorbed by the star), then CJ is a
monotonic increasing function of γ, beginning with
CJ = 1.95 (γ = 0.43) and ending with CJ = 3.28
(γ = 0.99). Arriving at R = Rmin(γ = 0.87) the ring
acquires CJ = 3, therefore, the position of the dense
ring with associated curves of zero-velocity satisfies
the inequality

R/a >
Rmin(γ = 0.87)

Rd
y−1 = 1.56 . (12)

These results allow us to conclude that the ring
moves through R/a = 1 with CJ < 3. Thus, when
it finally acquires CJ = 3, it lies in the outer allowed
zone, such that the zero-velocity curves are on the
inner side.

The radius R/Rd = 1 corresponds to the largest
Keplerian radius. The final configuration is a dense
ring that lies at a radius of less than one with null
radial velocity.

The characteristic state for the ring is given for
the case where the particles with the maximum value
for γ are taken in the dense ring (γ = 1), and a
radial velocity vR = 0. This state for the ring used
in equation (11) gives

CJ =

(

2

R
− 1

R2

)

y + 2y−1/2 , (13)

which is the Jacobi constant for a particle with
v(R/Rd) = 0 at the position R/Rd.

Figure 2 shows plots of CJvsR for various values
of y. The maximum of CJ occurs at R/Rd = 1 for
every parameter y, and thus the most restricted con-
figuration (where the external zero-velocity surface
is at the largest radius for that y) occurs when the
dense ring stops at the edge of the disk. The position
of the secondary in units of Rd is y = a/Rd. The
plots for y < 0.5 show that the ring stops outside the
secondary orbit. For y = 1 the ring will stop inside
this orbit. However, in this case there are no restric-
tions because CJ < 3. Anyhow, this is the extreme
case that is considered here, where particles falling
with the Ulrich (1976) solution represent the worst
approximation. Thus, we argue that the dense ring
becomes part of the circumbinary material with a
strong annular feature, consistent with observations

Fig. 2. Plots of CJ vs R/Rd, for a particle with γ = 1,
and vR = 0. The different curves correspond to y =
a/Rd = 0.25 (solid line), y = 0.33 (long-dashed line),
y = 0.5 (short-dashed line), and y = 1 (dotted line).

of GG Tau (Guilloteau et al. 1999), and UY Aur
(Close et al. 1998). Note that the dense ring could
have inner prohibited regions. However, this does
not mean that the material falling from the cloud
cannot incorporate into this zone.

Proceeding with this analysis, plots can be made
of the positions (Z1/Rd) of the zero-velocity curves
vs y for different R? (here R? represents the loca-
tion where vR = 0). The procedure is to substitute
equation (13) into equation (6), and take R = R?,
thus obtaining a relation that depends on R? and
y. The first conclusion that can be extracted is
that R? ≥ Z1/Rd, which is clearly expected. Fig-
ure 3 shows plots for R? = (0.6, 0.7, 0.8, 0.9, 1.0) and
we note that the range of y plotted corresponds to
CJ ≥ 3, which can be expressed as [0, y?], where y?

depends on R?.

Looking again at Figure 3, we see that there is
some y (yo) where the ring is located on the zero-
velocity curve. It is interesting to note that yo is
close to y?, and both coincide for the case R? = 1.
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Fig. 3. Plots of Z1/Rd vs y, for various radii. R? = 0.6
(solid line), R? = 0.7 (long-dashed line), R? = 0.8 (short-
dashed line), R? = 0.9 (dotted line) and R? = 1.0 (dot-
dashed line). R? represents the position where the dense
ring stops.

It should be remembered (see § 3.2) that angular
momentum transport processes are required to ob-
tain reasonable values for the parameter y; therefore
by increasing the importance of such processes we
will eventually get values of less than 1, but not too
close to zero. Following this line of thought, values
close to y? are the best choices regarding the physical
arguments just expressed, because a small variation
in the state of the ring (or a section of it) can put
it in the inner allowed zone; in other words, mov-
ing the particles to the circumprimary disk, instead
of leaving them associated to the circumbinary disk.
In this way, the ring could be divided between both
disks (see § 5).

These results suggest that in a real situation the
zero-velocity curve is near the ring. If at this stage
the ring is free to move, then the likely evolution is
an outward motion, allowing only small inward dis-
placements. For the case R? = 1 and the parameter
y = y? = 1, the dense ring lies on the zero-velocity
curve. In this case inward motion is forbidden — an
expected conclusion for particles moving in a Keple-
rian orbit, again assuming a non-interacting scheme.

All these ideas are extracted from the study of the
Ms = 0 case. Our aim in this section is to describe
the previously known evolution (Nagel 2007a) from
the viewpoint of the conservation of CJ. In the next
section we will examine the Ms � 1 case.

4.4. Restrictions due to CJ in the Ms � 1 case

The analysis developed in this paper is a qual-
itative one. Such information is extracted from a

conservation argument using the variable that is con-
served. Thus, the next step required to address the
Ms � 1 case is to argue that the presence of a sec-
ondary star will slightly disturb the trajectory and
velocity of a particle found for the Ms = 0 case.
From this point of view, the material in the orbital
plane will move away from the one-star solution (see
Nagel 2007a). Therefore, we look for configurations
where a section of the disk is restricted (CJ > 3) to
lie inside the secondary orbit (in a circumprimary
disk), or outside of this orbit (as circumbinary ma-
terial).

Here, we make the assumption that the material
arrives at the orbital plane with the Ulrich (1976) so-
lution and moves towards the minimum radius curve
without interactions. For material moving near the
secondary star, the interaction will appreciably mod-
ify the trajectories and velocities. However, for most
of the matter the evolution towards the minimum
radius curve is the same as for the Ms = 0 case. The
simulations of the next section clarify this point.

Equation (11) gives us the CJ of the dense ring
for a model representing the non-perturbed case (see
§ 4.3.3). There are two variables in equation (11),
vmin and Rmin, that can be adjusted to produce vari-
ations of this model. The variables that characterize
the perturbed case are now called vR and R.

Thus, the study of the function f(R), given by,

f(R) =
2

R
− γ2

a

R2
, (14)

which contains all the R dependence, should tell us
quantitatively the changes in CJ in terms of the po-
sition where the dense ring accumulates material of
initial specific angular momentum γ. R must sat-
isfy R > Rmin(γ). Remember that γa depends on
γmin, the minimum specific angular momentum that
absorbs the dense ring.

Figure 4 shows f(R) for various ranges of the spe-
cific angular momentum of the material contained in
the dense ring. The first plot shown in Figure 4 cov-
ers the range [0.43, 0.75] and it shows that f(R) in-
creases from Rmin(0.75) = 0.297 to 0.363. This case
represents the ring arriving at an intermediate stage.
Another case, also presented in Figure 4, corresponds
to the range [0.43, 1.0]. For this range, also, f(R) in-
creases, from Rmin(1) = 0.5 to 0.657. The ranges
in position where f(R) rises are large enough to in-
clude with a high probability the configuration that
occurs in the real case: where a secondary star dis-
turbs the trajectory of the dense ring. This suggests
that the trend for CJ in the Ms � 1 case is to grow,
thus it is likely to find restrictions (CJ > 3) earlier
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Fig. 4. Plots of f(x, γa) vs x (see text for definition of
f(x, γa)), where γa is the specific angular momentum of
the dense ring. Two cases are analyzed, according to the
angular momentum range of the material that the dense
ring has absorbed. These are (1) γ = [0.43, 0.75] (solid
line), (2) γ = [0.43, 1.0] (dashed line). The ranges in x
are: 1) Rmin(0.75) = 0.297 to 0.8, 2) Rmin = 0.5 to 1.

than those in the Ms = 0 case. Variations in vR are
neglected, thus, vR = vmin is given as typical in the
case Ms � 1. Remember that vmin = dRmin/dtmin,

where tmin = t|Rmin(γ)
γ , and Rmin and t are given in

Nagel (2007a).

As noted, in equation (11) the change Rmin → R,
gives a relation for CJ in terms of γ, y and R. We
explore this relation giving particular values to γ and
R to find the value y where CJ = 3. We call this
value ymin, because for y > ymin, CJ > 3. Table 1
contains the solution for some cases.

As noted in the last paragraph in § 4.3, the likely
values for y in a real case are the values not close
to zero, because y−1 = Rd/a � 1 requires an ex-
tremely efficient angular momentum transport mech-
anism. Besides, y too near one is not the best choice,
because the assumption of material falling with the
Ulrich (1976) solution cannot be used.

The four cases shown in Table 1, γ =
(0.43, 0.5, 0.6, 0.7), have the corresponding vmin =
(−0.641,−0.685,−0.753,−0.827) and Rmin/Rd =
(0.1, 0.134, 0.192, 0.259). Remember that Rring ≥
Rmin. The cases in Table 1 that better fit the restric-
tions stated above are the ones with γ = 0.43 and
γ = 0.5; the relevant range in y is [0.274, 0.564] for
the former and [0.341, 0.543] for the latter. Different
values for y in these ranges correspond to different
positions R; this value indicates the location of the
ring where it is accumulating particles with angular
momentum γ. A particular configuration is given by

TABLE 1

CONFIGURATIONS WITH CJ > 3 FOR
THE OUTER DENSE RING

γ Rring/a Rring/Rd ymin (CJ = 3)

0.43 0.213 0.12 0.564

0.547 0.16 0.293

0.728 0.2 0.274

0.5 0.276 0.15 0.543

0.532 0.19 0.357

0.675 0.23 0.341

0.6 0.322 0.2 0.622

0.489 0.24 0.491

0.588 0.28 0.476

0.7 0.355 0.27 0.761

0.449 0.31 0.690

0.507 0.35 0.690

The first column gives the specific angular momen-
tum (γ) of the last material absorbed by the dense
ring. In the second one are given, for every γ,
likely positions for the ring (Rring/a). The third
column gives Rring/Rd. The fourth column lists
ymin, where CJ = 3. See definition in text.

a radius Rring/Rd, thus, ymin is the smallest value
for such ring to have CJ ≥ 3.

Another condition that should be fulfilled is
Rring/a < 1, in order to give likely configurations
leading to a circumprimary disk. Remember that
such restricted configurations could occur at one
time but further evolution may not lead to a zero-
velocity curve, such that the ring is able to move to
any space configuration.

All this suggests that the circumprimary disk is
composed of particles with initial angular momen-
tum that ranges from γ = 0.43 to γ = 0.5. The
rest of the disk material, with γ ranging from 0.5
to 1.0, will form a circumbinary disk. This config-
uration is consistent with the case that the dense
ring begins to form and then stops absorbing mate-
rial when γ = 0.5. In such a case, the ring evolves
as circumprimary material. The ring that begins its
formation with the material with γ = 0.5 follows the
evolution for a dense ring (Nagel 2007a), arriving at
an equilibrium configuration in a circumbinary or-
bit. In the following section, a set of simulations will
shed light on this issue.
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5. SIMULATIONS

In this section, we prove with the help of some
simulations that the comment stressed at the end
of the last section is credible in a real situation.
The system chosen is a 1 M� primary star with a
0.01 M� secondary. A set of simulations is made
for y = a/Rd = (0.3, 0.4, 0.5, 0.6, 0.7). The ansatz

chosen to prove is that the larger the value of y, the
higher the probability to create a binary system with
a circumprimary disk.

As an example, the value y = 0.4 can only create
a restricted configuration (CJ > 3) if the ring has ab-
sorbed material with at most γ = 0.5. A dense ring,
which contains material that originally had γ > 0.5,
would require a larger y value to be restricted. Thus,
for a larger value of y, there is the chance to end up
with a more massive circumprimary disk, compared
with the circumbinary one. Hence, the expected ten-
dency to prove using this set of simulations is a pos-
itive correlation between circumprimary disk mass
and y.

These simulations are developed using a Smooth
Particle Hydrodynamics code, described in Mon-
aghan (1992). In this method the system is de-
scribed as a set of particles that are followed indi-
vidually (in a Lagrangian frame), which can inter-
act with their neighbours. Pressure and viscosity
terms are included, and their contribution strongly
depends on the characteristics of the particles close
to the position of interest. The simulations use the
isothermal equation of state P = ρc2

s, where cs is
the sound speed with T = 10K as a typical temper-
ature. A detailed temperature profile is not taken
into account, because only the gravitational interac-
tion is relevant in this study. The initial temperature
gives a sound velocity lower than typical velocities;
thus, in the first stage of the evolution, pressure and
viscosity effects are not important; moreover, a spe-
cific value of the temperature is meaningless. At this
stage the SPH code can be seen as a N-body code;
afterwards, however, the strong hydrodynamical in-
teractions dominate the evolution. Thus, changes in
the temperature vary the quantitative but not the
qualitative picture.

The physical space is restricted to the orbital
plane and the initial surface density (Σ) is given by,

Σ =
Ṁ∆t

4πR(1 − R)1/2
, (15)

where Ṁ is the rate of mass accretion from the cloud
into the star-disk system and R is given in units of
Rd. This expression is calculated by means of the
mass deposited in the orbital plane at each radius.

The mass of the particles that initially lie
at R < Rd is mi; the value depends on the
simulation. This set of particles is surrounded
by more massive particles (10 times mi), that
spread to a radius (6, 5, 4, 3.5, 3) times the separa-
tion of the stars. The total number of particles
is (7727, 8559, 8559, 8975, 8975) for the cases y =
(0.3, 0.4, 0.5, 0.6, 0.7). The mass accretion rate from
the cloud is Ṁ = 10−6 M� yr−1. The initial in-
ner side of the disk is located at R/Rd = 0.43
(γ/γ∞ = 0.43); thus, the minimum radius for this
ring is 0.1Rd. The distance between the stars is al-
ways 40AU and the size of the stars is 4AU, which
numerically means that the material inside this ra-
dius disappears from the simulation.

First, we give a general description that applies
to all of the simulations. Initially, all the material in
the orbital plane will move towards the star; even-
tually the inner edge of the ring will arrive at the
secondary orbit. The side of the ring closer to the
star is disturbed; thus, the azimuthal symmetry of
the ring is lost. This does not impede the rest of
the ring in its evolution towards its minimum ra-
dius. A dense ring forms (Nagel 2007a) and with its
outward motion passes through R/a = 1, where the
secondary star again disperses some of the material.
A large amount of ring mass follows the behavior of
the Ms = 0 case, with only minor disturbances. At
the end, the qualitative picture that emerges resem-
bles the basic characteristics of the formation of the
dense ring in the Ms = 0 case. Thus, the conclusions
obtained in § 4.3 can be used.

The problem is solved in an inertial frame. How-
ever, the plots in coordinate space are made by rotat-
ing the axes and all the velocities, so that the stars
are always on the X-axis. A set of plots presented
in Figures (5, 6, 7, and 8) show the main effects de-
scribed above. A plot of the particle positions in the
orbital plane is given in Figure 9 for the y = 0.3 case
at time 0.45. At such a low value of y = 0.3 the inner
ring disconnects itself from the dense ring, eventu-
ally arriving at the configuration shown in Figure 9
where it is clearly associated with orbits around the
primary. For the case y = 0.4 (Figure 10), a ring
of material also detaches itself from the dense ring,
but earlier on; a detachment always occurs when we
increase y. An outward ring of material unsuccess-
fully disconnects from the dense ring. The next sim-
ulation (y = 0.5, Figure 11) is qualitatively similar
to the previous ones, in that the inner ring evolves
inside the secondary orbit and becomes part of the
proto-circumprimary disk.
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Fig. 5. A typical space configuration, at the arrival time
of the inner ring to the secondary orbit. The time is t =
0.15 and the secondary star mass is m = 0.1. The two full
circles at the center of the figure represent the positions
of the stars. Any symbol + indicates the position of a
particle in space.

Fig. 6. Formation of a dense ring, in spite of the presence
of the secondary star. The time is t = 0.27 and the
secondary star mass is m = 0.1. The two full circles
at the center of the figure represent the position of the
stars. Any symbol + indicates the position of a particle
in space.

The effect of increasing y up to y = 0.6 can be
seen in Figure 12. There, another ring begins to
detach itself from the dense ring. Thus, the ma-
terial forming the circumprimary disk has an ini-
tial specific angular momentum ranging from 0.43
to 0.55. The result of the last simulation (y = 0.7,
Figure 13) is analogous to the previous one. How-
ever, the range in γ of the material orbiting inside
the radius R/a = 1.0 is larger, 0.43 < γ < 0.61. In
addition, the time when the inner ring is detached

Fig. 7. The dense ring pass through the secondary or-
bit. The time is t = 0.39 and the secondary star mass
is m = 0.1. The two full circles at the center of the fig-
ure represent the position of the stars. Any symbol +
indicates the position of a particle in space.

Fig. 8. An almost complete ring with outwards evolu-
tion. The time is t = 0.63 and the secondary star mass
is m = 0.1. The two full circles at the center of the fig-
ure represent the position of the stars. Any symbol +
indicates the position of a particle in space.

decreases with increasing y. The simulation with
y = 0.5 was repeated, increasing the spatial reso-
lution by a factor of 4. A comparison of the sim-
ulation with both resolutions tells us that all the
essential features are present despite the difference
in resolution. Thus, the lower resolution simulation
is adequate to extract the required information.

The range in γ assigned to the material in the cir-
cumprimary disk for the previous two cases allows us
to estimate the mass associated with the disk. This
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Fig. 9. Picture of the disk, for y = 0.3. An inner ring
disconnects from the dense ring. The time is t = 0.45
and the secondary star mass is m = 0.01. The two full
circles at the center of the figure represent the position
of the stars. Any symbol + indicates the position of a
particle in space.

Fig. 10. Picture of the disk, for y = 0.4. The time
is t = 0.33 and the secondary star mass is m = 0.01.
The two full circles at the center of the figure represent
the position of the stars. Any symbol + indicates the
position of a particle in space.

mass is calculated by noting that every particle in
a shell of the cloud can be assigned a value of γ.
Moreover, the solution of Ulrich (1976) gives the ap-
proximate position where every particle of the shell
arrives to the orbital plane. Thus, the integral of
the mass contribution of each particle allows us to
describe the initial mass profile in the disk as:

M = Ṁ∆t
[

− (1 − γ)1/2
∣

∣

γ2

γ1

]

, (16)

where γ1 and γ2 define the range of angular momen-
tum that is considered.

Fig. 11. Picture of the disk, for y = 0.5. The time
is t = 0.21 and the secondary star mass is m = 0.01.
The two full circles at the center of the figure represent
the position of the stars. Any symbol + indicates the
position of a particle in space.

Fig. 12. Picture of the disk, for y = 0.6. The time
is t = 0.18 and the secondary star mass is m = 0.01.
The two full circles at the center of the figure represent
the position of the stars. Any symbol + indicates the
position of a particle in space.

Using equation (16), the mass of the circumpri-
mary disk (Mcp) for the case with y = 0.6 is 0.08;
for the case with y = 0.7, the disk mass is 0.13. Nat-
urally, it is possible to say that material with larger
values of γ is associated with a circumbinary disk.
Thus, in the first case, the circumbinary mass (Mcb)
is 0.67; the second case has Mcb = 0.63. The sum
of M?, Mcp and Mcb is always one. The estimate of
M? is a lower limit for the final configuration because
the material of the inner disk continually accretes to-
wards the star. We assume that both disks evolve at
the same rate; thus Mcp and Mcb are good estimates
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Fig. 13. Picture of the disk, for y = 0.7. The time
is t = 0.18 and the secondary star mass is m = 0.01.
The two full circles at the center of the figure represent
the position of the stars. Any symbol + indicates the
position of a particle in space.

of the disk masses. The ratio between Mcp and Mcb

is 0.12 and 0.20, respectively, according to a typi-
cal binary stellar system. For example, in UY Aur
(Duvert et al. 1998), Mcb ≈ 10−2 and Mcp ≈ 10−3,
thus, Mcp/Mcb ≈ 0.1.

The conclusion of these simulations is that the
larger the value of y, the larger the amount of ma-
terial that it is restricted to a circumprimary disk.
Thus, an agreement is found between the conclusions
of § 4 and the simulations described here.

6. CONCLUSIONS

Following the results of the simulation of the col-
lapse of a rigidly rotating cloud to form a disk around
an isolated star (Nagel 2007a), it is natural to sepa-
rate all the falling material in two parts: one is di-
rectly incorporated into the star and the other into
the disk. Neglecting the presence of angular mo-
mentum transport in the disk, this model is valid
for massive disks, in which it is easy for instabilities
to appear (Shu et al. 1993). The effect of these in-
stabilities is to remove angular momentum from the
disk, allowing some of the material to accrete to the
star. One expects that the instabilities work faster
when the disk is heavier; thus, most of the time the
disk will have less mass than the star (M?); see Shu
et al. (1993). This leads to the conclusion that the
mass of the disk(s) (Md) is composed of a section of
the cloud falling during a time ∆t, which is smaller
than the free-fall time (tff). Said another way, the
consequence of the disparity in ∆t and tff is that
Md � M?.

An estimation of tff is obtained by assuming that
Ṁtff = M?. Here, M? is the total stellar mass and
Ṁ is the mass accretion rate from the cloud. The
latter is estimated using Ṁ = moc

3
s/G, which is

taken from the collapse of an isothermal sphere (Shu
1977); mo = 0.975 and cs is the sound speed. For a
T = 10K cloud, Ṁ equals 5.56 × 10−6 M� yr−1.

The GW Ori primary star mass is about 2.5M�,
and the largest estimation for the secondary star
mass is 1.3M� (Mathieu et al. 1995); thus, tff =
6.83 × 105 yr. An estimate for the circumbinary
disk mass is 0.3M� (Mathieu et al. 1995); us-
ing this mass and the same value for Ṁ , it is ob-
tained ∆t = 5.39 × 104 yr. For the binary system
V4046 Sgr (Jensen & Mathieu 1997), the total stel-
lar mass is 1.4657M�; using the same value for Ṁ ,
tff = 2.63×105 yr. The estimate of the circumbinary
disk mass is 8.36×10−3 M�; thus, ∆t = 1.50×103 yr.
Thus, ∆t � tff , and the disk in both cases safely lies
in a stable configuration, susceptible for the treat-
ment described in this paper.

The binary system and any particle of the sur-
rounding material is described as a three-body prob-
lem, in order to explore the consequences of the con-
servation of the Jacobi constant. Such a simplifica-
tion does not mean that particle interactions are ne-
glected. We can describe this situation in the context
of the three-body problem as a particle continually
changing its value of CJ, when the interactions are
present. The consequence is that for every particle,
the locations of its associated zero-velocity surfaces
also change. Following these ideas, we describe the
evolution of the material at the first stages of disk
formation, in the Ms = 0 case, including the dense
ring evolution with positive velocities, until it settles
into a Keplerian orbit (Nagel 2007a). For the study
of the dense ring we require a model that gives pairs
of values for the position and velocity as a function
of time. A reasonable configuration is one in which
the ring evolves along the minimum radius curve (see
§ 4.3) with appropriate velocity.

Application of this model to the Ms � 1 case,
lead to likely configurations which suggest the ex-
istence of material restricted to move inside the
secondary-star orbit and some material that always
moves outside of it. The former represents a cir-
cumprimary disk and the latter a circumbinary disk.
A parameter that plays a role in this problem is
the ratio between the separation of the stars (a)
and the disk radius Rd (which is the largest pos-
sible Keplerian position), y = a/Rd, which is a mea-
sure of the importance of the angular momentum
transport mechanisms at the binary system forma-
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tion stage. Semi-analytic arguments (§ 4.4) and sim-
ulations (§ 5) lead to the conclusion that y values
larger than 0 but not too close to 1 are the best
choices for the formation of massive circumprimary
disks. From these same simulations we conclude that
the larger the value of y, the larger the mass of the
circumprimary disk.

As an example, for y = 0.6, the estimation of
the circumprimary disk mass (Mcp) is 0.08 times
the mass that accretes from the cloud during the
time ∆t. The circumbinary disk mass (Mcb) is 0.67
times the same total accreted mass. A drawback
of this result is that y is a parameter that is not
directly found from observation. Thus, a compari-
son between simulations and observations is not ob-
vious. The model of a disk with a gap that sep-
arates the circumprimary and circumbinary disk is
used by Mathieu et al. (1995) to interpret the ob-
served SED of GW Ori. The ratio between the disk
masses (Mcp/Mcb) is equal to 0.13; this is almost
the same value as that calculated in the model for
y = 0.6, where Mcp/Mcb = 0.12. A conclusion that
follows is that for GW Ori, y = 0.6, although this
conclusion should be treated with caution, due to all
the assumptions made in the observational interpre-
tation (Mathieu 1994; Mathieu et al. 1991, 1995)
and the assumptions made in this paper.
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Najita, J. R., & Shu, F. H. 1994, ApJ, 429, 808
Nakamoto, T., & Nakagawa, Y. 1994, ApJ, 421, 640
Osorio, M., D’Alessio, P., Muzerolle, J., Calvet, N., &

Hartmann, L. 2003, ApJ, 586, 1148
Shakura, N. I., & Sunyaev, R. 1973, A&A, 24, 337
Shu, F. H. 1977, ApJ, 214, 488
Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ,

647, 382
Shu, F. H., Najita, J., Galli, D., Ostriker, E., & Lizano,

S. 1993, in Protostars and Planets III, ed. E. H. Levy
& J. I. Lunine (Tucson: Univ. Arizona Press), 3

Shu, F. H., Najita, J. R., Ostriker, E., Wilkin, F., Ruden,
S., & Lizano, S. 1994, ApJ, 429, 781

Smith, K. W., Bonnell, I. A., Emerson, J. P., & Jenness,
T. 2000, MNRAS, 319, 991

Stapelfeldt, K. R., Krist, J. E., Menard, F., Bouvier, J.,
Padgett, D. L., & Burrows, C. J. 1998, ApJ, 502, L65

Szebehely, V. 1967, Theory of Orbits: the Restricted
Problem of Three Bodies (New York: Academic
Press)

. 1980, Celest. Mech., 22, 7
Szebehely, V., & Mckenzie, R. 1981, Celest. Mech., 23, 3



©
 C

o
p

yr
ig

ht
 2

00
8:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

DISK MASS ESTIMATIONS 101

Ulrich, R. K. 1976, ApJ, 210, 377
Velusamy, T., Langer, W. D., & Goldsmith, P. F. 2002,

ApJ, 565, L43

E. Nagel: Instituto de Astronomı́a, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510
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