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RESUMEN

La red 3D que se origina por las caras de los polihedros irregulares pois-
sonianos de Voronoi podŕıa representar la estructura básica para la formación de
galaxias. En consecuencia, la apariencia espacial de los catálogos de galaxias podŕıa
reproducirse. Los catálogos seleccionados para la simulación fueron el 2dF Galaxy

Redshift Survey y el Third Reference Catalog of Bright Galaxies. Para explicar el
número observado de galaxias con un flujo (o magnitud) dado como función del
corrimiento al rojo deben examinarse cuidadosamente las propiedades fotométricas
de las galaxias, tanto desde un punto de vista astronómico como teórico. La es-
tad́ıstica del volumen de Voronoi normalizado se modela por dos distribuciones, y
el super-hueco en Eridanus se identifica como el mayor volumen perteneciente al
polihedro de Voronoi. El comportamiento de la función de correlación de las galax-
ias se simula adoptando el esquema de caras gruesas de polihedros de Voronoi para
escalas pequeñas, y conservando los argumentos usuales para escalas grandes.

ABSTRACT

The 3D network originated by the faces of irregular Poissonian Voronoi poly-
hedra may represent the backbone on which the galaxies are originated. As a
consequence the spatial appearance of the catalogs of galaxies can be reproduced.
The selected catalogs to simulate are the 2dF Galaxy Redshift Survey and the Third
Reference Catalog of Bright Galaxies. In order to explain the number of observed
galaxies for a given flux/magnitude as a function of the redshift, the photometric
properties of the galaxies should be carefully examined from both the astronomical
and theoretical point of view. The statistics of the Voronoi normalized volume is
modeled by two distributions and the Eridanus super-void is identified as the largest
volume belonging to the Voronoi polyhedron. The behavior of the correlation func-
tion for galaxies is simulated by adopting the framework of thick faces of Voronoi
polyhedra on short scales, while adopting standard arguments on large scales.

Key Words: galaxies: clusters: general — galaxies: general — galaxies: statistics

1. INTRODUCTION

During the last thirty years the spatial distribu-
tion of galaxies has been investigated from the point
of view of geometrical and physical theories. A first
target was to reproduce the two-point correlation
function ξ(r) for galaxies, which on average scales as
≈ (r/5.7 Mpc)−1.8, see Jones et al. (2005), Sparke
& Gallagher (2000). Statistical theories of spatial
galaxy distribution can be classified as

� Levy flights: the random walk with a variable
step length can lead to a correlation function in
agreement with the observed data, see Mandel-

brot (1975), Soneira & Peebles (1977, 1978) and
Peebles (1980).

� Percolation: the theory of primordial explo-
sions can lead to the formation of structures, see
Charlton & Schramm (1986), Zaninetti & Fer-
raro (1990). Percolation is also used as a tool to
organize : (i) the mass and galaxy distributions
obtained in 3D simulations of cold dark matter
(CDM) and hot dark matter (HDM), see Klypin
& Shandarin (1993), (ii) the galaxy groups and
clusters in volume-limited samples of the Sloan
Digital Sky Survey (SDSS), see Berlind et al.
(2006).

115



©
 C

o
p

yr
ig

ht
 2

01
0:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

116 ZANINETTI

The geometrical models are well represented by
the Voronoi diagrams. The applications to galaxies
started with Icke & van de Weygaert (1987), where
a sequential clustering process was adopted in or-
der to insert the initial seeds, and they continued
with van de Weygaert & Icke (1989), Pierre (1990),
Barrow & Coles (1990), Coles (1991), van de Wey-
gaert (1991a,b), Subba-Rao & Szalay (1992), Ikeuchi
& Turner (1991) and Goldwirth, da Costa, & van
de Weygaert (1995). An updated review of the 3D
Voronoi diagrams applied to cosmology can be found
in van de Weygaert (2002 or 2003). The 3D Voronoi
tessellation was first applied to identify groups of
galaxies in the structure of a super-cluster, see Ebel-
ing & Wiedenmann (1993), Bernardeau & van de
Weygaert (1996), Schaap & van de Weygaert (2000),
Marinoni et al. (2002), Melnyk, Elyiv, & Vavilova
(2006), van de Weygaert & Schaap (2009), Elyiv,
Melnyk, & Vavilova (2009). The physical mod-
els that produce the observed properties of galaxies
are intimately related, for example through the La-
grangian approximation, and can be approximately
classified as

� Cosmological N -body: Through N -body ex-
periments by Aarseth (1978) it is possible to
simulate groups which are analogous to the
groups among bright Zwicky-catalog galaxies,
see Turner et al. (1979) or covariance functions
in simulations of galaxy clustering in an expand-
ing universe which are found to be power laws
in the nonlinear regime with slopes centered on
1.9 (Gott, Turner, & Aarseth 1979). Using gi-
gaparticle N-body simulations to study galaxy
cluster populations in Hubble volumes, Evrard
et al. (2002) created mock sky surveys of dark
matter structure to z = 1.4 over 10000 sq. deg
and to z = 0.5 over two full spheres. In short,
N -body calculations seek to model the full non-
linear system by making the matter distribu-
tion discrete and following its evolution in a La-
grangian fashion, and are usually understood to
concern gravity only.

� Dynamical Models: Starting from a power
law of primordial inhomogeneities it is possi-
ble to obtain a two-point correlation function
for galaxies with an exponent similar to the ob-
served one (Peebles 1974a,b; Gott & Ress 1975).

Another line of work is to assume that the ve-
locity field is of a potential type; this assump-
tion is called the Zel’dovich approximation,
see Zel’dovich (1970), Shandarin & Zel’dovich
(1989), Sahni & Coles (1995). The Zel’dovich

formalism is a Lagrangian approximation of the
fully nonlinear set of equations. In this sense it
is “gravity” only and does not include a pressure
term.

� The halo models: The halo model describes non-
linear structures as virialized dark-matter ha-
los of different masses, placing them in space
according to the linear large-scale density field
which is completely described by the initial
power spectrum (Neyman & Scott 1952; Scher-
rer & Bertschinger 1991; Cooray & Sheth 2002).
Figure 19 in Jones et al. (2005), for example,
reports the exact nonlinear model matter distri-
bution compared with its halo-model represen-
tation.

The absence of clear information on the 3D dis-
placement of the physical results as a function of
the redshift and the selected magnitude character-
ize the cosmological N-body, the dynamical and the
hydrodynamical models. This absence of detailed
information leads to the following questions:

� Is it possible to compare the theoretical and ob-
servational number of galaxies as a function of
the redshift for a fixed flux/magnitude?

� What is the role of the Malmquist bias when
theoretical and observed numbers of galaxies
versus redshift are compared?

� Is it possible to find an algorithm which de-
scribes the intersection between a slice that
starts from the center of the box and the faces
of irregular Poissonian Voronoi polyhedra?

� Is it possible to model the intersection between
a sphere of a given redshift and the faces of ir-
regular Poissonian Voronoi polyhedra?

� Does the developed theory match the observed
slices of galaxies as given, for example, by the
2dF Galaxy Redshift Survey?

� Does the developed algorithm explain the ap-
pearance of voids in all-sky surveys such as the
RC3?

� Can voids between galaxies be modeled trough
the Voronoi normalized volume distribution?

� Is it possible to evaluate the probability of ob-
taining a supervoid once the average void diam-
eter is fixed?
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� Is it possible to compute the correlation function
for galaxies by introducing the concept of thick
faces of irregular Voronoi polyhedra?

� Is it possible to find the acoustic oscillations of
the correlation function at ≈ 100 Mpc in simu-
lated slices of the Voronoi diagrams?

In order to answer these questions,
�

2 briefly re-
views the standard luminosity function for galaxies.
An accurate test of the number of galaxies as a func-
tion of the redshift is performed on the 2dF Galaxy
Redshift Survey (2dFGRS) in

�
3.

�
4 reports the

technique which allows us to extract the galaxies be-
longing to the Voronoi polyhedron and

�
5 simulates

the redshift dependence of the 2dFGRS as well as the
Third Reference Catalog of Bright Galaxies (RC3).

�
6 reports the simulation of the correlation function

computed on the thick faces of the Voronoi polyhe-
dron.

2. USEFUL FORMULAS

Starting from Hubble (1929) the suggested cor-
relation between expansion velocity and distance is

V = H0D = cl z , (1)

where the Hubble constant is H0 =
100 h km s−1 Mpc−1, with h = 1 when h is
not specified, D is the distance in Mpc, cl is the
velocity of light and z is the redshift. Concerning
the value of H0 we will adopt a recent value as
obtained by the Cepheid-calibrated luminosity of
Type Ia supernovae (Sandage et al. 2006),

H0 = (62.3 ± 5) km s−1 Mpc−1 . (2)

The quantity clz, a velocity, or z, a number, char-
acterizes the catalog of galaxies.

We recall that the galaxies have peculiar veloc-
ities, making the measured redshifts a combination
of cosmological redshift plus a contribution from the
peculiar velocity.

The maximum redshift here considered is z ≈ 0.1
meaning a maximum velocity of expansion of ≈
30000 km s−1; up to that value the space is assumed
to be Euclidean. We now report the joint distribu-
tion in z and f (the flux of radiation) for galaxies
adopting the Schechter function for the luminosity
(L) of galaxies, Φ(L), introduced by Schechter (1976)
and the mass-luminosity relationship, Ψ(L), as de-
rived in Zaninetti (2008). The joint distribution in z
and f for the Schechter function, see formula (1.104)

in Padmanabhan (1996) or formula (1.117) in Pad-
manabhan (2002), is

dN

dΩdzdf
= 4π

(
cl

H0

)5

z4Φ

(
z2

z2
crit

)
, (3)

where dΩ, dz and df represent the differential of the
solid angle , the redshift and the flux respectively.
The critical value of z, zcrit, is

z2
crit =

H2
0 L∗

4πfc2
l

. (4)

The number of galaxies, NS(z, fmin, fmax) comprised
between a minimum value of flux, fmin, and maxi-
mum value of flux fmax, can be computed through
the following integral

NS(z) =

∫ fmax

fmin

4π

(
cl

H0

)5

z4Φ

(
z2

z2
crit

)
df . (5)

This integral does not have an analytical solution
and therefore a numerical integration must be per-
formed.

The number of galaxies in z and f as given by
formula (3) has a maximum at z = zpos−max, with

zpos−max = zcrit

√
α + 2 , (6)

where α sets the slope for low values of L. This
position can be re-expressed as

zpos−max =

√
2 + α

√
100.4 M�−0.4 M∗H0

2
√

π
√

fcl
, (7)

where M� is the reference magnitude of the Sun at
the considered bandpass and M∗ is the characteris-
tic magnitude as derived from the data. The joint
distribution in z and f , in presence of the M − L
relationship (Zaninetti 2008, eq. 38), is

dN

dΩdzdf
= 4π

(
cl

H0

)5

z4Ψ

(
z2

z2
crit

)
. (8)

The number of galaxies, NM−L(z, fmin, fmax) with
flux comprised between fmin and fmax, can be com-
puted through the following integral

NM−L(z) =

∫ fmax

fmin

4π

(
cl

H0

)5

z4Ψ

(
z2

z2
crit

)
df , (9)

and in this case, too, a numerical integration must
be performed.

The number of galaxies as given by the M − L
relationship has a maximum at zpos−max (Zaninetti
2008, eq. 41)

zpos−max = zcrit (c + a)a/2 , (10)
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118 ZANINETTI

TABLE 1

THE PARAMETERS OF THE SCHECHTER
FUNCTION FOR THE 2DFGRS (MADGWICK

ET AL. 2002)

Parameter Value from 2dFGRS

M∗ − 5 log10 [mags] (−19.79 ± 0.04)

α −1.19 ± 0.01

Φ∗ [h3 Mpc−3] ((1.59 ± 0.1)10−2)

which can be re-expressed as

zpos−max =
(a + c)1/2a

√
100.4 M�−0.4 M∗H0

2
√

π
√

fcl
, (11)

where 1/a is an exponent which connects mass to
luminosity and c represents the dimensionality of the
fragmentation.

3. PHOTOMETRIC TEST ON THE CATALOG

We now check the previously derived formulas
on a catalog of galaxies. A first example is the 2dF-
GRS data release available on the web site http:

//msowww.anu.edu.au/2dFGRS/. In particular we
added together the file parent.ngp.txt which con-
tains 145652 entries for NGP strip sources and the
file parent.sgp.txt which contains 204490 entries
for SGP strip sources. Once the heliocentric red-
shift was selected we processed 219107 galaxies with
0.001 ≤ z ≤ 0.3. The parameters of the Schechter
function concerning the 2dFGRS can be found in the
first line of Table 3 in Madgwick et al. (2002) and
are reported in Table 1. It is interesting to point
out that values for h different from 1 shift all abso-
lute magnitudes by 5 log10 h and change the number
densities by the factor h3.

Before reducing the data we should discuss the
Malmquist bias (Malmquist 1920, 1922), that was
originally studied for stars and was then applied to
galaxies by Behr (1951). We therefore introduce the
concept of a limiting apparent magnitude and the
correspondent completeness in absolute magnitude
of the considered catalog as a function of redshift.
The observable absolute magnitude as a function of
the limiting apparent magnitude, mL, is

ML = mL − 5 log10

(cL z

H0

)
− 25 . (12)

The previous formula predicts, from a theoretical
point of view, the upper limit of the absolute max-
imum magnitude that can be observed in a catalog

Fig. 1. The galaxies of the 2dFGRS with 15.27 ≤

bJmag ≤ 15.65 or 59253 L� Mpc−2 ≤ f ≤

83868 L� Mpc−2 (with bJmag representing the relative
magnitude used in object selection), are isolated in order
to represent a chosen value of m and then organized in
frequencies versus heliocentric redshift, (empty circles);
the error bar is given by the square root of the frequency.
The maximum in the frequencies of observed galaxies is
at z = 0.03. The maximum of the observed galaxies can
also be computed through the maximum likelihood esti-
mator (MLE) by adopting the Schechter function for the
luminosity, see Appendix A; ẑpos−max = 0.033 accord-
ing to equation (A.6). The theoretical curve generated
by the Schechter function of luminosity (formula (3) and
parameters as in Column 2 of Table 1) is drawn (full line).
The theoretical curve generated by the M− L function
for luminosity (formula (8) and parameters as in Col-
umn 2 of Table 2) is drawn (dashed line); χ2 = 550 for
the Schechter function and χ2 = 503 for the M−L func-
tion. In this plot M� = 5.33 and h=0.623. The vertical
dotted line represents the boundary between complete
and incomplete samples.

TABLE 2

THE PARAMETERS OF THE M− L
LUMINOSITY FUNCTIONa

Parameter Value from 2dFGRS

c 0.1

M∗ − 5 log10 h [mags] −19 ± 0.1

Ψ∗[h3 Mpc−3] 0.4 ± 0.01

a 1.3 ± 0.1

aBased on the 2dFGRS data (triplets generated by the
author).

of galaxies characterized by a given limiting magni-
tude. The interval covered by the LF for galaxies,
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Fig. 2. The galaxies in the 2dFGRS with 15.02 ≤

bJmag ≤ 15.31 or 80527 L� Mpc−2 ≤ f ≤

105142 L� Mpc−2. The maximum in the frequencies of
observed galaxies is at z = 0.02, χ2 = 256 for the
Schechter function (full line) and χ2 = 224 for the
M−L function (dashed line). The maximum of the ob-
served galaxies can also be computed through the max-
imum likelihood estimator (MLE) by adopting the the
Schechter function for the luminosity, see Appendix A;
ẑpos−max = 0.031 according to equation (A.6). In this
plot M� = 5.33 and h=0.623. The vertical dotted line
represents the boundary between complete and incom-
plete samples.

∆M , is defined as

∆M = Mmax − Mmin , (13)

where Mmax and Mmin are the maximum and min-
imum absolute magnitude of the LF for the consid-
ered catalog. The real observable interval in absolute
magnitude, ∆ML, is

∆ML = ML − Mmin . (14)

We can therefore introduce the range of observable
absolute maximum magnitude expressed in percent,
ε(z), as

εs(z) =
∆ML

∆M
× 100 . (15)

This is a number that represents the completeness
of the sample and given the fact that the limiting
magnitude of the 2dFGRS is mL = 19.61 it is pos-
sible to conclude that the 2dFGRS is complete for
z ≤ 0.0442. Figures 1 and 2 depict the number of ob-
served galaxies of the 2dFGRS catalog for two differ-
ent apparent magnitudes and two theoretical curves
as represented by formula (3) and formula (8).

Due to the importance of the maximum in the
number of galaxies as a function of z, Figure 3 shows

Fig. 3. Value of ẑpos−max (see equation A.6) at which
the number of galaxies in the 2dFGRS is maximum as a
function of the apparent magnitude bJmag (stars), theo-
retical curve of the maximum for the Schechter function
as represented by formula (7) (full line) and theoreti-
cal curve of the maximum for the M − L function as
represented by formula (11) (dashed line). In this plot
M� = 5.33 and h=0.623. The horizontal dotted line rep-
resents the boundary between complete and incomplete
samples.

the observed histograms in the 2dFGRS and the the-
oretical curves as a function of magnitude.

Following is an outline of the sources of discrep-
ancy between equations 3 and 8:

� The density of galaxies is assumed to be con-
stant in deriving the theoretical equations. In a
cellular structure of the universe with the galax-
ies situated on the faces of irregular polyhedra,
the number of galaxies varies with r2, where r is
the progressive distance from the center of the
box, up to a distance equal to the averaged di-
ameter of a polyhedron. After that distance the
number of galaxies grows as r3.

� The interval in magnitude should be chosen to
be smaller than the error in magnitude.

� A limited range in z should be considered in
order to account for the Malmquist bias.

The total number of galaxies in the 2dFGRS is
shown in Figure 4 as well as the theoretical curves
as represented by the numerical integration of for-
mula (3) and formula (8).

In this section we have adopted the absolute mag-
nitude of the Sun in the bj filter to be M� = 5.33
(Tempel et al. 2009; Eke et al. 2004).
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4. THE 3D VORONOI DIAGRAMS

The observational fact that the galaxies seem to
be distributed on almost bubble-like surfaces sur-
rounding large empty regions allows us to introduce
the geometrical properties of irregular Voronoi poly-
hedra as a useful tool to explain the galaxy network.
The faces of the Voronoi polyhedra share the same
property , i.e. they are equally distant from two
nuclei. The intersection between a plane and the
faces produces diagrams which are similar to the
edges’ displacement in 2D Voronoi diagrams. From
the point of view of the observations it is very use-
ful to study the intersection between a slice which
crosses the center of the box and the faces of irregu-
lar polyhedra where presumably the galaxies reside.
The general definition of the 3D Voronoi diagrams
is given in

�
4.1. The intersection between a slice of

a given opening angle, for example 3◦, and the faces
of the Voronoi polyhedra can be realized through an
approximate algorithm, see next section. The vol-
umes of the Voronoi polyhedra can be identified by
the voids between galaxies, while the statistics that
describe the volumes can help to study the statis-
tics of the void size distribution in the 2dFGRS (von
Benda-Beckmann & Müller 2008).

4.1. General Definition

The Voronoi diagram for a set of seeds, S, located
at position xi in R3 space is the partitioning of that
space into regions such that all locations within any
one region are closer to the generating point than
to any other. The points closer to one seed than to
another are divided by the perpendicular bisecting
plane between the two seeds. For a random tessel-
lation, only a finite number of half-planes binds the
cell, so the cell is a convex polyhedron. It follows
that a plane cross-section of a 3D tessellation is a tes-
sellation of the plane composed of convex polygons.
The points of a 3D tessellation are of four types, de-
pending on how many nearest neighbors in S they
have. A point with exactly one nearest neighbor is
in the interior of a cell, a point with two nearest
neighbors is on the face between two cells, a point
with three nearest neighbors is on an edge shared by
three cells, and a point with four neighbors is a ver-
tex where three cells meet. There is zero probability
that there will be any point with five or more nearest
neighbors. In the following we will work on a three
dimensional lattice defined by pixels×pixels×pixels
points, Lkmn.

The Voronoi polyhedron Vi around a given center
i, is the set of lattice points Lkmn closer to i than to

Fig. 4. The galaxies in the 2dFGRS with 13.34 ≤

bJmag ≤ 16.94 or 17950 L� Mpc−2 ≤ f ≤

493844 L� Mpc−2, are organized in frequencies versus he-
liocentric redshift, (empty stars). The theoretical curves
generated by the integral of the Schechter function in flux
(formula (5) with parameters as in Table 1) (full line) and
by the integral of the M− L function as represented by
formula (9) with parameters as in Column 2 of Table 2)
(dashed line) are drawn. The maximum in the frequen-
cies of observed galaxies is at z = 0.029, χ2 = 3314 for
the Schechter function (full line) and χ2 = 3506 for the
M − L function (dashed line). In this plot M� = 5.33
and h = 0.623. The vertical dotted line represents the
boundary between complete and incomplete sample.

any j; more formally,

Lkmn ε Vi ↔| xkmn − xi |≤| xkmn − xj , (16)

where xkmn denotes the lattice point position. Thus,
the polyhedra are intersections of half-spaces. Given
a center i and its neighbor j, the line ij is cut per-
pendicularly at its midpoint yij by the plane hij . Hij

is the half-space generated by the plane hij , which
consists of the subset of lattice points on the same
side of hij as i; therefore

Vi = ∩jHij , (17)

Vi is bounded by faces, with each face fij belonging
to a distinct plane hij . Each face will be character-
ized by its vertices and edges.

4.2. The adopted algorithm

Our method considers a 3D lattice with pixels3

points: present in this lattice are Ns seeds generated
according to a random process. All the computations
are usually performed on this mathematical lattice;
the conversion to the physical lattice is obtained by
multiplying the unit by δ = side/(pixels − 1), where
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Fig. 5. Portion of the Poissonian Voronoi-diagram
Vp(2, 3); cut on the X-Y plane when two strips of 75◦

are considered. The parameters are pixels = 600, Ns =
137998, side = 131908 km s−1 and amplify = 1.2.

side is the length of the cube expressed in the physi-
cal unit adopted. In order to minimize boundary ef-
fects introduced by those polyhedra which cross the
cubic boundary, the cube in which the seeds are in-
serted is amplified by a factor amplify. Therefore the
Ns seeds are inserted in a volume pixels3 × amplify,
which is bigger than the box over which the scan-
ning is performed; amplify is generally taken to be
equal to 1.2. This procedure inserts periodic bound-
ary conditions to our cube. A sensible and solid dis-
cussion of what such an extension of a cube should
be can be found in Neyrinck, Gnedin, & Hamilton
(2005). The set S of the seeds can be of Poissonian
or non-Poissonian type. Adopting the point of view
that the universe should be the same from each point
of view of the observer the Poissonian seeds may rep-
resent the best choice in order to reproduce the large
scale structures.

The Poissonian seeds are generated indepen-
dently on the X, Y and Z axis in 3D through a
subroutine which returns a pseudo-random real num-
ber taken from a uniform distribution between 0 and
1. For practical purposes, the subroutine RAN2 was
used (Press et al. 1992). Particular attention should
be paid to the average observed diameter of voids,
DV obs, here chosen as

DV obs ≈ 0.6DV obs
max = 2700 km s−1 , (18)

Fig. 6. The same as Figure 5, but now two slices of 75◦

long and 3◦ wide are considered.

where DV obs
max = 4500 km s−1 corresponds to the ex-

tension of the maximum void visible, for example,
on the CFA2 slices, see Geller & Huchra (1989). The

corresponding diameter, DV obs, in pc is

DV obs =
27

h
Mpc . (19)

The number of Poissonian seeds is chosen in
such a way that the averaged volume occupied by
a Voronoi polyhedron is equal to the averaged ob-
served volume of the voids in the spatial distribution
of galaxies; more details can be found in Zaninetti
(2006). It is possible to plot the cumulative volume-
weighted void size distribution, F (> R), in the 2dF-
GRS samples (see Figure 4 in von Benda-Beckmann
& Müller 2008).

From the previous figure it is possible to make
a graphical evaluation of the value of R at which
F (> R) = 1/2, the median of the probability density
function connected with F (> R). The median value
of R from Figure 4 in von Benda-Beckmann & Müller
(2008) turns out to be 5 Mpc < R < 12 Mpc ac-
cording to the four models there implemented. The
average value of R here assumed to be 13.5 Mpc h−1

is not far from the median value presented in von
Benda-Beckmann & Müller (2008).

We now work on a 3D lattice Lk,m,n of pixels3

elements. Given a section of the cube (character-
ized, for example, by k = pixels/2) the various Vi

(the volume belonging to the seed i) may or may not
cross the pixels belonging to the two dimensional lat-
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Fig. 7. The Voronoi diagram Vs(2, 3) in the Hammer-Aitoff projection at z = 0.04. The parameters are pixels = 400,
Ns = 137998, side = 131908 km s−1 and amplify = 1.2.

Fig. 8. The Voronoi diagram Vs(2, 3) in the Hammer-Aitoff projection at z = 0.09; other parameters as in Figure 7.

tice. A typical example of a 2D cut organized in two
strips about 75◦ long is visible in Figure 5 where the
Cartesian coordinates X and Y with the origin of
the axis at the center of the box has been used. The
previous cut has an extension on the Z-axis equal to
zero.

Conversely Figure 6 reports two slices of 75◦ long
and 3◦ wide. In this case the extension of the en-
closed region belonging to the Z-axis increases with
distance according to

∆Z =
√

X2 + Y 2 tan
α

2
, (20)

where ∆Z is the thickness of the slice and α is the
opening angle, in our case 3◦.

In order to simulate the slices of observed galaxies
a (randomly chosen) subset of the pixels belonging

to a slice is extracted, as represented, for example, in
Figure 6. In this operation of extraction of the galax-
ies from the pixels of the slice, the photometric rules
as represented by formula (3) must be respected.

The cross sectional area of the VP can also be
visualized through a spherical cut characterized by
a constant value of the distance to the center of the
box, in this case expressed in z units, see Figure 7
and Figure 8; this intersection is called Vs(2, 3) where
the index s stands for sphere.

4.3. The statistics of the volumes

The distribution of volumes in the Poissonian
Voronoi diagrams can be modeled by the following
probability density function (PDF) H(x; ck)

H(x; ck) =
ck

Γ(ck)
(ckx)ck−1 exp(−ckx) , (21)
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Fig. 9. Histogram (step-diagram) of the Voronoi nor-
malized volume distribution in 3D with a superposition
of the gamma-variate as represented by equation (22).
Parameters as in Figure 5, but pixels = 500 : d = 3,
NBIN = 40 and χ2 = 1778.

where 0 ≤ x < ∞, ck > 0 and Γ(ck) is the gamma
function with argument ck (Kiang 1966, formula 5).
According to the “Kiang conjecture” the volumes
should be characterized by ck = 6 (see Zaninetti
2008 for more details). This PDF can be general-
ized by introducing the dimension of the considered
space, d (d = 1, 2, 3), and ck = 2d

H(x; d) =
2d

Γ(2d)
(2dx)2d−1 exp(−2dx) . (22)

A new analytical PDF is

FN(x; d) = const×x
3d−1

2 exp (−(3d + 1)x/2) , (23)

where

const =

√
2
√

3 d + 1

2 23/2 d (3 d + 1)
−3/2 d

Γ (3/2 d + 1/2)
,

(24)
and d (d = 1, 2, 3) represents the dimension of the
considered space (Ferenc & Néda 2007). In the two
PDF here presented, equations (23) and (22), the
statistics of the volumes are obtained by inserting
d = 3. In order to obtain the volumes in every
point-lattice Lk,m,n we computed the nearest seed
and increased by one the volume of that seed. The
frequency histogram and the relative best fit through
gamma-variate PDF for the volume distribution is
shown in Figure 9; Figure 10 conversely shows the
fit with PDF (23) by Ferenc & Néda (2007).

The results are reported in Table 3 and it is possi-
ble to conclude that the volume distribution of irreg-
ular Voronoi polyhedra is better described by PDF

Fig. 10. Histogram (step-diagram) of the Voronoi nor-
malized volume distribution in 3D with a superposition
of the gamma PDF as represented by equation (23) first
introduced in Ferenc & Néda (2007). Parameters as in
Figure 5, but pixels = 500 : d = 3, NBIN = 40 and
χ2 = 565.

Fig. 11. Plot of the Voronoi normalized volume-
distribution in 3D when 2 PDFs are adopted: k(x; d)
(equation 22), d = 2.75 (full line) and FN(x; d) (equa-
tion 23), d = 3 (dashed).

(23) in Ferenc & Néda (2007) rather than the sum of
three gamma variates with argument 2. When con-
versely d is used as a free parameter to be deduced
from the sample in PDF (22) we obtain a smaller
χ2 with respect to the function in Ferenc & Néda
(2007).

On summarizing the differences between the
Kiang function and the Ferenc & Néda (2007) func-
tion we can say that the Kiang function (equa-
tion 22) requires the numerical evaluation of the free
parameter d = ck/2. In the case of Ferenc & Néda
(2007) (equation 23) the number of free parameters
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Fig. 12. Hammer-Aitoff projection in galactic coordinates of 230540 galaxies in the 2dfGRS with known bJmag and
redshift < 0.3.

TABLE 3

THE χ2 OF DATA FIT WHEN THE NUMBER
OF CLASSES IS 40 FOR THREE PDF

PDF χ2

H(x; d) when d = 3 (ck = 6) 1778

H(x; d) when d = 2.75 (ck = 5.5) 414

FN(x; d) when d = 3

Ferenc & Néda formula (23) 565

is zero once d = 3 is inserted. The numerical differ-
ence between the two PDFs is shown in Figure 11 for
large values of the normalized volume distribution.

5. THE CELLULAR STRUCTURE OF THE
UNIVERSE

From a simplified point of view the galaxies be-
longing to a given catalog are characterized by the
astronomical coordinates, the redshift and the ap-
parent magnitude. Starting from the second CFA2
redshift Survey, the catalogs were organized in slices
of a given opening angle, 3◦ or 6◦, and a given an-
gular extension, for example 130◦. When plotted in
polar coordinates of clz the spatial distribution of
galaxies is not random but distributed on filaments.
Particular attention should be paid to the fact that
the astronomical slices are not a plane which inter-
sects a Voronoi network. In order to quantify this
effect we introduce a confusion distance, DVc, as the
distance after which the half altitude of the slices
equals the observed average diameter DV obs

DVc tan(α) =
1

2
DV obs , (25)

where α is the opening angle of the slice and DV obs

the averaged diameter of voids. In the case of 2dF-
GRS α = 3◦ and therefore DVc = 2.57 104 km s−1

when DV obs = 2700 km s−1. For values of cl z
greater than DVc the voids in the distribution of
galaxies are dominated by the confusion. For val-
ues of cl z lower than DVc the filaments of galaxies
can be considered to be the intersection between a
plane and the faces of the Voronoi polyhedra. A mea-
sure of the portion of the sky covered by a catalog
of galaxies is the area covered by a unitarian sphere
which is 4π steradians or 129600/π square degrees.
In the case of 2dFGRS the area covered by two slices
of 75◦ long and 3◦ wide is 1414/π square degrees or
0.13 sr. In the case of RC3 the covered area is 4π
steradians with the exclusion of the Zone of Avoid-

ance. In the following we will simulate the 2dFGRS,
a catalog that encompasses a small area of the sky
and RC3, a catalog that encompasses all the sky.

In the case of 3C3 we demonstrate how it is pos-
sible to simulate the Zone of Avoidance in the the-
oretical simulation. The paragraph ends with a dis-
cussion on the Eridanus supervoid also known as the
“Cold Spot”.

5.1. The 2dFGRS

The survey consists of two separate declination
strips: one strip (the SGP strip) is in the south-
ern Galactic hemisphere and covers approximately
80◦ × 15◦ centered close to the South Galactic Pole.
The second strip (the NGP strip) is in the northern
Galactic hemisphere and covers 80◦×15◦ (Colless et
al. 2001).

Figure 12 shows the galaxies of the 2dFGRS with
z < 0.3 in galactic coordinates and the two strips in
the 2dFGRS are shown in Figure 13.
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Fig. 13. Cone-diagram of all the galaxies in the 2dFGRS.
This plot contains 203249 galaxies.

Fig. 14. Slice of 75◦ × 3◦ in the 2dFGRS. This plot
contains 62559 galaxies and belongs to the 2dFGRS Im-
age Gallery available at the website http://msowww.anu.
edu.au/2dFGRS/.

Figure 14 conversely shows the 2dfGRS catalog
when a slice of 75◦ × 3◦ is taken into account. This
slice represents the object to simulate.

The previous observational slice can be simulated
by adopting the Voronoi network shown in Figure 6.

The distribution of the galaxies as given by the
Voronoi diagrams is reported in Figure 15 where all
the galaxies are considered. In this case the galax-
ies are extracted according to the integral of the
Schechter function in flux (formula (5) with parame-
ters as in Table 1). Table 4 reports the basic data of

Fig. 15. Polar plot of the pixels belonging to a slice 75◦

long and 3◦ wide. This plot contains 62563 galaxies; the
maximum in the frequencies of theoretical galaxies is at
z = 0.043. In this plot M� = 5.33 and h = 0.623.

TABLE 4

REAL AND SIMULATED DATA OF
THE SLICE 75◦ LONG AND 3◦

2dFGRS Simulation

Elements 62559 62563

zmin 0.001 0.011

zpos−max 0.029 0.042

zave 0.051 0.058

zmax 0.2 0.2

the astronomical and simulated data of the 75◦ × 3◦

slice.
When, conversely, a given interval in flux (magni-

tudes) characterized by fmin and fmax is considered
the number of galaxies, NSC, of a 3◦ slice can be
found with the following formula

NSC = NC

∫ fmax

fmin

4π
(

cl

H0

)5

z4Φ
(

z2

z2

crit

)
df

∫ fmax,C

fmin,C
4π

(
cl

H0

)5

z4Φ
(

z2

z2

crit

)
df

, (26)

where fmin,C and fmax,C represent the minimum and
maximum flux of the considered catalog and NC all
the galaxies of the considered catalog; a typical ex-
ample is shown in Figure 16.
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Fig. 16. Polar plot of the pixels belonging to a slice
75◦ long and 3◦ wide. Galaxies with magnitude 15.02 ≤

bJmag ≤ 15.31 or 46767 L� Mpc−2 ≤ 61063 L� Mpc−2.
The maximum in the frequencies of theoretical galaxies
is at z = 0.029, NSC = 2186 and NC = 62559. In this
plot M� = 5.33 and h = 0.623.

5.2. The Third Reference Catalog of Bright Galaxies

The RC3 (de Vaucouleurs et al. 1991),
is available at the following address http:

//vizier.u-strasbg.fr/viz-bin/VizieR?

-source=VII/155.
This catalog attempts to be reasonably complete

for galaxies having apparent diameters larger than 1
arcmin at the D25 isophotal level and total B-band
magnitudes BT, brighter than about 15.5, with a
redshift not in excess of 15000 km s−1. All the galax-
ies in the RC3 catalog which have redshift and BT
are shown in Figure 17.

Figure 18 shows the RC3 galaxies in a given win-
dow in z.

We now test the concept of an isotropic universe.
This can be by done by plotting the number of galax-
ies comprised in a slice of 360◦ in galactic longitude
versus a variable number ∆b in galactic latitude, for
example 6◦. The number of galaxies in the RC3 ver-
sus galactic latitude is plotted in Figure 19.

The solid angle dΩ in spherical coordinates
(r,θ,φ) is

dΩ = sin(θ)dθdφ . (27)

In a slice of 360◦ × ∆b the amount of solid angle,
∆Ω, is

∆Ω = 2π
[(

cos(90◦) − cos(b + ∆b)
)

−
(
cos(90◦) − cos(b)

)]
steradians . (28)

The approximate number of galaxies in each slice
can be found through the following approximation.
Firstly, we find the largest value of the frequencies
of galaxies, Fi, versus b, max(Fi) where the index
i denotes a class in latitude. We therefore find the
largest value of ∆Ωi, max(∆Ωi). The introduction
of the multiplicative factor M

M =
max(Fi)

max(∆Ωi)
, (29)

allows us to obtain the following theoretical evalu-
ation of the number of galaxies Ni as a function of
the latitude,

Ni = M × ∆Ωi . (30)

This number, Ni, as a function of b is plotted in
Figure 19.

The simulation of this overall sky survey can be
done in the following way:

� The pixels belonging to the faces of irregular
polyhedra are selected according to the distri-
bution in z of the galaxies in the RC3 catalog
which have redshift and BT.

� A second operation selects the pixels according
to the distribution in latitude in the RC3 cata-
log, see Figure 20.

� In order to simulate a theoretical distribution of
objects which represent the RC3 catalog with-
out the Zone of Avoidance we made a series of
6◦ slices in latitude in the RC3 catalog, selecting
Ni pixels in each slice, see Figure 21. In order to
ensure that the range in z is correctly described
Table 5 reports zmin, zpos−max, zave and zmax

which represent the minimum z, the position in
z of the maximum in the number of galaxies,
and the maximum z in the RC3 catalog or the
simulated sample.

5.3. The Eridanus Supervoid

A void can be defined as the empty space between
filaments in a slice and the typical diameter has a
range of [11 − 50] Mpc h−1 (Einasto et al. 1994;
Lindner et al. 1995). The probability, for example,
of having a volume 3 times larger than the average
is 3.2 × 10−3 for PDF (23) when d = 3 and 2.1 ×
10−3 for PDF (22) when d = 2.75. Other values
of the normalized volume are reported in Figure 11.
Particularly large voids are called super-voids and
have a range of [110 − 163] Mpc h−1.

Special attention should be paid to the Eri-
danus super-void of 300 Mpc diameter. This super-
void was detected by the Wilkinson Microwave
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Fig. 17. Hammer-Aitoff projection in galactic coordinates of 3316 galaxies in the RC3 with known BT and redshift.

Fig. 18. Hammer-Aitoff projection in galactic coordinates (observational counterpart of Vs(2, 3)) of 1130 galaxies in the
RC3 with known BT and 0.015 < z < 0.035.

Anisotropy Probe (WMAP) (Vielva et al. 2004;
Cruz et al. 2005) and was named Cold Spot. The
WMAP measures the temperature fluctuations of
the cosmic microwave background (CMB). Later on,
radiostronomers confirmed the largest void due to
the fact that the density of radio sources at 1.4 GHz
is anomalously low in the direction of the Cold Spot

(Rudnick, Brown, & Williams 2007; McEwen et al.
2008). The standard statistics of the Voronoi nor-
malized volume distribution in 3D covers the range
[0.1 − 10]. In the case of an Eridanus supervoid the
normalized volume is ≈ 300/27 = 1.37×103 and the
connected probability of having such a supervoid is
1.47 × 10−18 when the Ferenc & Néda (2007) func-
tion with d = 3, formula (23), is used and ≈ 0 when
the Kiang function with d = 2.75, formula (22) is
used. Due to this low probability of having such a

large normalized volume we mapped a possible spa-
tial distribution of the SDSS-FIRST (the Faint Im-
ages of the Radio Sky at Twenty cm survey) sources
with complex radio morphology from the theoret-
ical distribution of galaxies belonging to the RC3.
The fraction of galaxies belonging to the 2dFGRS
detected as SDSS-FIRST sources with complex ra-
dio morphology is less than 10% according to

�
3.8

in Ivezić et al. (2002). We therefore introduced
a probability, prs, that a galaxy is a radio source.
The number of SDSS-FIRST sources Nrs in the RC3
which are SDSS-FIRST sources with complex radio
morphology is

Nrs = prs ∗ Ng , (31)

where Ng is the number of galaxies in the theoretical
RC3.
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Fig. 19. The galaxies in the RC3 with known BT and
redshift are organized in frequencies versus galactic lat-
itude b (dashed line). The theoretical fit represents Ni

(full line).

From a visual inspection of Figures 21 and 22
it is possible to conclude that the voids increase in
size when radiogalaxies, which are a subset of the
galaxies, are considered.

6. THE CORRELATION FUNCTION FOR
GALAXIES

Galaxies have the tendency to be grouped in clus-
ters and a typical measure is the computation of the
two-points correlation function for galaxies (Peebles
1993, 1980). The correlation function can be com-
puted in two ways: a local analysis in the range
[0 − 16] Mpc h−1 and an extended analysis in the
range [0 − 200] Mpc h−1.

6.1. The local analysis

A first way to describe the degree of clustering of
galaxies is the two point correlation function ξGG(r),
usually presented in the form

ξGG =
( r

rG

)−γGG

, (32)

where γGG = 1.8 and rG = 5.77Mpc h−1 (the cor-
relation length) when the range 0.1Mpc h−1 < r <
16Mpc h−1 is considered, see Zehavi et al. (2004)
where 118149 galaxies were analyzed.

In order to compute the correlation function, two
volumes were compared: one containing the little
cubes belonging to a face, the other containing a ran-
dom distribution of points. From an analysis of the
distances of pairs, the minimum and maximum were
computed and nDD(r) was obtained, where nDD(r)
is the number of pairs of galaxies with separation

TABLE 5

REAL AND SIMULATED DATA WITHOUT THE
ZONE OF AVOIDANCE IN THE RC3 CATALOG

RC3 Simulation without the

Zone of Avoidance

Elements 3316 4326

zmin 5.7 × 10−7 8.9 × 10−3

zpos−max 5.6 × 10−3 8.9 × 10−2

zave 1.52 × 10−2 7.96 × 10−2

zmax 9.4 × 10−2 0.14

within the interval [r − dr/2, r + dr/2]. A similar
procedure was applied to the random elements in
the same volume with the same number of elements
and nRR(r) is the number of pairs of the Poissonian
process. According to formula (16.4.6) in Coles &
Lucchin (2002) the correlation function is:

ξGG(r) =
nDD(r)

nRR(r)
− 1 . (33)

To check whether ξGG obeys a power law or not we
used a simple linear regression test with the formula:

log ξGG = a + b log r , (34)

which allows us to compute rG = 10−a/b and γGG =
−b.

We now outline the method that allows us to
compute the correlation function using the concept
of thick faces (Zaninetti 1995). For a practical im-
plementation we consider a decreasing probability of
having a galaxy in the direction perpendicular to the
face. As an example we assume a probability, p(x),
of having a galaxy outside the face distributed as a
normal (Gaussian) distribution

p(x) =
1

σ(2π)1/2
exp

(
− x2

2σ2

)
, (35)

where x is the distance in Mpc from the face and σ
the standard deviation in Mpc. Once the complex
3D behavior of the faces of the Voronoi polyhedron
is set up we can memorize such a probability on a
3D grid P (i, j, k) which can be found in the following
way:

� In each lattice point (i, j, k) we search for the
nearest element belonging to a Voronoi face.
The probability of having a galaxy is therefore
computed according to formula (35).
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Fig. 20. Hammer-Aitoff projection of 3317 pixels belonging to a face of an irregular Voronoi polyhedron. The Zone of

Avoidance at the galactic plane follows Figure 17. This plot simulates the RC3 galaxies with known BT and redshift.

Fig. 21. Hammer-Aitoff projection of 4326 pixels belonging to a face of an irregular Voronoi polyhedron. This plot
simulates the RC3 galaxies with known BT and redshift but the Zone of Avoidance at the galactic plane is absent.

� A number of galaxies, NG = n∗ × side3 is then
inserted in the box; here n∗ represents the den-
sity of galaxies

Figure 23 visualizes the edges belonging to the
Voronoi diagrams and Figure 24 represents a cut in
the middle of the probability, P (i, j, k), of having a
galaxy to a given distance from a face.

A typical result of the simulation is shown in Fig-
ure 25 where the center of the small box in which the
correlation function is computed is the point belong-
ing to a face nearest to the center of the big box.

From an analysis of Figure 25 we can deduce that
the correlation function ξGG of the simulation has a
behavior similar to the standard one. Perhaps the
value rG is a simple measure of the face’s thick-

ness, ∆RF . From this point of view on adopting
a standard value of the expanding shell thickness,
∆R = R/12 and assuming that the thickness of the
shell is made by the superposition of two expanding
shells the following is obtained

∆RF ≈ R

6
≈ Dobs

h 12
= 3.62 Mpc , (36)

where h = 0.623 has been used. The correlation
dimension D2 (Jones et al. 2005) is connected with
the exponent γ through the relation:

D2 = 3 − γ . (37)

Here we have the case in which the mass M(r) in-
creases as r1.2, in the middle of a one-dimensional
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Fig. 22. Hammer-Aitoff projection of the SDSS-FIRST sources with complex radio morphology belonging to the RC3,
prs = 0.09. Other parameters as in Figure 21.

Fig. 23. 3D visualization of the edges of the Poissonian
Voronoi-diagram. The parameters are pixels = 60, Ns =
12, side = 96.24 Mpc, h = 0.623 and amplify= 1.2.

structure (M(r) ∝ r) and a two dimensional sheet
(M(r) ∝ r2) (Coles & Lucchin 2002). In this para-
graph the dependence of the correlation function on
the magnitude is not considered.

6.2. The extended analysis

A second definition of the correlation function
takes account of the Landy-Szalay border correction
(Szalay et al. 1993),

ξLS(s) = 1 +
nDD(s)

nRR(s)
− 2

nDR(s)

nRR(s)
, (38)

Fig. 24. Cut in the middle of the 3D grid P (i, j, k) which
represents a theoretical 2D map of the probability of hav-
ing a galaxy. The Voronoi parameters are the same as in
Figure 23 and σ = 0.8 Mpc. The X and Y units are in
Mpc.

where nDD(s), nDD(s) and nDR(s) are the num-
bers of galaxy-galaxy, random-random and galaxy-
random pairs having distance s (Mart́ınez et al.
2009). A random catalog of galaxies in polar co-
ordinates can be built by generating a first random
number ∝ z2 in the z-space and a second random
angle in the interval [0,75]. A test of our code for the
correlation function versus a more sophisticated code
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Fig. 25. The logarithm of the correlation function is vi-
sualized through points with their uncertainty (vertical
bar); the asymptotic behavior of the correlation function
ξGG is shown as dash-dot-dash line; in our simulation
γGG = 2.04 and rG = 5.08 Mpc. The standard value of
the correlation function is shown as a dotted line; from
the point of view of the observations in average γGG = 1.8
and rG = 5 Mpc. Parameters of the simulation as in Fig-
ure 23.

Fig. 26. Redshift-space correlation function for the
2dFGRS sample limited at z = 0.12 as given by our
code (empty stars) and the results of Mart́ınez et al.
(2009) (full points) for 2dFVL. The covered range is
[40 − 200] Mpc h−1.

is shown in Figure 26 for the 2dFVL volume-limited
(VL) sample, where the data available at the Web-
site http://www.uv.es/martinez/ have been pro-
cessed.

The pair correlation function for the vertexes of
the Poissonian Voronoi polyhedron presents a typ-
ical damped oscillation (see Figure 5.4.11 in Ok-
abe, Boots, & Sugihara 1992; Figure 2 in Mart́ınez
et al. 2009; Figure 3 in Heinrich & Muche 2008).

Fig. 27. Redshift-space correlation function for the 2df-
GRS sample (empty stars) and the Voronoi sample (full
points). The covered range is [40 − 200] Mpc h−1.

Here conversely: (a) we first consider a set of ob-
jects belonging to the faces of the irregular polyhe-
dron; (b) we extract from the previous set a subset
which follows the photometric law and then we com-
pute the pair correlation function. The difference
between our model and the model in Mart́ınez et
al. (2009) for 2dFVL can be due to the luminosity-
color segregation present in 2dFVL but not in our
Voronoi type model. A typical result is reported in
Figure 27 where it is possible to find the correla-
tion function of 2dfGRS with astronomical data as
shown in Figure 13 as well as the correlation func-
tion of the Voronoi network with simulated data as
shown in Figure 15.

A careful analysis of Figure 27 allows us to con-
clude that the behavior of the correlation function
is similar for the astronomical data and the simu-
lated Voronoi-data. The oscillations after 100 Mpc
are classified as acoustic (Eisenstein et al. 2005).

7. SUMMARY

Photometric maximum. The observed number
of galaxies in a given solid angle with a chosen
flux/magnitude versus redshift presents a maximum
that is a function of the flux/magnitude. From a
theoretical point of view, the photometric proper-
ties of the galaxies depend on the chosen law for the
luminosity function. The luminosity function here
adopted (the Schechter function) predicts a maxi-
mum in the theoretical number of galaxies as a func-
tion of redshift once the apparent flux/magnitude is
fixed.

The theoretical fit representing the number of
galaxies as a function of redshift can be compared
with the real number of galaxies of the 2dFGRS
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which is theory-independent. The superposition of
theoretical and observed fits is satisfactory and the
χ2 has been computed, see Figure 1. The position
of the maximum in the number of galaxies for dif-
ferent magnitudes is a function of redshift and in
the interval 15 < bJmag < 18.5 the comparison be-
tween observed and theoretical data is acceptable,
see Figure 3. Particular attention should be paid to
the Malmquist bias and to equation (15) that regu-
late the upper value of the redshift that defines the
complete sample.

3D Voronoi Diagrams. The intersection between a
plane and the 3D Voronoi faces is well known as
Vp(2, 3). The intersection between a slice of a given
opening angle, for example 3◦, and the 3D Voronoi
faces is less known and has been developed in

�
4.2.

This intersection can be calibrated with the astro-
nomical data once the number of Poissonian seeds
is such that the largest observed void matches the
largest Voronoi volume. Here the largest observed
void is 2700 km s−1 and in order to simulate, for ex-
ample, the 2dFGRS, 137998 Poissonian seeds were
inserted in a volume of (131908 km s−1)3. The in-
tersection between a sphere and the 3D Voronoi faces
represents a new way to visualize the voids in the dis-
tribution of galaxies, see

�
4.2. In this spherical cut

the intersection between a sphere and the 3D Voronoi
faces is no longer represented by straight lines but
by curved lines presenting in some cases a cusp be-
havior at the intersection, see Figure 7. In principle,
the spatial distribution of galaxies at a given redshift
should follow such curved lines.

Statistics of the voids. The statistical properties of
the voids between galaxies can be well described by
the volume distribution of the Voronoi polyhedra.
Here two distributions of probability were carefully
compared: the old Kiang function here parametrized
as a function of the dimension d, see formula (21),
and the new distribution of Ferenc & Néda (2007),
see formula (23), which is a function of the selected
dimension d. The probability of having voids as large
as the Eridanus super-void was computed, see

�
5.3.

Simulations of the catalogs of galaxies. By combin-
ing the photometric dependence in the number of
galaxies as a function of redshift with the intersec-
tion between a slice and the Voronoi faces, it is possi-
ble to simulate the astronomical catalogs such as the
2dFGRS, see

�
5.1. Other catalogs such as the RC3

which covers all the sky (except the Zone of Avoid-
ance) can be simulated through a given number of
spherical cuts, for example 25, with progressively in-
creasing redshift. This simulation is shown in Fig-

ure 20 in which the theoretical influence of the Zone
of Avoidance has been inserted, and in Figure 21
in which the theoretical RC3 without the Zone of
Avoidance has been modeled. Figure 22 shows the
subset of the galaxies which are radiogalaxies.

Correlation function. The standard behavior of
the correlation function for galaxies in the short
range [0 − 10] Mpc h−1 can be simulated once 12
Poissonian seeds are inserted in a box of volume
(96.24 Mpc h−1)3. In this case the model can be
refined by introducing the concept of galaxies gener-
ated in a thick face belonging to the Voronoi polyhe-
dron. The behavior of the correlation function in the
large range [40− 200] Mpc h−1 of the Voronoi simu-
lations of the 2dFGRS presents very small variations
from the processed astronomical data, see Figure 27.
We now extract a question from the conclusions of
Mart́ınez et al. (2009) “Third, the minimum in the
large-distance correlation functions of some samples
demands explanation: is it really the signature of
voids?” Our answer is “yes”. The minimum in the
large scale correlation function is due to the com-
bined effect of the large empty space between galax-
ies (the voids) and to the photometric behavior of
the number of galaxies as a function of redshift.

I thank the 2dF Galaxy Redshift Survey team for
the use of Figure 14, which is taken from the image
gallery on the 2dFGRS website (see http://www2.

aao.gov.au/2dFGRS).

APPENDIX A. THE MAXIMUM LIKELIHOOD
ESTIMATOR

The parameter ẑcrit can be derived through the
maximum likelihood estimator (MLE) and as a con-
sequence z = zpos−max is easily derived. The likeli-
hood function is defined as the probability of obtain-
ing a set of observations given a particular set of the
distribution parameters, ci,

L(c) = f(x1 . . . xn|c1 . . . cn) . (A.1)

If we assume that the n random variables are inde-
pendently and identically distributed, then we may
write the likelihood function as

L(c) = f(x1|c1 . . . cp) . . . f(xn|c1 . . . cp)

=
n∏

i=1

f(xi|c1 . . . cp) . (A.2)

The maximum likelihood estimates for the ci

are obtained by maximizing the likelihood function,
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L(c). In the same way, we may find it easier to max-
imize ln f(xi), termed the log-likelihood. So, for a
random sample z1 . . . zn representing the redshift of
the galaxies that fall in a given interval of flux or
magnitude from a joint distribution in z and f for
galaxies adopting the Schechter function for the lu-
minosity represented by equation (3), the likelihood
function is given by

L(zcrit) =
n∏

i=1

(zi)
2α+4 1

(zcrit)2α
exp− z2

i

z2
crit

, (A.3)

where the constant terms are omitted. Using loga-
rithms, we obtain the log-likelihood

ln L(zcrit) = (2α + 4)

n∑

i=1

ln zi

+ n2 | α | ln(zcrit) −
n∑

i=1

z2
i

z2
crit

. (A.4)

Taking the first derivative with respect to zcrit equal
to zero, we get

ẑcrit =

√∑n
i=1 z2

i

n | α | . (A.5)

According to equation (6) ẑpos−max is

ẑpos−max =

√∑n
i=1 z2

i

n | α |
√

α + 2 . (A.6)

When a joint distribution in z and f for galaxies
in the presence of the M− L relationship is consid-
ered (equation 38 in Zaninetti 2008), the likelihood
function is

L(zcrit) =

n∏

i=1

(zi)
4+2 c−a

a (zcrit)
−2 c−a

a exp
−

(
z2

i
z2
crit

)
1/a

,

(A.7)
where the constant terms are omitted. Taking the
first derivative with respect to zcrit of ln L(zcrit)
equal to zero, we get for the M− L relationship

ẑcrit =

(∑n
i=1 z

2/a
i

n | c − a |

)a/2

. (A.8)

According to equation (10) ẑpos−max for the M− L
relationship is

ẑpos−max =

(∑n
i=1 z

2/a
i

n | c − a |

)a/2(
a + c

)a/2
. (A.9)
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