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RESUMEN

Derivamos enrojecimientos espaciales para 15 Cefeidas galácticas a partir de
datos CCD BV(RI)C desenrojecidos para estrellas tipo AF en las vecindades in-
mediatas de esas variables, en conjunción con enrojecimientos 2MASS de estrellas
tipo BAF en los mismos campos. Analizamos las soluciones potenciales de enro-
jecimiento utilizando el método de extinción variable para identificar estrellas con
distancias y enrojecimientos similares a las de las Cefeidas, muchas de las cuales
presentan excesos de color. Hemos modificado ligeramente la relación de color
intŕınseco BV(RI)C para enanas AF en nuestro análisis, de tal forma que los col-
ores observados para estrellas no enrojecidas en la muestra queden descritos de
forma apropiada.

ABSTRACT

Space reddenings are derived for 15 Galactic Cepheids from dereddening CCD
BV(RI)C data for AF-type stars in the immediate vicinities of the variables, in con-
junction with 2MASS reddenings for BAF-type stars in the same fields. Potential
reddening solutions were analyzed using the variable-extinction method to identify
stars sharing potentially similar distances and reddenings to the Cepheids, several
of which have large color excesses. The intrinsic BV(RI)C color relation for AF
dwarfs was modified slightly in the analysis in order to describe better the colors
observed for unreddened stars in the samples.

Key Words: methods: observational — stars: variable: Cepheids — ISM: dust,
extinction

1. INTRODUCTION

Because of the deleterious effects of interstellar
reddening and extinction, it is difficult to estab-
lish an empirical picture of the Cepheid instability
strip based entirely upon observations of Milky Way
Cepheids. The use of extragalactic Cepheids is not
necessarily a practical solution to the problem, since
the available data for Milky Way Cepheids are gener-
ally more extensive and of greater precision, and the
effects of internal reddening within other galaxies are
not as well established as they are locally. Such con-
siderations justify the continued use of the Galactic
sample in studies aimed at establishing reliable in-
trinsic properties of classical Cepheid variables.

The determination of accurate reddenings for
Cepheids has traditionally followed three different
routes: (i) from field reddenings of specific ob-

1Saint Mary’s University, Halifax, Nova Scotia, Canada.
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4Sternberg Astronomical Institute, Moscow, Russia.

jects (e.g., binary, cluster, association, or isolated
Cepheids) based upon the analysis of photomet-
ric data for early-type stars sharing the same lines
of sight, (ii) from observations mainly of bright
Cepheids involving photometric parameters designed
to be independent of interstellar reddening, and (iii)
from using standard reddening laws and a calibrated
intrinsic color relation (either observational or model
generated) to deredden photometric observations for
large samples of Cepheids. Methods (i) and (ii) are
the most reliable means of establishing reddenings
for individual Cepheids since method (iii) may entail
use of period-color relations (e.g., Fernie 1990a,b),
which do not account for the intrinsic spread in effec-
tive temperature of the Cepheid instability strip and
may generate erroneous results (see Turner 1995).

For method (ii), spectroscopic indices related to
stellar effective temperature and designed to be in-
dependent, or relatively independent, of interstel-
lar and atmospheric extinction include the Γ-index
(Kraft 1960; Spencer Jones 1989), which measures
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346 TURNER ET AL.

the depression of the G-band of CH (λ4305) rela-
tive to the local continuum, the β-index, which sam-
ples the strength of the Hβ Balmer line of hydro-
gen relative to the surrounding continuum, and the
KHG-index of Brigham Young University (McNa-
mara & Potter 1969; McNamara, Helm, & Wilcken
1970; Feltz 1972), which measures the strengths of
Ca II K (λ3933), Balmer Hδ (λ4101), and the G-
band through narrow band interference filters in a
manner independent of extinction. A more recent
technique (Sasselov & Lester 1990) involves the use
of line depth ratios between C I and Si II lying on the
Brackett continuum near 10728 Å. A similar tech-
nique was used by Krockenberger et al. (1998) using
spectral lines falling in the red region of Cepheid
spectra. Kovtyukh et al. (2008) have taken the tech-
nique to its ultimate level of sophistication by using
high resolution optical spectra of Cepheids through-
out their cycles, in conjunction with stellar atmo-
sphere models, to track their changes in effective
temperature, and thus intrinsic broad band color.

The use of close neighbours to deduce reddenings
for Cepheids appears to date from its application to
the blue companion of δ Cep by Eggen (1951); it has
also been used recently for Cepheids studied with
the Hubble Space Telescope (Benedict et al. 2007).
But the existing sample includes only ∼40 Cepheids
of known space reddening (Laney & Caldwell 2007).
This study presents new space reddenings for 15
Galactic Cepheids derived from CCD BV(RI)C pho-
tometry for stars in the immediate fields of the vari-
ables. The goal is to test the feasibility of deriving
Cepheid reddenings based upon only BV(RI)C ob-
servations for stars in the fields of the Cepheids, as
well as to augment the limited sample of Cepheids
with space reddenings. As demonstrated here, the
methodology appears to provide useful results that
extend the sample of Cepheids with independently
derived reddenings.

2. OBSERVATIONAL DATA

The input data for the present study consist of
observations of 15 Cepheid fields obtained with the
1.0 m Ritchey-Chrétien telescope of the U.S. Naval
Observatory, Flagstaff Station. A Tektronix/SITe,
1024 × 1024 pixel, thinned CCD was used with
Johnson system BV and Kron-Cousins system (RI)C

filters to image the fields (e.g., Henden & Mu-
nari 2000). Several deep images were obtained for
each field, from which average BV(RI)C magnitudes
and colors, with typical uncertainties smaller than
±0m.01, were extracted for all detectable stars using
DAOPHOT (Stetson 1987). Since no U-band obser-

vations or spectral types are available for the stars
in the survey fields, it was necessary to deduce indi-
vidual reddenings from photometric analyses of two-
color diagrams constructed from the BV(RI)C data.
The data are available electronically from A.A.H. via
ftp from the American Association of Variable Star
Observers website5.

An often-ignored feature of interstellar reddening
is that no single relationship accurately describes it
over all regions of the Galaxy (Wampler 1961, 1962;
Mathis 1990; Turner 1976a,b, 1989, 1994). Regional
variations in the reddening law depend directly upon
direction viewed through the Milky Way, vary slowly
with Galactic longitude, and are tied to differences in
the distribution of particle sizes for dust lying along
different lines of sight. The resulting Galactic longi-
tude and latitude dependence of the extinction law
affects interstellar reddening studies that implicitly
use a relationship of fixed parameterization to de-
scribe the extinction in a particular color system,
and should be most important for stars of large red-
dening. Several of the Cepheids in the present sam-
ple are heavily reddened, so the extinction laws for
the fields of each object were established prior to the
analysis by taking advantage of existing studies for
regions reasonably close to the program objects (e.g.,
Johnson 1968; Turner 1976b, 1989, as well as other
published studies by the lead author).

Specifically, a reddening slope EU−B/EB−V for
the field of each program Cepheid was established
from studies by Turner (1976b, 1989) for adjacent
regions, and was linked to specific reddening slopes
EV −I/EB−V and ER−I/EB−V on the Johnson sys-
tem using regional reddening curves from Johnson
(1968). Those were then converted to reddening
slopes EV −I/EB−V and ER−I/EB−V on the Kron-
Cousins system using the results of Fernie (1983) and
Caldwell et al. (1993). To illustrate the methodol-
ogy, the results for specific fields studied by Johnson
(1968) and exhibiting a range of color excess ratios
EU−B/EB−V are shown in Figure 1, where it can be
noted that the I–band EV −I/EB−V reddening ra-
tios appear to display no significant dependence on
visible reddening slope EU−B/EB−V . The Cepheids
studied here all lie in fields where the reddening slope
does not vary significantly from the locally observed
Galactic mean, so specifying the exact reddening ra-
tio for each field proved to be only a minor concern.

3. METHOD OF ANALYSIS

This study presents new space reddenings for
15 Galactic Cepheids derived from two-color dia-

5ftp://www.aavso.org/public/calib/.
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SPACE REDDENINGS FOR FIFTEEN GALACTIC CEPHEIDS 347

Fig. 1. Derived Johnson system (filled symbols) and
Kron-Cousins system (open symbols) reddening ratios
EV −R/EB−V (circles, lower) and EV −I/EB−V (squares,
upper) for fields studied by Johnson (1968). Gray
lines denote the implied dependences on reddening slope
EU−B/EB−V .

grams, V–IC versus B–V and (R–I)C versus B–
V, constructed from CCD BV(RI)C photometry
for stars in the fields of the variables. Redden-
ing lines appropriate for each field were adopted
as indicated above, specifically the adopted red-
dening slopes EU−B/EB−V were 0.73 for VY Sgr,
AY Sgr, and V1882 Sgr, 0.75 for HZ Per and
OT Per, 0.76 for FO Cas, IO Cas, EW Aur, YZ
CMa, CN CMa, BD Pup, BE Pup, and LR Pup,
and 0.77 for UY Mon and AC Mon. The red-
dening slopes EV −I/EB−V and ER−I/EB−V were
next obtained through interpolation and computa-
tion with the data of Figure 1, resulting in values on
the Kron-Cousins system of EV −I/EB−V = 1.257
for all fields and values of ER−I/EB−V of 0.689,
0.677, 0.670, and 0.664, respectively, for the Cepheid
fields listed above. Examples are shown in Fig-
ure 2, where the derived reddening slopes for UY
Mon and AC Mon are EV −I/EB−V = 1.257 and
ER−I/EB−V = 0.664 according to the inferred red-
dening ratio EU−B/EB−V = 0.73. Note that the
adopted field reddening lines are unchanging for
EV −I/EB−V and exhibit only small variations for
ER−I/EB−V .

Initial tests with two-color diagrams using in-
trinsic BV(RI)C colors for dwarfs from Caldwell et
al. (1993) revealed small anomalies in the inferred
EB−V reddenings derived from the two diagrams,
as well as an overabundance of unreddened and
negatively-reddened stars relative to the intrinsic re-

Fig. 2. Two-color diagrams, V–IC versus B–V for the
field of UY Mon (left), and (R–I)C versus B–V for the
field of AC Mon (right), showing the intrinsic color rela-
tions adopted (solid curves). Reddening lines specific for
the fields are shown separately in red for EB−V = 1.0,
with arrows denoting the direction of increasing redden-
ing. The color figure can be viewed online.

lation, not explainable as luminosity effects (Cald-
well et al. 1993). Such non-physical results suggested
the need for slight corrections to the intrinsic colors
used with the present data sets, which are normal-
ized to the Kron-Cousins system. Small adjustments
to the intrinsic relations for late B-type and A-type
dwarfs to make them bluer were therefore tried, us-
ing alternative intrinsic colors from Johnson (1966)
adjusted to the Cape system (Fernie 1983). That
produced greater consistency in the derived red-
denings and better agreement for unreddened stars,
and was adopted throughout the remainder of the
study. The intrinsic colors corresponding to such
changes are presented in Table 1 for reference pur-
poses, where they are compared with the Caldwell
et al. (1993, SAAO) colors for dwarfs, which were
adopted for all other stars. Given that the analysis
was restricted to stars that dereddened uniquely to
the AF-dwarf relation, the modification affects the
resulting space reddenings, but only to a minor ex-
tent. Likely B-type stars in the field of each Cepheid
were only used when analyzing 2MASS colors for the
stars.

Reddening lines run nearly parallel to the intrin-
sic relations for B-dwarfs and KM-dwarfs, particu-
larly in V–IC versus B–V diagrams, which is why
the analysis was restricted to stars indicated to be
likely AF-dwarfs, which are reasonably plentiful in
each field. The slope of the intrinsic relation for AF-
dwarfs relative to the effects of interstellar reddening
in the BV(RI)C system results in sufficient separa-
tion, particularly in (R–I)C relative to B–V, to pro-
duce unique photometric dereddening solutions for
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348 TURNER ET AL.

TABLE 1

INTRINSIC BV(RI)C COLORS FOR DWARFS

(B–V)0 (V–I)0 (V–I)0 (R–I)0 (R–I)0 (B–V)0 (V–I)0 (V–I)0 (R–I)0 (R–I)0
SAAO SAAO SAAO SAAO

−0.24 −0.259 −0.237 −0.157 −0.158 +0.04 +0.055 +0.037 +0.040 +0.021

−0.23 −0.248 −0.221 −0.150 −0.146 +0.05 +0.066 +0.048 +0.046 +0.026

−0.22 −0.236 −0.206 −0.143 −0.134 +0.06 +0.077 +0.059 +0.053 +0.032

−0.21 −0.225 −0.193 −0.136 −0.123 +0.07 +0.088 +0.070 +0.059 +0.038

−0.20 −0.214 −0.181 −0.129 −0.114 +0.08 +0.100 +0.081 +0.066 +0.043

−0.19 −0.203 −0.170 −0.121 −0.105 +0.09 +0.111 +0.093 +0.072 +0.049

−0.18 −0.192 −0.159 −0.114 −0.097 +0.10 +0.122 +0.105 +0.078 +0.055

−0.17 −0.180 −0.149 −0.107 −0.089 +0.11 +0.133 +0.117 +0.084 +0.061

−0.16 −0.169 −0.140 −0.100 −0.082 +0.12 +0.144 +0.129 +0.090 +0.068

−0.15 −0.158 −0.131 −0.092 −0.076 +0.13 +0.156 +0.141 +0.095 +0.074

−0.14 −0.147 −0.122 −0.085 −0.070 +0.14 +0.167 +0.153 +0.101 +0.080

−0.13 −0.136 −0.114 −0.078 −0.064 +0.15 +0.178 +0.166 +0.106 +0.086

−0.12 −0.124 −0.106 −0.071 −0.059 +0.16 +0.189 +0.179 +0.112 +0.093

−0.11 −0.113 −0.098 −0.064 −0.053 +0.17 +0.200 +0.191 +0.117 +0.099

−0.10 −0.102 −0.090 −0.056 −0.048 +0.18 +0.212 +0.204 +0.122 +0.106

−0.09 −0.091 −0.082 −0.049 −0.043 +0.19 +0.223 +0.217 +0.127 +0.112

−0.08 −0.080 −0.074 −0.042 −0.039 +0.20 +0.234 +0.230 +0.133 +0.119

−0.07 −0.068 −0.066 −0.035 −0.034 +0.21 · · · +0.243 +0.138 +0.125

−0.06 −0.057 −0.057 −0.028 −0.029 +0.22 · · · +0.256 +0.143 +0.132

−0.05 −0.046 −0.049 −0.020 −0.024 +0.23 · · · +0.269 +0.148 +0.138

−0.04 −0.035 −0.040 −0.013 −0.020 +0.24 · · · +0.281 +0.154 +0.144

−0.03 −0.024 −0.031 −0.006 −0.015 +0.25 · · · +0.294 +0.159 +0.151

−0.02 −0.012 −0.022 +0.001 −0.010 +0.26 · · · +0.307 +0.164 +0.157

−0.01 −0.001 −0.013 +0.008 −0.005 +0.27 · · · +0.320 +0.170 +0.164

+0.00 +0.010 −0.004 +0.015 +0.000 +0.28 · · · +0.332 +0.175 +0.170

+0.01 +0.021 +0.006 +0.021 +0.005 +0.29 · · · +0.345 +0.180 +0.176

+0.02 +0.032 +0.016 +0.027 +0.010 +0.30 · · · +0.357 +0.185 +0.182

+0.03 +0.043 +0.026 +0.033 +0.016

each star, and the use of two separate color-color dia-
grams provides independent estimates for the intrin-
sic color of each star, although greater precision is
obtained with solutions from the (R–I)C versus B–V
diagram alone, because the angle between the intrin-
sic relation and typical reddening lines is larger. In-
frared JHKs observations exist for most stars (Cutri
et al. 2003) from the Two Micron All Sky Survey
(2MASS, Skrutskie et al. 2006), and confirm the
adopted reddenings from BV(RI)C data, although
the scatter in 2MASS JHKs colors tends to be rather
significant, larger than in UBV color-color diagrams
(Turner 1976a).

Typical companions and progenitors of Cepheids
are B-type stars (Turner 1984), which are rare
enough that their occurrence in the field of a Cepheid
raises the possibility of a physical association. AF-
type stars, on the other hand, are a more common
constituent of Galactic star fields (McCuskey 1965),
so the possibility of their physical association with

a nearby Cepheid is reduced, but not necessarily to
zero. In many of our program fields some of the stars
identified as likely AF-type may be associated with
the Cepheid of interest, but that was not explored
here since there are no catalogued star clusters in
the fields, although the regions around UY Mon, BE
Pup, YZ CMa, and VY Sgr appear to contain faint
anonymous clusters, and BD Pup and FO Cas are
located in bright groups of surrounding stars.

The additional scatter in Figure 2 illustrates
some of the problems associated with dereddening
stars in BV(RI)C color-color diagrams. Such scatter
for a small proportion of stars is a common char-
acteristic of color-color diagrams, including those in
UBV and those used for 2MASS photometry, and
is readily explained in most cases by observational
error, typically one or more of the magnitudes in
the observed colors falling too close to the survey
limits. At bright magnitude limits the typical stars
encountered in Galactic star fields are A dwarfs and
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GK giants (McCuskey 1965), but the demographic
changes as the magnitude limits increase, and faint,
nearby degenerate stars and M dwarfs begin to com-
pound the picture with their unusual colors and
larger measuring uncertainties. Emission, binarity,
overly bright stars suffering from image saturation,
objects lying away from the main sequence (Cald-
well et al. 1993), and low quality observations for
faint stars all combine to generate scatter in such
plots, but using two separate color-color diagrams
and limiting the analysis to stars fainter than the
bright survey limits and brighter than the faint sur-
vey limits assures that likely AF dwarfs are identified
properly. They are the small fraction of objects that
deredden uniquely to the intrinsic relation for such
stars in Figure 2, as confirmed by their JHKs colors.

The derived reddenings for stars analyzed in each
field were adjusted to equivalent color excesses for a
B0 star according to their inferred intrinsic colors
and the dependence of reddening on intrinsic color
summarized by Fernie (1963). Interstellar extinction
affects the effective wavelengths of broad band BV
filters differently according to the continuum of the
star being observed, such that a typical Cepheid of,
say, (B − V )0 = 0.60 reddened by E(B − V ) = 0.90
suffers identical extinction to a B0 dwarf star of
(B − V )0 = −0.30 reddened by E(B − V ) = 0.97
(cf. η factor of Fernie 1963). Such adjustments
are necessary when comparing reddenings of stars
across a wide range of intrinsic color. Zero-age main
sequence (ZAMS) values of MV as a function of in-
trinsic (B−V )0 color (Turner 1976a, 1979) were also
assigned to each star from the photometric dered-
dening solutions in order to provide estimates, or
at least underestimates, of apparent distance mod-
ulus, V–MV , for the stars in each field. The stars
were then plotted in a variable-extinction diagram,
such as those for each field summarized in Figure 3,
as a means of assessing the likely space reddening
of each Cepheid. Figure 3 represents only a por-
tion of each variable-extinction diagram, namely the
most heavily-populated regions associated with the
expected parameters for each Cepheid.

Mean 〈B〉 and 〈V 〉 magnitudes are available for
each Cepheid from Berdnikov (2007) and the present
study, and rough estimates of reddening and lumi-
nosity were made from older, published period-color
(e.g., Fernie 1990a,b) and period-luminosity (e.g.,
Turner 1992) relations, which do not differ substan-
tially from more recent results (Turner 2001, 2010).
It was then possible to establish roughly where in
each variable-extinction diagram the parameters for
the Cepheid should fall, keeping in mind that an ex-

tremely liberal interpretation of such “predictions”
is essential to avoid biasing the results. Some of the
sample Cepheids are suspected Type II objects or
overtone pulsators, for example, which affects esti-
mates of both reddening and luminosity. Generous
uncertainties of ±0.1 or more in EB−V and ±1 in MV

were therefore assumed in the analysis. Note that
the “predictions” for IO Cas, FO Cas, and V1882
Sgr are inconsistent with expectations for classical
Cepheids (they have larger predicted distance mod-
uli than those for surrounding stars of similar red-
dening), which means that they are potential Type
II objects. The situation for HZ Per, BD Pup, and
OT Per is more ambiguous.

All such information is needed in order to estab-
lish which stars in the field of each Cepheid are useful
for deriving its space reddening. In the case of UY
Mon, for example, the estimated distance and red-
dening for the Cepheid associate it with the group of
slightly reddened stars at EB−V ≃ 0.1, (V–MV )0 ≃
11–12 (d ≃ 1.6–2.5 kpc), but less distant and less
reddened than stars of EB−V ≃ 0.5, (V–MV )0 ≃
12.5–13 (d ≃ 3–4 kpc), in its vicinity. The best
match is therefore to the 4 stars within 5′ of UY
Mon that are reddened by EB−V ≃ 0.1. Other cases
are more complex because of the patchy reddening
that permeates most fields, but have been resolved
by considering only stars close to each Cepheid.

What appears to be a continuous run of red-
dening with distance in some fields results from the
patchy extinction in each field combined with larger-
than-average uncertainties in the inferred color ex-
cesses, EB−V . The extinction associated with most
Galactic star fields is typically associated with indi-
vidual dust clouds dispersed along the line of sight
(Turner 1994). But large uncertainties in reddening
can confuse the picture. Figure 4 presents the re-
sults of a simulation of such circumstances in a field
where the scatter in the color excesses is taken to
be ±0.05, with associated uncertainties in absolute
magnitude of ±0.5, both quantities being applied
randomly to the test points. Star densities were as-
sumed constant as a function of distance, and the
input parameters included specific amounts of red-
dening and extinction arising in discrete dust clouds
located along the line of sight at distances of 0.5 pc,
0.9 pc, and 1.1 pc, producing mean color excesses
of EB−V = 0.2, 0.5, and 0.7, respectively. An ex-
tinction law with R = 3.0 is depicted for the last
group. The parameters, in particular the adopted
scatter, were chosen in order to produce the greatest
complexity in the resulting variable-extinction dia-
gram. The resulting scatter produces results similar
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350 TURNER ET AL.

Fig. 3. Variable-extinction diagrams for the fields examined in this study, identified by the Cepheid of interest. Filled
symbols denote AF stars near each Cepheid, and red plus signs are “predictions” for the Cepheid parameters. The color
figure can be viewed online.
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Fig. 4. A simulated variable-extinction diagram for a star
field where the reddening increases with distance accord-
ing to dust clouds producing EB−V = 0.20, 0.50, and 0.70
located at distances of 0.5 kpc, 0.9 kpc, and 1.1 kpc,
respectively, with associated uncertainties in EB−V of
±0.05 and in MV of ±0.5. The gray line denotes a stan-
dard reddening law of R = AV /EB−V = 3.0 for stars at
a distance of 1.1 kpc.

to some of the variable-extinction diagrams of Fig-
ure 3.

The large range of inferred reddenings for field
stars near each Cepheid was reduced further through
an analysis of 2MASS observations (Cutri et al.
2003) for likely BAF-type stars in the same fields, an-
alyzed in similar fashion to that employed by Turner
et al. (2008) and Turner (2011). 2MASS obser-
vations were used separately without combination
with the BV(RI)C photometry in order to avoid
potential zero-point problems. The observed J–H
and H–Ks colors for stars lying within 5′ of each
Cepheid are shown in Figure 5, and were compared
with the intrinsic relation for main-sequence stars in
the 2MASS system (Turner 2011), adjusted with a
reddening slope EH−K/EJ−H = 0.49 from Turner
(2011). Multiple solutions in some cases, e.g., UY
Mon and HZ Per, were resolved with reference to the
variable-extinction diagrams and “predicted” values,
and best fits were made by trial and error by estab-
lishing reddenings for which likely BAF-type stars
had colors distributed randomly about the reddened
intrinsic relation.

The JHKs colors generate independent EB−V

reddenings for the stars in the Cepheid fields, with
the advantage of being more closely tied to B-type
stars in the fields, stars that lie blueward of the
“kink” in the intrinsic relation and that may share

a common origin with the Cepheid. The reddenings
have slightly larger uncertainties because of larger
photometric scatter in the observations (by factors
of 3–5 relative to the BV(RI)C photometry) in com-
bination with the correction from infrared to optical
reddening. They are nevertheless crucial for narrow-
ing the range of potential color excesses for some of
the sample Cepheids, such as IO Cas. A few objects
in the sample appear to be Type II Cepheids, but
that does not affect the results. In most cases the
implied reddening near the Cepheid is fairly evident.

4. RESULTS

The results of the variable-extinction studies of
the sample Cepheids are presented in Table 2, which
lists the inferred space reddening for each Cepheid
derived from likely AF-type stars lying within differ-
ent angular radii, from 2′ to 5′ distant, and the red-
dening inferred from 2MASS JHKs colors for stars
within 5′ of the Cepheid. The adopted color ex-
cess in each case, Column 8, was the average for
all AF-type stars lying within 5′ of the Cepheid and
of comparable inferred distance, and the resulting
reddening, which is equivalent to that for a star of
spectral type B0, was converted in the last column
of the table to a value appropriate for the derived
intrinsic color of the Cepheid, again using the rela-
tionship of Fernie (1963). The number of stars used
to obtain the space reddening is listed in the second
last column of Table 2. In rich fields that number is
of order ∼10–20, whereas in more poorly populated
regions or fields with a larger spread in reddening,
less than half a dozen reference stars were available.
Two solutions are presented for UY Mon, for rea-
sons indicated later, although the adopted solution
for the Cepheid is the first.

It is worth noting that the 2MASS reddenings fall
closer to the converted color excess for the Cepheid
than to the B0-star reddenings. A reasonable expla-
nation lies in the fact that the BAF-star reddenings
in a 2MASS color-color diagram tend to be dom-
inated by the AF stars, particularly likely F-type
stars, since B-type stars are less common in the small
fields analyzed and are potentially affected by cir-
cumstellar effects (Turner 2011). The 2MASS red-
denings are also important for providing confirma-
tion of the relationship used to convert B0-star color
excesses to those appropriate for a star with the av-
erage unreddened colors of the Cepheid, which are
very similar to F-type dwarfs in the 2MASS sam-
ples.

The derived intrinsic colors are presented in Ta-
ble 3, which also provides in Column 3 the variable
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Fig. 5. 2MASS color-color diagrams, H–Ks versus J–H, for stars within 5′ of each Cepheid, from observations by Cutri
et al. (2003). The intrinsic relation for main sequence stars is plotted as a black line, while red lines depict the adopted
reddening for stars associated with the Cepheids, from Column 7 of Table 2. The dashed red line for UY Mon represents
the alternate solution for that field. The color figure can be viewed online.
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TABLE 2

SPACE REDDENINGS FOR CEPHEID FIELDS

Cepheid log P EB−V (B0) EB−V (B0) EB−V (B0) EB−V (B0) EB−V EB−V (B0) No. EB−V (Cδ)

< 2′
< 3′

< 4′
< 5′ 2MASS Adopted Stars

UY Mon 0.380 · · · 0.09 0.09 0.12 ± 0.01 0.07 ± 0.07 0.12 ± 0.01 4 0.11 ± 0.01

UY Mon1 · · · · · · 0.42 0.44 ± 0.03 0.43 ± 0.02 0.37 ± 0.07 0.43 ± 0.02 3 · · ·

CN CMa 0.390 0.62 ± 0.02 0.65 ± 0.02 0.66 ± 0.02 0.67 ± 0.02 0.63 ± 0.12 0.67 ± 0.02 11 0.63 ± 0.02

EW Aur 0.425 0.52 0.63 ± 0.06 0.61 ± 0.04 0.61 ± 0.04 0.53 ± 0.08 0.61 ± 0.04 6 0.58 ± 0.03

V1882 Sgr 0.433 0.60 ± 0.01 0.68 ± 0.03 0.70 ± 0.02 0.68 ± 0.02 0.69 ± 0.05 0.68 ± 0.02 20 0.64 ± 0.01

BE Pup 0.458 0.80 0.72 ± 0.04 0.69 ± 0.03 0.68 ± 0.02 0.73 ± 0.12 0.68 ± 0.02 20 0.64 ± 0.02

YZ CMa 0.499 · · · 0.71 ± 0.10 0.64 ± 0.09 0.60 ± 0.03 0.61 ± 0.07 0.60 ± 0.03 10 0.56 ± 0.03

LR Pup 0.523 0.44 0.47 ± 0.02 0.46 ± 0.01 0.45 ± 0.01 0.37 ± 0.07 0.45 ± 0.01 14 0.42 ± 0.01

BD Pup 0.593 0.63 ± 0.03 0.71 ± 0.03 0.74 ± 0.03 0.72 ± 0.02 0.69 ± 0.08 0.72 ± 0.02 19 0.67 ± 0.02

IO Cas 0.748 0.74 0.64 ± 0.03 0.62 ± 0.03 0.63 ± 0.03 0.63 ± 0.08 0.63 ± 0.03 14 0.59 ± 0.02

AY Sgr 0.818 · · · 1.04 ± 0.02 1.02 ± 0.04 1.00 ± 0.03 0.97 ± 0.05 1.00 ± 0.03 8 0.94 ± 0.02

FO Cas 0.832 0.99 0.99 0.83 ± 0.07 0.82 ± 0.06 0.78 ± 0.14 0.82 ± 0.06 7 0.76 ± 0.05

AC Mon 0.904 · · · 0.61 0.61 ± 0.02 0.59 ± 0.02 0.56 ± 0.05 0.59 ± 0.02 5 0.55 ± 0.01

HZ Per 1.052 1.39 1.39 1.48 ± 0.07 1.48 ± 0.05 1.42 ± 0.10 1.48 ± 0.05 4 1.36 ± 0.04

VY Sgr 1.132 · · · 1.50 1.41 ± 0.04 1.35 ± 0.04 1.24 ± 0.15 1.35 ± 0.04 3 1.24 ± 0.04

OT Per 1.416 · · · 1.70 1.52 ± 0.11 1.52 ± 0.09 1.47 ± 0.12 1.52 ± 0.09 5 1.39 ± 0.08

1Alternate solution for stars of large reddening near UY Mon.

Fig. 6. Derived intrinsic 〈B〉–〈V 〉 colors for sample
Cepheids (large symbols) relative to other Cepheids with
derived reddenings (small symbols, Turner 2001), as a
function of pulsation period.

star type designation for the object from the Gen-
eral Catalogue of Variable Stars (Samus et al. 2004).
Type II Cepheids are designated as CWB for short
period (1–8 days) BL Herculis variables, and CWA
for longer period (8–20 days) W Virginis stars. The
intrinsic (〈B〉–〈V 〉)0 colors are plotted in Figure 6
relative to a set of similar intrinsic colors calibrated
relative to other Cepheids with field reddenings (bi-
nary, cluster or association members) and Cepheids
with reddenings derived using reddening-free indices
(Turner 2001).

All of the program stars studied here appear to
have intrinsic colors consistent with those of classi-
cal Galactic Cepheids, despite remaining questions
about the true population status for some of them.
The spread in color at a given value of pulsation pe-
riod P for the reference sample can be attributed to
the natural width of the Cepheid instability strip,
and in a few cases to erroneous reddenings. The lo-
cation of individual Cepheids in our sample relative
to the hot (blue) and cool (red) edges of the strip,
if used in conjunction with light amplitude and rate
of period change, provides useful information about
what stage the Cepheids have reached in their evo-
lution (Turner et al. 2006).

Figure 7 plots the inferred (R–I)J colors for our
sample Cepheids relative to their (〈B〉–〈V 〉)0 colors,
transposed from (R–I)C using the relationships of
Fernie (1983). Included are inferred colors for AFGK
supergiants from Johnson (1966), in similar fash-
ion to the analysis of Dean et al. (1978). There is
good agreement of the derived intrinsic colors for
sample Cepheids with the colors expected for su-
pergiant stars, with the exception of V1882 Sgr and
YZ CMa. Both objects have faint optical compan-
ions that may contaminate the (RI)C photometry,
so the results of Figure 7 do not necessarily indicate
a significant difference in color between classical and
Type II Cepheids. The data also indicate the gen-
eral success of the procedure adopted in this study.
The temperature spread of the instability strip is less
marked in intrinsic (R–I)J and (R–I)C colors than in
(〈B〉–〈V 〉)0 color, as expected.
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Fig. 7. Derived Johnson system (R–I)J colors for sample
Cepheids (filled circles) relative to intrinsic (〈B〉–〈V 〉)0
colors, with derived colors for AFGK supergiants from
Johnson (1966) plotted for reference purposes as open
circles. The line is a fitted relation for the supergiants.
The anomalous Cepheids are V1882 Sgr and YZ CMa.

With regard to the variable star designations for
specific objects in Table 3, the short period Cepheids
UY Mon and CN CMa are solar-metallicity stars ac-
cording to Diethelm (1990), who derived reddenings
of EB−V = 0.15± 0.08 and 0.61± 0.10, respectively,
for the stars from Walraven photometry. Both val-
ues are consistent with the present results, although
of lower precision. UY Mon is an s-Cepheid, its
light curve being indistinguishable from a sine wave,
many of which are overtone pulsators, yet fundamen-
tal mode pulsation provides the simplest solution
to the variable-extinction study presented here (Fig-
ure 3), provided it is a classical Cepheid. CN CMa
is a suspected Type II Cepheid because of its unusu-
ally large amplitude for a short-period pulsator, but
that designation is not consistent with its photomet-
ric solar metallicity (Diethelm 1990) or the variable-
extinction analysis. Type II Cepheids are known to
display a wide range of abundances, from solar to
below solar (Harris 1981), so that is not necessarily
a good criterion to decide Population type for CN
CMa. A better case for it being a classical Cepheid
lies in the variable-extinction results (Figure 3). Its
(RI)C and (RI)J colors are also consistent with those
of a classical Cepheid (Figure 7), which is the desig-
nation preferred here.

For four of the sample objects the field star
variable-extinction data produce results indicating
that the Cepheid’s luminosity may have been over-
estimated in the analysis, i.e., it might be a Type II
object. The Cepheids are V1882 Sgr, BE Pup, IO
Cas, and FO Cas. The latter two objects are identi-
fied as classical Cepheids in the GCVS, so either the

TABLE 3

UNREDDENED BV(RI)C COLORS FOR
SAMPLE CEPHEIDS

Cepheid log P Type 〈B〉–〈V 〉 V–RC V–IC Deduced

Type

UY Mon 0.380 DCEPS +0.43 +0.28 +0.51 DCEPS1

CN CMa 0.390 CWB: +0.51 +0.33 +0.61 DCEP

EW Aur 0.425 DCEP +0.49 +0.29 +0.54 DCEP

V1882 Sgr 0.433 CEP +0.53 +0.30 +0.42 CWB

BE Pup 0.458 CWB: +0.47 +0.29 +0.52 DCEP

YZ CMa 0.499 CWB: +0.56 +0.28 +0.46 CWB?

LR Pup 0.523 CEP +0.51 +0.32 +0.59 DCEP

BD Pup 0.593 DCEP +0.56 +0.36 +0.63 DCEP

IO Cas 0.748 DCEP +0.57 +0.36 +0.63 CWB?

AY Sgr 0.818 DCEP +0.57 +0.31 +0.58 DCEP

FO Cas 0.832 DCEP +0.60 +0.44 +0.78 CWB?

AC Mon 0.904 DCEP +0.63 +0.35 +0.63 DCEP

HZ Per 1.052 DCEP +0.77 +0.40 +0.73 DCEP

VY Sgr 1.132 DCEP +0.75 +0.43 +0.74 DCEP

OT Per 1.416 DCEP +0.87 +0.49 +0.88 DCEP

1Fundamental mode pulsation likely.

variable-extinction results for them are anomalous or
the classification of the stars is erroneous. The latter
possibility is suspected here, so their deduced types
as Type II Cepheids in the last column of Table 3
reflect the results of the variable-extinction analy-
sis. V1882 Sgr has the characteristic light curve of
a Cepheid, but is of uncertain type. The variable-
extinction results suggest that it is a Type II ob-
ject, while its V(RI)C colors (Table 3) are slightly
bluer than those of classical Cepheids in the sample,
which may indicate a metal-poor object. The “CEP”
designation for the star in the GCVS is presumably
preliminary, and it appears likely to be a Type II ob-
ject. Similarly, the variable-extinction results for BE
Pup are consistent with either a classical or Type II
Cepheid, while its V(RI)C colors (Table 3) are simi-
lar to those of classical Cepheids in the sample. BE
Pup is also a double-mode pulsator (Wils & Otero
2004), which is suggestive of a classical Cepheid, our
preferred designation.

YZ CMa is suspected to be a classical Cepheid
according to the variable-extinction analysis, but its
V(RI)C colors are also slightly bluer than those of
other classical Cepheids. The “CWB”: designation
in the GCVS may therefore be correct, although fur-
ther study is needed to resolve the question. In gen-
eral, the studies summarized here consistently tend
to identify most sample objects (11/15) as classical
Cepheids. Two of the likely Type II objects, V1882
Sgr and YZ CMa, appear slightly bluer in V–RC and
V–IC than other Cepheids in the sample, but the
photometry for both stars may suffer from contami-
nation by close companions, so their distinctive dif-
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Fig. 8. Comparison of derived 2MASS reddenings, with
their uncertainties, for the Cepheids in our sample with
the color-corrected broad band BV(RI)C reddenings.
The gray line represents expectations for an exact match.

ference in color cannot be considered definitive. De-
tailed atmospheric abundance studies of both stars
should help to solidify their classifications and estab-
lish if there are obvious differences in color between
classical and Type II Cepheids.

Figure 8 plots the inferred 2MASS reddenings for
our sample Cepheids relative to their broad band
BV(RI)C reddenings, where we have included the
second result for the UY Mon field because of the
obvious separation in Figures 3 and 5 of stars of
small reddening from those of large reddening, for
which separate solutions were obtained. The close
agreement of both sets of reddenings in Figure 8 in-
dicates that the two techniques are of comparable
reliability for establishing field reddenings of Galac-
tic objects, although there is clearly greater precision
in the BV(RI)C color excesses.

5. DISCUSSION

The present study was undertaken as a feasibil-
ity test of the use of CCD BV(RI)C photometry for
studying the space reddening of Galactic Cepheids.
The BV(RI)C data by themselves were sometimes
insufficient to define the field reddenings of each
Cepheid unambiguously, but the addition of 2MASS
reddenings and initial “predictions” guided the pro-
cess successfully. The number of Galactic Cepheids
of well-established field reddening has been increased
from 40 (Laney & Caldwell 2007) to 55 by this study,
and the sample now includes a few Type II Cepheids,
some of which appear to display slightly bluer intrin-

sic (V–R)C and (V–I)C colors relative to their clas-
sical Cepheid cousins. A comparable test using red-
denings derived from 2MASS JHKs colors indicates
that the 2MASS survey may also be suitable for the
derivation of space reddenings, for a variety of stel-
lar types and not just Cepheids. Further studies of
that possibility have already been initiated (Majaess
et al. 2008a,b).

The results of this study have already been used
in a preliminary mapping of the Cepheid instabil-
ity strip using Cepheid reddenings tied to space
reddenings and spectroscopic reddenings of Galac-
tic Cepheids (Turner 2001), the results of which can
be seen in the data plotted in Figure 6. The addition
of U-band observations would have assisted the anal-
ysis considerably, but it is important to note that ac-
curate Johnson system U-band observations are dif-
ficult to obtain with some CCD/filter combinations
(see comments by Turner 2011). Despite that, the
success of the present study using both BV(RI)C and
JHKs photometry should spur further investigations
that take advantage of existing survey photometry
to study the reddening in interesting Galactic star
fields.
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