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RESUMEN

En este trabajo se presentan las ecuaciones de la evolucién del universo en
D dimensiones espaciales, como una generalizacién de la obra de Lima (2001).
También, se discuten las ecuaciones de Friedmann-Robertson-Walker en D dimen-
siones espaciales para un fluido simple con ecuacion de estado p = wpp. Después de
realizar un cambio apropiado de variables, es posible reducir las ecuaciones multi-
dimensionales a la ecuacion de una particula, la cual esta sujeta a una fuerza lineal.
Esta fuerza puede ser expresada como una ecuacién de oscilador, anti-oscilador o
una particula libre. Un resultado interesante es que, en el caso de de Sitter, la
evolucién es independiente de la dimensiéon D. También, para el caso plano en D
dimensiones, presentamos un caso general con factor A. Un resultado interesante es
que la reduccién de la dimensionalidad implica naturalmente una expansién aceler-
ada.

ABSTRACT

In this paper we present the equations of the evolution of the universe in
D spatial dimensions, as a generalization of the work of Lima (2001). We discuss
the Friedmann-Robertson-Walker cosmological equations in D spatial dimensions
for a simple fluid with equation of state p = wpp. It is possible to reduce the
multidimensional equations to the equation of a point particle system subject to a
linear force. This force can be expressed as an oscillator equation, anti-oscillator or
a free particle equation, depending on the k parameter of the spatial curvature. An
interesting result is the independence on the dimension D in a de Sitter evolution.
We also stress the generality of this procedure with a cosmological A term. A more
interesting result is that the reduction of the dimensionality leads naturally to an

accelerated expansion of the scale factor in the plane case.
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1. INTRODUCTION

The cosmological solutions for a relativistic sim-
ple fluid in the framework of Friedmann-Robertson-
Walker (FRW) models were discussed long ago by
Assad & Lima (1988; Lima 2001). In the referred
paper, the equation of cosmological dynamics driv-
ing the evolution of the scale factor for a simple per-
fect fluid obeying the equation of state p = wp, was
reduced to the one of a point particle subject to a lin-
ear force, where p, p and w are the pressure, energy
density and equation-of-state parameter describing
the cosmic fluid, respectively. It has been demon-
strated that the possible non-linear dynamic evolu-
tions predicted by the FRW equations were naturally
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recovered in such reduction. In particular, closed
models behave exactly as simple harmonic oscilla-
tors. The full discussion presented by Lima (2001)
was restricted to 341 space-time dimensions. Nev-
ertheless, after the studies of Ehrenfest (1917), who
solved the Kepler problem in arbitrary dimensions,
and Kaluza and Klein, in the 1920s, the interest for
theories in D spatial dimensions has grown consid-
erably (Duff & Nilsson 1986). Hayashi, Katsuura,
& Mendoza (1990) studied the influence of the di-
mension on physical laws. More recently, cosmolog-
ical models in higher dimensional space-time have
been studied, called D-brane cosmology (Panotopou-
los 2005; Gusin 2008; Chingangbam & Deshamukhya
2009; Panigrahi 2004; Polchinski 1995; Polchinski,
Chaudhuri, & Johnson 1996). In this paper, we have
explored the consequences of the method adopted by
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Lima for the study of a D+ 1 dimensional FRW cos-
mology, by studying the scale factor evolution as a
function of D for different material contents, e.g.,
matter, radiation and vacuum dominated universes.
We study the generalization when a cosmological A-
term is also present and we conclude by showing that
the reduction of the dimensionality leads to an ac-
celerated phase of expansion in the case of a plane
(k = 0) universe.

2. FRW COSMOLOGIES IN D SPATIAL
DIMENSIONS

The space-time metric for multidimensional
FRW cosmologies in D spatial dimensions is ex-
pressed as follows (Tangherline 1986), (we use ¢ = 1):

2 2 2 k2 i,
ds® =dt* —a=(t) [ 1+ e 0i;datda? (1)

(i,j =1,2,3,...,D)

where a(t) is the scale factor, k is the curvature pa-
rameter of the spatial sections and r? = > (z;)%
The above expression reduces to the standard form
in the 3-dimensional case (Landau & Lifshitz 1989).

In the D-dimensional geometry (equation 1),
Einstein’s field equations for a relativistic simple
fluid and the energy conservation law can be writ-
ten as:

E = 87TGDP; (2)

D(D2— 1) [cﬂ k:}

(D-vi  (D-1(D-2) [“2 n k’] = —87Gpp
a 2 ’ ’ 7

(3)

5+ D(p+p)S =0, @

where G p, p and p are the D-dimensional Newtonian
constant, the energy density and pressure of fluid,
respectively.

Following standard lines (Turner & White 1997),
it will be assumed that the matter content obeys the
general equation of state:

p=wpp, (5)

where wp is the equation-of-state parameter in D
spatial dimensions. For black-body radiation wp =
1/D, for matter wp = 0 and for vacuum wp = —1.
An interesting discussion on this equation regarding
the adiabatic index vp = wp + 1 can be found in the
book by Zel’dovich & Novikov (1996). For simplicity
of notation, we will take wp = w.

By inserting the above expression into equa-
tion (4) and integrating it, one may find that the
energy density reads:

p=po(=2) P, (6)
where the cosmic scale factor, a(t), must be deter-
mined from the FRW differential equation (see be-
low). By combining equations (2), (3) and (5), it can
be seen that the evolution of the scale factor is driven
by the second order differential equation (which cor-
rectly reproduces the 3-dimensional case (Assad &
Lima 1988; Faraoni 1999; Lima, Moreira, & Santos
1998):

ai+ Apa® +Apk =0, (7)

where the definition

AD:D(W+1)—1 (8)
2
has been introduced. It is interesting to note that
equation (7) does not depend on the Newtonian con-
stant Gp. Thus, we do not need to know its value
in order to obtain the evolution.

In principle, the corresponding dynamic behav-
ior must be heavily dependent on the choice of the
following three free parameters: (i) the curvature pa-
rameter k, (ii) the equation of state parameter w, and
(iii) the spatial dimension D.

Now, let us discuss how the method of solution
proposed by Lima (2001) in the 3-dimensional case
can be extended for D spatial dimensions. This
can be accomplished by using the conformal time
7, instead of the cosmological or physical time, dt =
a(n)dn. In this case, the equation of motion (equa-
tion 7) is expressed as shown below:

ad” + (Ap —1)a”? + Apka®> =0, (9)

where a prime denotes differentiation with respect to
conformal time 7.
We now employ the auxiliary factor

Z(n)=Ina if Ap=0, (10)
Z(n)=a”? if Ap#0, (11)
to obtain, respectively,
Z"=0 if Ap=0, (12)
7" +kALZ =0 if Ap#0. (13)

As expected, although considering that we are
treating FRW cosmologies in D spatial dimensions,
the equations (12) and (13) are reduced to those
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found by Lima (2001) for the 3-dimensional case.
Note also that equation (13) describes the classical
motion of a particle subject to a linear force. This
force can be restoring or repulsive depending only
on the sign of the curvature parameter. The general
solution of equations (12) and (13) can be written
as:
Z =bm+cy if Ap=0, (14)
Z =2 snVkAp(n+0)] if Ap#£0, (15)
VEk
with by, cg, 2o and J integration constants. By choos-
ing § = 0 and determining zo = a(f‘D , the scale factor
evolution can be obtained as the solutions of equa-

tions (10) and (11):
a(n) = ape™ if Ap =0, (16)

o) = (21200

The range in conformal time n in flat (kK = 0) and
open (k = —1) universes is semi-infinite, 00 > 7 >
0, regardless of whether the universe is dominated by
radiation (w = 1/D) or matter (w = 0). For a closed
universe (k = 1), n is bounded to # > n > 0 for
radiation and to 27w > n > 0 for matter dominated
universes (Mukhanov 2005).

For a flat space-time (k = 0) the system behaves
like a free particle and the same happens if Ap = 0.
However, in the latter case, this free particle be-
havior holds regardless of the curvature parameter.
For Ap = 0 equation (16) can be inverted by using
dt = a(n)dn, and apart from integration constants,
we obtain:

)AD it Ap#£0. (17)

a(t) = bot . (18)

For Ap # 0, in the limit & — 0, we have for
equation (17):

a(n) = ao(Apn) ™5 . (19)

For Ap < 0 the range of  is —oo < 1 < 0. In the
specific case of flat universe the parametric solution
can also be inverted to give the scale factor as a
function of the cosmological time. Apart from an
integration constant, we have:

a(t) = do(1+ Ap) ™55 755 . (20)

It is easy to see that this expression reduces to equa-
tion (18) in the limit Ap = 0 and identifying by = do.
We can see that, in the case D = 3, for w = 0 and
w = 1/3 we have the correct dependence a oc t%/3
and a o t'/? for matter- and radiation-dominated
universes respectively.

Matter Dominated /7
(k=0)
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Fig. 1. Scale factor evolution for different values of D in
the case of flat universe (k = 0), for matter (top) and
radiation (bottom) dominated universes. The horizontal
time scale is arbitrary. The color figure can be viewed
online.

In Figure 1 we represent the scale factor evolution
for different values of D in the case of flat universe
(k = 0), for matter and radiation dominated uni-
verses. The expansion rate grows as the dimension-
ality increases. In the future, however, the opposite
behavior is observed, with a reduction of the scale
factor as D increases.

To finish the study of the flat case, let us see how
the age of the universe depends on the dimensional-
ity. Deriving equation (20) with respect to time and
taking a/a, we obtain for the present time:

2

mH517 (21)

to =
where Hjy is the current Hubble parameter. This
shows that the age of the universe decreases as the
dimensionality increases. Interestingly, if D = 3 and
w = 0 (matter case) we recover to = 2/3H; ", and
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for D = 3 and w = 1/3 (radiation case), we have
to = 1/2H;".

Closed models (k = 1) are, for any value of
Ap # 0, analogous to simple harmonic oscillators.
The cosmic dynamics in this case is similar to a
spring-mass system where the spring constant is de-
termined by the w-parameter and the number D of
spatial dimensions. The solution (17) becomes:

1

a(n) = ao(sin[Apn]) =0 . (22)

Unlike the previous case, it is not possible to write
directly the scale factor as function of the physical
time ¢.

For open space-times (k = —1), the system be-
haves as a particle subject to a repulsive force pro-
portional to the distance, or an anti-oscillator. The
solution (17) becomes

a(n) = ao(sinh[ADn])ﬁ . (23)

In both cases, namelly £ = 1 and £k = —1, nu-
merical results show that the evolution is always de-
celerating.

3. VACUUM (w = —1) DOMINATED UNIVERSE

The case of a vacuum dominated universe (w =
—1) is an interesting one. Note that the parameter
Ap in equation (8) is independent of dimension in
this case, Ap = —1. Consequently, the solutions
(19), (22) and (23) are all independent of D. For the
flat case for instance, we have:

a<n):—%, —00<n <0, (24)
or
a(t) = age™, (25)

with « a constant, which represents a de Sitter evo-
lution of the scale factor.

4. EVOLUTION WITH A COSMOLOGICAL A
TERM

As it happens in the 3-dimensional case, we stress
that the above method based on the transforming
equations (10) and (11) is also convenient when new
ingredients are considered, such as the presence of a
cosmological A term. In this case, the second-order
differential equation (7) is as follows:

Alw + 1)a?

ai+ Apa® + Apk = 51

(26)

One may show that the generalized equation of
motion for models with A # 0 in terms of the auxil-
iary scale factor is given by:

Ap+2
ZAD(AD + ]_)AZ Ap
DD —1)

7"+ ALkZ = (27)

The equation of motion (27) means that closed
universes with cosmological constant evolve like an-
harmonic or non-linear oscillators. The anharmonic
contribution to the oscillator is proportional to the
cosmological A-term and inversely proportional to
the number of space dimensions D. Its power in-
dex depends uniquely on the equation-of-state w-
parameter. As expected, when D — 3 the cor-
responding tridimensional result is recovered (see
equation 27 in Lima 2001).

In the particular case of a plane universe (k = 0),
an exact solution of equation (26) can be obtained
for arbitrary dimension D and equation of state pa-
rameter w. The solution is

IR
a(t) = (D(g/\ 1)>

DL
lexp ((w +1) %ﬁf{t) - 1]
x » (28)

/__2A
exp D(D—l)t

where we have choosed the initial condition a(0) = 0.
In the case D = 3 and A — 0, this expression has the
correct dependence a o t2/3 and a o t'/% for w = 0
and w = 1/3 for matter and radiation-dominated
universes, respectively. A graphycal analysis for dif-
ferent values of D shows that the expansion starts
decelerated but is always accelerated in the future for
matter and radiation-dominated universe, as occurs
in the tridimensional case. As far as we know, the
expression (28) is presented here for the first time.

5. ACCELERATION DRIVEN BY THE
REDUCTION OF THE DIMENSIONALITY

Another very interesting feature that we can also
observe from Figure 1 for the plane case is that the
expansion of the scale factor is decelerated for large
values of D, but clearly for some value of the dimen-
sion the expansion becomes accelerated, as indicated
by the case D = 1 in the matter dominated universe.
In fact, in the case of matter (w = 0), the transition
from decelerated to accelerated expansion occurs in
D = 2, indicated by the linear expansion in the fig-
ure. Thus, for D > 2 the expansion is decelerated,
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but for D < 2 the expansion becomes accelerated.
The same behavior occurs in the case of radiation
dominated universe (w = 1/3), where the transition
occurs for D = 1.

We realize that the reduction of the dimension-
ality can lead naturally to an accelerated expan-
sion of the scale factor. Looking more closely to
equation (20) we see that the transition from de-
celerated to accelerated phase occurs when the ex-
ponent of time becomes greater than 1. Thus for
1/(14+ Ap) < 1 the expansion is decelerated and for
1/(1 + Ap) > 1 the expansion is accelerated. The
case 1/(1 + Ap) = 1 represents the transition and
can be written in terms of the equation of state pa-
rameter w as D = 2/(w+1). For w = 0 (matter), we
obtain D = 2, and for w = 1/D (radiation) we have
D = 1, as already noticed before. An interesting
consequence that follows is that for D = 3 the value
of the equation of state parameter for which the tran-
sition from a decelerated to an accelerated stage oc-
curs is w = —1/3. Such an equation of state param-
eter characterizes the so-called dark energy regime
w < —1/3 (Lima 2004). The range w < —1 repre-
sents the phantom regime (Pereira & Lima 2008),
and it has been first suggested based on supernova
analyses alone which favor w < —1 rather than a cos-
mological constant or quintessence (Corasaniti et al.
2004); a more precise observational data analysis al-
lows the equation of state parameter w in the interval
[—1.38, —0,82] at 95% confidence level (Melchiorri
2003).

6. CONCLUSION

In this paper, we have studied the influence of the
spatial dimension D on the solutions of the FRW
equations, as a generalization of the work of Lima
(2001). We have shown that for both flat (k = 0)
and open (k = —1) universes, the increase in the
dimensionality leads to a growth of the scale factor
at the beginning of the evolution, but in the future
the opposite behavior is observed, with a reduction
of the scale factor as D increases. This occurs for
both matter and radiation dominated universe. For
a closed universe (k = 1) the behavior is that of a
simple harmonic oscillator, with the collapse point
shifted to small values of ¢ as D increases. A gen-
eralized expression for the age of the universe in D-
dimensional spaces for a flat universe (k = 0) was
obtained, and we have shown that the increase in
dimensionality implies a smaller value for the age
of the universe to reach the actual size of the scale
factor. This occurs for both matter and radiation
dominated universes.

Another interesting conclusion is that the evo-
lution for a vacuum dominated universe (de Sitter)
does not depends on the spatial dimension D. The
exact and general solution that describes a universe
in the presence of a cosmological A-term for arbi-
trary D and w is presented for the plane case (k = 0),
which correctly reproduces the corresponding tridi-
mensional result for the matter and radiation cases.

A very interesting result is that the reduction
of dimensionality leads naturally to an accelerated
expansion. The dependence of Ap with the equa-
tion of state parameter w shows that the transition
from a decelerated to an accelerated regime occurs
for w < —1/3, which characterizes a dark energy
fluid. Such a result was already known from other
studies, but here it has been obtained based only on
the dimensional analysis. This is a very important
result, given the increasing number of studies in re-
cent years involving the dynamics of the universe in
extra dimensions.
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