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RESUMEN

En el estudio de la distribución geométrica de los planetas invariablemente
se menciona la ley de Titius Bode como un intento de clasificar grosso modo sus
distancias heliocétricas mediante una sucesión de números enteros. Con el des-
cubrimiento de un gran número de objetos planetarios ahora se sustenta, en cierta
medida, el principio básico de dicha ley al través de la determinación de más elemen-
tos orbitales. Abordamos brevemente una clasificación de los parámetros orbitales
utilizando la constante de proporcionalidad de Kepler y discutimos el problema de
la aplicación de la ley TB a sistemas extrasolares. También analizamos las funciones
propuestas por diversos autores las cuales reproducen las distancias heliocéntricas
de los planetas, y efectuamos una comparación con la variante a la ley Titius Bode
que proponemos aqúı.

ABSTRACT

The study of the geometric distribution of the planets invariably mentions
the Titius Bode law as an attempt to classify their heliocentric distances through a
succession of integer numbers. With the discovery of more planetary objects better
support is given to the basic principle of the law through their orbital parameters.
We briefly refer to a classification of orbital parameters using Kepler’s proportion-
ality parameter and discuss the problem of applying the TB Law to extrasolar
systems. We also review work by various authors who have proposed functions
which reproduce with some degree of certainty the planetary heliocentric distances,
and we compare them to our variant of the Titius-Bode Law.

Key Words: planets and satellites: formation — planets and satellites: general —
solar system: general

1. INTRODUCTION

In the late eighteenth century Johann Daniel Ti-
etz proposed a numerical sequence with which he
tried to reproduce the heliocentric distances of the
planets, and which was included in the compendium
Contemplation of the Nature written by Charles
Bonnet in 1764. In 1772 the famous German as-
tronomer Johann Bode included Titius’ ideas (Latin

conversion of Tietz ) in his texts on astronomy. Ac-
cording to Titius’ scheme, the mathematical formu-
lation is written in terms of the parameter N given
by the integers 0, 3, 6, 12, 24, 48, 96 and 192 ac-
cording to the order of the planets Mercury, Venus,
Earth, Mars, Jupiter, Saturn and Uranus.

1Instituto de Astronomı́a, Universidad Nacional Autó-
noma de México, Mexico.

2Facultad de Arquitectura, Universidad Nacional Autó-
noma de México, Mexico.

In terms of powers of two (2n), the orbital param-
eters are determined by the equation Rn = 4+3 · 2n

where N = −∞, 0, 1, 2, 3, ..., also in the order of the
planets (Nieto 1970) or as proposed most recently
Rn = 0.4 + 0.3 · 2n−2 with n = 1, 2, 3, ... (Holton &
Brush 2001). An interesting historical analysis of the
progression was presented by Jaki (1972). Many dis-
cussions have arisen around the Titius-Bode model
like those of Ovenden (1972, 1975) who analyzed
the evolution of the circular and elliptical orbits and
found that a Titius-Bode planetary distribution is a
distribution of least interaction action between the
planets, as well as how they evolve numerically into
a resonant system from arbitrary initial conditions
of position and velocity. Nieto (1970, 1975) made a
detailed study of the Titius-Bode Law, and Horedt,
Pop, & Ruck (1977) described a numerical applica-
tion of the generalized Titius law for more than nine
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174 FLORES-GUTIÉRREZ & GARCÍA-GUERRA

TABLE 1

EMPIRICAL SERIES REPRODUCING THE HELIOCENTRIC DISTANCES OF THE PLANETS

MODIFIED TITIUS BODE LAW

This Paper This paper

Body TB TBmod a T ap Tp ∆an ∆Tn

N X X ′ N ′ AU Year AU Year % %

Mercury 0 0 0 0 0.4 0.253 0.387 0.251 3.4 0.8

Venus 3 0 3 3 0.7 0.586 0.723 0.615 −3.2 −4.8

Earth 6 3 3 6 1.0 1.000 1.000 1.000 0.0 0.0

Mars 12 6 6 12 1.6 2.024 1.523 1.881 5.0 7.6

Ceres 24 12 12 24 2.8 4.685 2.765 4.600 1.2 1.9

Jupiter 48 24 24 48 5.2 11.858 5.202 11.862 −0.1 −0.0

Saturn 96 48 48 96 10.0 31.623 9.510 29.458 5.2 7.3

Uranus 192 96 96 192 19.6 86.773 19.25 84.013 1.8 3.3

Neptune 192 96 288 29.2 157.788 30.19 164.749 −3.3 −4.2

Pluto 288 96 384 38.8 241.684 39.50 247.492 −1.8 −2.3

TB is the original succession N defining the Titius-Bode law. TBmod is the modified TB law by means of the
empirical succession X and X’ and N ′ = X + X ′. In Columns a and T we give the semi-major axes of orbits
of the planets calculated by the TBmod model (N ′ + 4)/10 and the period computed by the way of the Third
Law of Kepler, respectively. In Columns ap and Tp we present the astronomical values of the observed orbital
parameters. In the last two columns we give the determination of the error between the computed heliocentric
distances and the astronomical ones ∆a and ∆T , where the values tending to zero indicate a good degree of
certainty.

planetary objects. Patton (1988) obtained the TB
Law for Lagrange multipliers and applied it with ac-
ceptable results to eleven large asteroids. Through
the approach of Monte Carlo, Lynch (2003) con-
cluded that it is not possible to assure that the
Titius-Bode Law explains the distribution of plan-
ets and satellites and Chang (2008) found that the
distribution of the ratio of rotational periods in the
55 Cnc system is apparently inconsistent with that
derived from the Titius-Bode Law. More recently
Kotliarov (2009) has presented an interesting discus-
sion of the Butusov model and proposed a generating
function for the distribution of the planets.

2. MODIFIED TITIUS-BODE LAW

We propose a modification to the Titius-Bode
Law (TBmod) by combining the sequences X (0,
0, 3, 6, 12, 24, 48, 96, 192, 288, 384, 576, 960,
1728) and X ′ (0, 3, 3, 6, 12, 24, 48, 96, 96, 96,
192, 384, 768, 1536), which were derived empirically
by Garćıa Guerra (2005). The sum of the sequences
N ′ = X + X ′ reproduces one by one the terms of
the succession of Titius-Bode (TB) from Mercury to
Pluto, including the approach to the asteroid Ceres
and other distant planetary objects. The semi-major

axes of the planets are derived from the modified TB
formulation a = (N ′ + 4)/10 which shows the curvi-
linear distribution of distances for each one of them
(Figure 1). We presented the exponential function fit
r = e0.6122x−2.8176, R2 = 0.9990 obtained from the
interpolation (r = Aex/t) and we compared it with
the semi-major axes of major planetary bodies and
other small objects, among them Ceto, Eris, Sedna
and the distant object SQ372.

In Table 1 we display the orbital parameters a
and T calculated with the TBmod model, and the
data for ap and Tp (Astronomical Almanac 2010);
in the columns ∆a = (an − ap)/ap (Kotliarov 2008)
and ∆T = (Tn − Tp)/Tp we give the proportional-
ity ratios between the calculated and observed values
to measure the degree of certainty, which is consid-
ered acceptable if their values are close to zero. In
our case these TBmod ratios have values of less than
5% and 8% respectively. One of our goals is to de-
termine some kind of mathematical expression that
would represent the general TBmod behavior, and
to compare it with tendencies that show the differ-
ent models deduced from the TB law summarized in
Table 2.
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Fig. 1. Distribution of the semi-major axes of the plan-
ets and some small objects, given by the original and
modified Titius-Bode Law, TB and TBmod respectively.
We also present two interpolations that summarize the
combination with an exponential function (r = Aex/t)
and a seventh order polynomial (we only display the five
first terms of the series), showing interpolated fits from
Neptune to the interior region of the Kuiper Band.

Given the sequence of N ′ integer numbers; we
carry out a setup of numerical operations in order to
construct a function 2n, which leads us to write this
sequence like multiples of the common factor 3 · 25

whose first value N ′ = 0 for n = 1 (Mercury) we took
into account in the discussion even though it does
not exactly reproduce value the 0.387 of Mercury
(Table 1). The resulting equations are:

rn = 0.4 + 9.6 · 2n−7 , n ≤ 8 (1)

rn = 29.2 , n = 9 (2)

rn = 29.2 + 9.6 · Σn
i=10 2i−10. n ≥ 10 (3)

If we arrange the elements n = 9 and n ≥ 9
we realize that they constitute the total sum of the
geometric progression given by (2n−9 − 1), so that
eventually we obtain the modified TBmod model,
governed by two generic intervals of arithmetic and
geometric progressions, respectively

rn = 0.4 + 9.6 · 2n−7 , n ≤ 8 (4)

rn = 19.6 + 9.6 · 2n−9 , n ≥ 9 (5)

Among the distributions of planetary bodies
shown in Table 1 we observed that they present ten-
dencies in the internal region of the Solar System in-
cluding the TBmod distribution (Figure 2), although
some of them diverge for the outer planets and even

TABLE 2

SOME MODELS THAT FIT THE
TITIUS-BODE LAW

Titius-Bode Model Reference

rn = 0.3 + 0.3 · 2n Wurm (1803)a

n = −1, 0, 1, 2, ..., 6

rn = 0.2792 · 1.53n Armellini (1921)a

n = 1, 2, 3, ..., 11

rn = 0.4 + 0.0075 · 2n Nicolini (1957)a

n = −1, 0, 1, 2, ..., 6

rn = 0.2792 · 1.52n Munini & Armellini (1978)a

n = 1, 2, 3, ..., 11

rn = 0.283 · 1.52n Badolati (1982)

n = 1, 2, ...

rn = 0.4 + 0.3 · 2(n−2) Holton & Brush (2001)

n = −∞, 0, 1, 2, ..., 9

rn = e0.53074n−1.51937 Ortiz et al. (2007)

n = 0, 1, 2, 3, 4, ...

rn = e0.5894n−1.65026 Poveda & Lara (2008)

n = −∞, 0, 1, 2, ..., 9

rn = e0.53707n−1.661 Pankovic & Radakovic (2009)

n = −1, 0, 1, 2, ..., 6

aAs cited by Badolati 1982.

more so for distant objects. Note that all the mod-
els have difficulty in reproducing the parameters of
Mercury, so that historically it has been necessary to
postulate special conditions for this planet; we shall
see how to avoid this problem.

The actual distribution of the planets is con-
tained in the TBmod curvilinear path, which coin-
cides with the values of observed semi-major axes.
We have chosen the logarithmic scale to better visu-
alize the linear trace of the other six models. The
Armellini and Bodolati model does not reproduce
the distribution of planetary objects beyond Jupiter.
The Nicolini and Holton & Brush models match the
TBmod up to Uranus, as the Nicolini model is only
for the planets. The Armellini and Bodolati models
show values an that are very close. The case of the
models of Wurm (not shown in Figure 2) falls short
of all values ∆an. In Ortiz et al. (2007), Poveda
& Lara (2008), and Pankovic & Radakovic (2009)
we observe that their traces exhibit a certain par-
allelism and proximity between the distribution of
planetary objects. Finally, these cases including TB-
mod are those that best approximate the actual dis-
tribution of planetary objects. Of course the TBmod
proposal shows the best approximation to the above
mentioned distribution.
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Fig. 2. Titius-Bode models of several authors including the TBmod variant proposed in this work. It is to be noted that
the models are distributed above or below the real TB distribution of planets and the TBmod curvilinear path, which
coincides with the values of the observed semi-major axes. We have chosen the logarithmic scale to better visualize the
linear trace of the other six models. The color figure can be viewed online.
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Fig. 3. The degree of certainty of the TB models proposed by various authors in terms of the ratio ∆a = (an − ap)/ap.
The color figure can be viewed online.

3. DEGREE OF CERTAINTY OF TBMOD

We realize that the modified TBmod model ac-
ceptably reproduces the orbital parameters an. We
have examined the degree of certainty of the model

through the differences between the calculated pa-
rameters (an, Tn) and those observed (ap, Tp) by
the ratio ∆a = (an − ap)/ap, and similarly by cal-
culating the ratio ∆T = (Tn − Tp)/Tp, where the
periods are the parameters obtained from Kepler’s
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Fig. 4. Regions of accumulation in the Solar System of the small planetary bodies (taken from IAU Minor Planets
Center: Observable Distant Minor Planets Orbital Elements). We observe that several of the small objects of the Solar
System, like Eris, 2006HQ or Sedna, cannot be associated to the Titius-Bode Law. The color figure can be viewed
online.

Third Law. If we apply this procedure to each of
the models in Table 1 we will have an overview of
the degree of certainty that the models possess as a
whole.

The fit in Figure 3 shows the ratio between the
values calculated for each model and the observed
parameters. We can see that there are certain simi-
larities up to the planet Saturn. However, there are
divergences when we approach the outer regions of
the Solar System. Note that the trace shows the
smallest difference with the data for planetary ob-
jects due to the lower percentages of up to 10%. In
this figure it is easy to identify the problem arising in
all the models when reproducing the parameters of
the planet Mercury; therefore it is normally avoided
with an ad hoc number applied to this planet.

Another aspect that we want to emphasize is the
fact that when general models are proposed what is
implicitly done is to change the pattern of the se-
quence of integers for that of real numbers given by
continuous functions T = f(r). Thus, any Solar Sys-
tem object in principle will also fulfill this function
and also the TB Law.

Given the large number of solar bodies now
known we noticed that they fall on the semi-major
axis distribution, although we know small objects
like Eris, 2006HQ or Sedna that cannot be associ-

ated to the integers succession of the Titius-Bode
Law. In the case of Ceres, which has historically
been associated with the fifth place in the TB Law,
we must say that we now know of the existence of
a large number of other, smaller, planetary bodies
whose orbital parameters are closer to the fifth place
in Titius Bode’s law.

With the intention of identifying the regions
of the major accumulation of small planetary ob-
jects, we set ourselves the task of assembling the
information (Figure 4) of IAU Minor Planets Cen-
ter (Observable Distant Minor Planets Orbital Ele-
ments). We compare their semi-major axis accumu-
lation points with the values corresponding to every
integer n of the TBmod succession. The result in-
dicates to us that only seven regions (m1, m2, m3,
m4, m5, m6 and m7) can be associated with some
integer 10, 11, 12 (2002TC30), 13 (Ceto), 14, 15 and
16 respectively, which makes us see the generic rep-
resentation of the Titius Bode Law.

Another aspect that we want to review is whether
the distribution of planets in our Solar System could
be compared with that of extrasolar systems (of-
ten very different from ours), and so we enquired
whether the TB model could be applied to such plan-
etary systems.
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Fig. 5. Classification of planets and satellites. It shows the ranking of the Solar System and 55 Cnc, and satellite
systems of planets. It is easy to see that 55Cnc and the Solar System are coincident because the masses of the central
body are similar, but they differ clearly for the satellites. The color figure can be viewed online.

4. SYSTEMS OF SATELLITES AND
EXOPLANETS

In the interpretation of the Titius-Bode Law a
perennial concern has existed about its application
to satellite systems that orbit the planets of our
Solar System and, more recently, to planetary sys-
tems orbiting other stars such as υ And, 55 Cnc,
61 Vir, HD69830, HD181433, Gliese 876 and G1581
(data from Schneider 20103). Of course, we must
recognize the importance of characterizing the or-
bital period of the planetary objects under study
by applying Kepler’s Third Law a3/T 2 = K, where
K = π2G(M + m) is called the Proportionality Ke-
pler Parameter (Tables 3 and 4); we must have a
clear idea that a self-gravitating system is character-
ized by means of its central mass and that this acts
like a main factor of classification. This way, we ob-
serve in the fifth column that the values of K[m3 s−2]
are different for every self-gravitating system. Cer-
tainly this behavior is also estimated in the sixth
column; the values of the ratio a3/T 2 = [AU3 yr−2]
are of the order of one for our self-gravitating So-
lar System and 55Cnc, since both satisfy Kepler’s
proportionality. Finally, we must say that if the di-
mensionless ratio (a2/T 3)/K has fluctuations close

3http://exoplanet.eu/catalog-all.php.

to one, then the parameters T , a, M and m are well-
established.

Thus, also the systems of satellites of the planets
are characterized in a unique way, although the con-
stants of proportionality they obey have very small
values (Figure 5); the extrasolar planets system pos-
sesses specific values of the above mentioned con-
stant that differ or not from that of our Solar Sys-
tem, so much as mass of the star differs from the
mass of the sun (Figure 6).

Now assume that the planetary systems 61 Vir
and 55 Cnc obey our TBmod model. To reproduce
the values of their semi-major axes, it is necessary to
take the negative part of the integer numbers. We
chose the values −2, −1, 0, 1 therefore obtaining TB-
mod values 0.01, 0.1, 0.2 and 0.3 respectively, among
which it is easy to find the values of the semi-major
axes of the planets of 55 Cnc and 61 Vir (Figure 7).
Note that the objects 55Cnc(f) and 55Cnc(d) corre-
spond to the planets Venus and Jupiter, respectively,
and 61Vir(d) to a place between Mercury and Venus.
This leads us to reassess the general functions pro-
posed here for the Solar System, since the two equa-
tions do not allow us to calculate semi-major axes of
less than 0.4. In order to avoid this problem we note
that with the equation (4) we can determine these
small values, and the remaining ones by means of
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TABLE 3

ORBITAL PARAMETERS OF SEVERAL PLANETARY OBJECTS AND THE SATELLITE SYSTEMS
OF THE PLANETS

Object a T m K a3/T2 a3/T2/K

AU yr kg m3 s−2 AU3 yr−2

Sun M = 1.9891 · 1030 kg

Mercury 0.387 0.251 3.302 · 1023 3.120‘ · 1018 0.9201 0.9273

Venus 0.723 0.615 4.869 · 1024 3.390 · 1018 1.0006 1.0084

Earth 1.000 1.000 5.974 · 1024 3.390 · 1018 1.0000 1.0078

Mars 1.524 1.881 6.419 · 1023 3.390 · 1018 1.0005 1.0083

Ceres 2.765 4.599 9.500 · 1020 3.390 · 1018 1.0000 1.0078

Jupiter 5.203 11.862 1.899 · 1027 3.390 · 1018 1.0010 1.0079

Saturn 9.509 29.458 5.685 · 1026 3.360 · 1018 0.9909 0.9984

Uranus 19.251 84.013 8.685 · 1025 3.430 · 1018 1.0109 1.0187

Neptune 30.188 164.749 1.024 · 1026 3.440 · 1018 1.0136 1.0215

Pluto 39.499 248.430 1.300 · 1022 3.380 · 1018 0.9985 1.0063

2002 TC302 55.096 410.620 1.800 · 1021 3.360 · 1018 0.9919 0.9997

Eris 67.668 557.000 1.700 · 1022 3.380 · 1018 0.9987 1.0065

2007 UK126 72.814 623.870 7.100 · 1020 3.360 · 1018 0.9919 0.9996

2005 QU182 113.278 1210.530 1.200 · 1021 3.360 · 1018 0.9919 0.9997

Sedna 524.453 12059.06 7.200 · 1021 3.360 · 1018 0.9920 0.9997

Jupiter M = 1.8990 · 1027 kg

Metis 0.0009 0.0010 9.4900 · 1016 3.2102 · 1015 9.210 · 10−4 0.97240

Adrasthea 0.0009 0.0010 1.9000 · 1016 3.2102 · 1015 9.428‘ · 10−4 0.99540

Amalthea 0.0012 0.0010 7.2200 · 1018 3.2102 · 1015 9.375 · 10−4 0.98980

Tebe 0.0015 0.0020 7.6000 · 1017 3.2102 · 1015 8.707 · 10−4 0.91920

Io 0.0028 0.0050 8.9400 · 1022 3.2103 · 1015 9.464 · 10−4 0.99910

Europa 0.0045 0.0100 4.8000 · 1022 3.2102 · 1015 9.465 · 10−4 0.99920

Ganymmede 0.0071 0.0200 1.4820 · 1023 3.2104 · 1015 9.470 · 10−4 0.99970

Callisto 0.0126 0.0460 1.0760 · 1023 3.2103 · 1015 9.470 · 10−4 0.99980

Leda 0.0740 0.6540 5.7000 · 1015 3.2102 · 1015 9.472 · 10−4 1.00000

Himalia 0.0765 0.6860 9.4900 · 1018 3.2102 · 1015 9.523 · 10−3 1.00530

Lisisthea 0.0781 0.7100 7.6000 · 1016 3.2102 · 1015 9.471 · 10−4 0.99990

Elara 0.0783 0.7110 7.6000 · 1017 3.2102 · 1015 9.476 · 10−4 1.00040

Ananque 0.1413 1.7280 3.8000 · 1016 3.2102 · 1015 9.459 · 10−4 0.99860

Carme 0.1507 1.8950 9.4900 · 1016 3.2102 · 1015 9.528 · 10−3 1.00590

Pasiphae 0.1567 2.0120 1.9000 · 1017 3.2102 · 1015 9.495 · 10−4 1.00250

Sinophe 0.1580 2.0750 7.6000 · 1016 3.2102 · 1015 9.158 · 10−4 0.96680

Saturn M = 5.97 · 1026 kg

Mimas 0.0012 0.0030 3.7500 · 1019 1.0100 · 1015 3.00 · 10−4 0.95350

Enceladus 0.0016 0.0040 1.0800 · 1020 1.0100 · 1015 3.00 · 10−4 0.95170

Tethys 0.0020 0.0050 1.0240 · 1020 1.0100 · 1015 3.00 · 10−4 0.95170

Dione 0.0025 0.0070 1.0950 · 1021 1.0100 · 1015 3.00 · 10−4 0.95170

Rhea 0.0035 0.0120 2.3060 · 1021 1.0100 · 1015 3.00 · 10−4 0.95150

Titan 0.0082 0.0440 1.3450 · 1023 1.0100 · 1015 3.00 · 10−4 0.95140

Hiperion 0.0099 0.0580 1.7100 · 1019 1.0100 · 1015 3.00 · 10−4 0.94960

Iapetus 0.0237 0.2170 1.8800 · 1021 1.0100 · 1015 3.00 · 10−4 0.94990

Febe 0.0864 1.5070 3.9800 · 1017 1.0100 · 1015 3.00 · 10−4 0.95090

Uranus M = 8.69 · 1025 kg

Miranda 0.0009 0.0040 6.5900 · 1019 1.4700 · 1014 4.2800 · 10−5 0.99000

Ariel 0.0013 0.0070 1.3500 · 1021 1.4700 · 1014 4.3300 · 10−5 1.00000

Umbriel 0.0018 0.0110 1.2000 · 1021 1.4700 · 1014 4.3300 · 10−5 1.00000

Titania 0.0029 0.0240 3.5000 · 1021 1.4700 · 1014 4.3300 · 10−5 1.00000

Oberon 0.0039 0.0370 3.0140 · 1021 1.4700 · 1014 4.3300 · 10−5 1.00000

Neptune M = 1.03 · 1026 kg

Triton 0.0024 0.0160 1.34 · 1023 1.7400 · 1014 5.04 · 10−5 0.98000

Nereida 0.0368 0.9860 2.06 · 1019 1.7400 · 1014 5.10 · 10−5 1.00000

Earth M = 5.97 · 1024 kg

Luna 0.0026 0.0750 7.3480 · 1022 1.0200 · 1013 3.0100 · 10−6 1.00000

Mars M = 6.42 · 1023 kg

Fobos 0.0001 0.0010 9.6300 · 1015 1.0900 · 1012 3.2000 · 10−7 1.00000

Deimos 0.0002 0.0040 1.9300 · 1015 1.0900 · 1012 3.2000 · 10−7 1.01000

Pluto M = 1.30 · 1022 kg

Charon 0.0001 1.5200 0.0170 · 1021 2.4500 · 1010 5.2000 · 10−9 0.72000

In the first, second, third, and fourth columns, the names of the bodies, the major semi-axes, their periods and
their respective masses, are given. In the fifth and the sixth columns the values of the proportionality parameter of
Kepler for each body, and the quotient are given, and finally, in the seventh column we give the quotient of these
parameters of proportionality whose value is very near to one.
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TABLE 4

ORBITAL PARAMETERS OF THE EXOPLANETARY SYSTEM GLIESE 876, G1581,
υ AND, 55 CNC, HD160691, HD69830 AND 61 VIR

Object M a T m K a3 T−2 a3 T−2/K

kg AU yr kg m3 s−2 AU3 yr−2

υ And 2.525 · 1030 kg

1 0.059 0.01 1.3100 · 1027 4.27 · 1018 1.29 1.02

2 0.822 0.65 22.0036 · 1027 4.31 · 1018 1.31 1.03

3 2.550 3.57 19.5356 · 1027 4.30 · 1018 1.30 1.03

55Cnc 1.97 · 1030 kg

1 0.038 0.01 0.0456 · 1027 3.36 · 1018 0.92 0.93

2 0.115 0.04 1.5644 · 1027 3.36 · 1018 0.95 0.95

3 0.240 0.12 0.3209 · 1027 3.36 · 1018 0.94 0.95

4 0.781 0.71 0.2734 · 1027 3.36 · 1018 0.94 0.95

5 5.770 14.29 7.2808 · 1027 3.37 · 1018 0.94 0.95

61 Vir 1.8890 · 1030 kg

1 0.050 0.01 0.0304 · 1027 3.19 · 1018 0.95 1.01

2 0.218 0.10 0.1088 · 1027 3.19 · 1018 0.95 1.01

3 0.476 0.34 0.1367 · 1027 3.19 · 1018 0.95 1.01

HD69830 1.71 · 1030 kg

1 0.079 0.02 0.0627 · 1027 2.89 · 1018 0.86 1.01

2 0.186 0.09 0.0721 · 1027 2.89 · 1018 0.86 1.01

3 0.630 0.54 0.1101 · 1027 2.89 · 1018 0.86 1.01

HD181433 1.55 · 1030 kg

1 0.080 0.03 0.0452 · 1027 2.62 · 1018 0.78 1.00

2 1.760 2.63 1.2150 · 1027 2.62 · 1018 0.79 1.01

3 3.000 5.95 1.0252 · 1027 2.62 · 1018 0.76 0.99

Gliese876 1.55 · 1029 kg

1 0.021 0.01 0.0399 · 1027 1.12 · 1018 0.32 0.97

2 0.130 0.08 1.3559 · 1027 1.13 · 1018 0.32 0.97

3 0.208 0.17 4.3202 · 1027 1.13 · 1018 0.32 0.97

4 0.334 0.34 0.0873 · 1027 1.12 · 1018 0.32 0.97

G1581 6.16 · 1029 kg

1 0.030 0.01 0.0116 · 1027 1.04 · 1018 0.36 1.18

2 0.041 0.01 0.0934 · 1027 1.04 · 1018 0.32 1.04

3 0.070 0.04 0.0320 · 1027 1.04 · 1018 0.27 0.89

4 0.220 0.18 0.0424 · 1027 1.04 · 1018 0.32 1.04

In the Columns 1 to 5, the names of the bodies, the mass of the star, the major semi-axes, their periods and
the planet masses, are given. In Columns 6 and 7 the values of the proportionality parameter of Kepler for
each body, and the quotient are given, and finally, in Column 8 we give the quotient of these parameters of
proportionality, whose value is very close to one.

the following equations (TBF):

rn = 0.008 + 9.6 · 2n−6 , −4 ≤ n < 2 (6)

rn = 0.4 + 9.6 · 2n−7 , 2 ≤ n < 9 (7)

rn = 19.6 + 9.6 · 2n−9 . n ≥ 9 (8)

Now we present the distribution of the objects
that induces each of the equations (6–8) in order to
discern their tendencies and to display the intervals
that are valid in each (the values of χ2 for each in-
terval are 0.002, 0.241 and 0.379 respectively). It is
obvious that there are three regions bound by the
intersection of the equations (6) and (7), and equa-
tions (7) and (8) (Figure 8) and whose approximate
values are found to be (n1, r1) = (2.5, 0.8 AU) and
(n2, r2) = (8.4, 26.5 AU), respectively. This sug-
gests that these three intervals delimit the regions

between the Sun and Venus, inside the region of the
hypothetical vulcanoid objects that contains Mer-
cury, between Major Solar Bodies but without Mer-
cury, and finally from Neptune to the regions of the
outer Solar System, into which we have included the
accumulation points (m1, m2, m3, m4, m5, m6 and
m7).

Taking equations (6–8) we have determined the
values of the semi-major axes and have fitted expo-
nential functions (values of R2 as 0.9999, 0.9971 and
0.9999 respectively):

r = e0.63413x−1.81942 , x < 2 (9)

r = e0.67115x−2.38121 , 2 ≤ x < 9 (10)

r = e0.68879x−3.89173 . x ≥ 9 (11)

Since equation (9) represents the vulcanoid ob-
jects we wish to compare it with the semi-major axes
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Fig. 6. Orbital parameters of the exoplanetary system. Observe that the systems whose central masses are similar to
that of the Sun are υ And, 55 Cnc, 61 Vir, HD 69830 and HD 181433, and differ from those of Gliese 876 and Gliese
1581.
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Fig. 7. Distribution of exoplanets of 55Cnc and 61Vir. As the central mass of both systems is similar to that of the Sun,
we will assume that they satisfy the equations we have called TBF. We include the members of the Solar System with
the purpose of comparing the extrasolar objects with those familiar to us. On the abscissa axis we give the heliocentric
distances of the planetary objects according to the order of the integer succession TB law.

of the exoplanets (Schneider 2010)4 known until now.
We have found that some accumulation points cor-
respond to certain elements of TBF (Figure 9). Nev-
ertheless, it is not possible to represent the totality

4http://exoplanet.eu/catalog-all.php.

of them. Another interesting aspect is the concen-
tration of vulcanoid objects around n = −2. Per-
haps it is due to the existence of the protoplanetary
wall near a central mass recently analyzed (Calvet,
D’Alessio, & Woolum 2005), whose radius of subli-
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Fig. 8. Distribution of the planetary objects in three regions defined by the intersections of the functions The intersection
of the first two, assuming them as continuous functions, defines the point (n1, a1) = (2.5, 0.8 AU), and the intersection
of the second and the third ones gives the points (n2, a2) = (8.4, 26.5 AU). Through these points the three regions of
the Solar System are defined and it is possible to apply them to extrasolar systems with central masses similar to those
of the Sun, 55 Cnc and 61 Vir. We include the accumulation points (m1, m2, m3, m4, m5, m6 and m7).The color figure
can be viewed online.
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Fig. 9. Exoplanets with semi-major axes less 0.39 AU. The color figure can be viewed online.
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Fig. 10. A simplified distribution of a protostellar tur-
bulent disk model to give an idea of how annular regions
can form in such a disk.

mation we identify with the red color line between
0.07 and 0.15 AU.

Perhaps the origin of these regions can be found
in the early formative stages of the protoplanetary
disk dominated by turbulent forces that led to the
formation of ring band regions (annular regions).
With time, these regions evolved, and were confined
into bands by the presolar material. The planets
would have been formed as a result of the agglomer-
ation of small particles into larger ones. A hydrody-
namic vision has been included in the recent model
of Adame (2010), who describes a turbulent proto-
stellar disk (Figure 10) with central small masses.
Here we can see certain criteria for the formation of
annular regions; for example, it is possible to con-
sider that the origin of the TBF distribution arises
from a stationary wave system, according to the ini-
tial conditions, the mass of the central body being
the main parameter.

5. FINAL COMMENTS AND CONCLUSIONS

We have studied the general structure of the So-
lar System through the Titius-Bode Law, which we
have applied to the exoplanets system. It has lead
to us to consider that the TBF distribution of plan-
etary objects (equations (6–11) occurs in three great
groups: Inner Solar System bodies, Major Solar Sys-
tem bodies and Outer Solar System bodies. For the
case of Mercury (n = 1) we improved the determina-
tion of the semi-major axis. The order of the major
objects agrees well with the integer TBF sequence,
including the accumulation region (n = 5) repre-
sented by Ceres or the asteroid belt. In the outer
Solar System, where objects with very eccentric or-
bits are located, we observed that the TBF integers
are associated mainly to regions of accumulation of
small agglomerations with values n = 15 or 16, and
to the abundant concentrations of small objects for
n = 10, 11 or 12.

If we consider solely those systems with central
masses similar to the Sun, i.e., 55 Cnc, 61 Vir and
HD69830, we can assign to certain objects values n
of TBF (vulcanoids and major objects) according to
equations (6–8) and Table 4. For example, 55Cnc(1)
with n = −2, 61Vir(1) with n = −2, HD69830(1)
with n = −1, and HD69830(2) with n = 0.

With the set of equations (equations 6–11) we can
see the general orbital behavior of Solar System bod-
ies, which appears to contain the final status of the
presolar cloud processes from the stage of protoplan-
etary disk to planet formation. Of course, any theory
would have to include other phenomena, such as mi-
gration of planets (Masset 2008), or magnetohydro-
dynamic phenomena that may have occurred in our
Solar System. In this context, when we think about
the distribution of planets in the Solar System, we
are actually considering the primitive physical condi-
tions which dominated the presolar cloud which cre-
ated regions of the protoplanetary ring from which
the planets were created after a process of accre-
tion of the particles that formed these protoplane-
tary rings.

We have speculated that the TBF distribution
arose from a stationary wave system in the presolar
cloud where it induced the formation of certain an-
nular regions, simultaneously generating turbulent
accretion phenomena. On the other hand, we imag-
ine that these conditions differ from other protoplan-
etary environments where the distribution and size
of such rings would be subject to different chemical
composition, shape, distribution and laws of accre-
tion of the solid bodies.

We thank the referee for useful comments which
improved our presentation.
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Carlos Garćıa-Guerra: Facultad de Arquitectura, Universidad Nacional Autónoma de México, Mexico (car-
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