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RESUMEN

Usamos una solución anaĺıtica aproximada de toda la extensión radial de
una esfera no singular, isotérmica, autogravitante para derivar anaĺıticamente las
propiedades generales de las esferas resultantes, y su estabilidad a perturbaciones
radiales. Derivamos el criterio de estabilidad de Bonnor y Ebert, y confirmamos
anaĺıticamente sus resultados (numéricos). Finalmente, calculamos simulaciones
esféricamente simétricas de las ecuaciones de dinámica de gases Lagrangeanas, con
dependencia temporal, mostrando que la transición entre soluciones estables e in-
estables śı ocurre en un valor del radio exterior de la esfera cercano al obtenido del
criterio de estabilidad de Bonnor.

ABSTRACT

We use an approximate, analytic solution to the full radial extent of the
non-singular, isothermal, self-gravitating sphere to derive analytically the general
properties of the resulting spheres, and their stability to radial perturbations. We
rederive the stability criterion of Bonnor and Ebert, and confirm analytically their
(numerical) results. Finally, we compute spherically symmetric simulations of the
time-dependent, Lagrangean, gas-dynamic equations, showing that the transition
between stable and unstable solutions does occur for a value of the outer radius of
the sphere close to the one obtained from Bonnor’s stability criterion.

Key Words: galaxies: halos — ISM: clouds — stars: formation

1. INTRODUCTION

The study of the hydrostatic configurations of
self-gravitating, isothermal spheres dates from the
turn of the 19th century (see, e.g., Emden 1907).
While the equation describing this equilibrium (the
Lane-Emden equation) allows an analytic, singular
solution, the general, non-singular solution cannot
be obtained analytically (see the detailed discussion
of Chandrasekhar 1967).

Bonnor (1956) and Ebert (1957) presented a ra-
dial stability analysis of the general solution of the
Lane-Emden equation. Bonnor (1956) used the nu-
merical solution tabulated by Emden (1907) to show
that there is a maximum outer cloud radius beyond
which an isothermal sphere is unstable to radial col-
lapse.

1Instituto de Ciencias Nucleares, Universidad Nacional

Autónoma de México, Mexico.
2Astronomisches Rechen-Institut Zentrum für Astronomie,

Heidelberg, Germany.

More recent, approximate analytic solutions of
the non-singular, isothermal sphere (Raga et al.
2013, who present an extension of the work of Hunter
2001) now allow a fully analytic calculation of Bon-
nor’s stability criterion. We are therefore in the
somewhat curious situation of being able to obtain
in analytic form a derivation which was done numer-
ically more than half a century ago.

Hunter (1977) discussed the general properties of
self-gravitating, isothermal spheres, showing that for
a given mass of the sphere there is a maximum possi-
ble environmental pressure beyond which an equilib-
rium configuration is not possible, and that there are
values for this pressure for which two possible equi-
librium configurations are possible. These properties
now also can be derived analytically.

Finally, we feel that it is now appropriate to carry
out a new numerical study of the radial collapse of
isothermal spheres of sizes around Bonnor’s (1956)
stability limit. Numerous simulations of collapsing
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128 RAGA ET AL.

isothermal spheres have now been made. Some ex-
amples of these are:

• Bodenheimer & Sweigart (1968): radial collapse
of initially unstable spheres,

• Hunter (1977): radial collapse of spheres close
to the stability limit,

• Foster & Chevalier (1993): radial collapse of the
marginally stable sphere,

• Henebelle et al. (2003): radial collapse of an ini-
tially stable sphere subjected to a monotonically
increasing outer pressure (3D simulations).

As far as we are aware, the paper of Hunter (1977)
presents the only study of gasdynamic simulations
of isothermal spheres with outer radii bracketing the
stability limit. Therefore, it is interesting to re-
explore this problem with the much higher resolution
simulations which are now possible.

The paper is organized as follows. We give a sum-
mary of the approximate analytic solution of Lane-
Emden’s equation derived by Raga et al. (2013) in
§ 2. We then use this solution to derive the general
properties of the isothermal sphere (i.e., the analy-
sis of Hunter 1977) in § 3. We present the analytic
derivation of Bonnor’s (1956) stability criterion in
§ 4. § 5 describes numerical simulations of isother-
mal spheres with parameters bracketing the stability
limit. Finally, the results are summarized in § 6.

2. THE NON-SINGULAR, ISOTHERMAL
SPHERE SOLUTION

The non-singular solution to the isothermal,
Lane-Emden equation

d

dR

(

R2
d ln ρ

dR

)

= −4πG

c2
0

ρR2 , (1)

can be written in the form:

ρ(R) =
ρc

3

(

Rc

R

)2

f

(

R

Rc

)

, (2)

where ρ is the density as a function of spherical ra-
dius R. The core radius Rc, and the central density
ρc satisfy the relation:

ρc =
3c2

0

2πGR2
c

, (3)

where G is the gravitational constant and c0 is the
isothermal sound speed.

The Lane-Emden equation also has the singular
solution:

ρs(R) =
c2
0

2πG

1

R2
, (4)

and it is common practice to consider the fractional
deviation

q(R) =
ρ(R)

ρs(R)
− 1 (5)

between the non-singular (equation 2) and singular
(equation 4) solutions.

Even though there is no exact analytic form for
the function f(R/Rc) (see equation 2), a number of
approximate forms have been derived (see, e.g., Liu
1996; Natarajan & Lynden-Bell 1997, and Hunter
2001). In this paper, we use one of the approxi-
mations derived by Raga et al. (2013), which ap-
proximates the full non-singular solution (i.e., for all
values of R/Rc). This approximate solution is sum-
marized in the Appendix.

The mass within a radius R can be calculated as:

M(R) = 4π

∫ R

0

ρ(R′)R′2dR′ =
2c2

0Rc

G
F

(

R

Rc

)

,

(6)
with

F

(

R

Rc

)

=

∫ R/Rc

0

f(r)dr . (7)

This function can be calculated analytically from the
approximate solution of Raga et al. (2013), as dis-
cussed in the Appendix.

3. MAXIMUM MASS AND RADIUS OF AN
ISOTHERMAL SPHERE

Let us consider a self-gravitating sphere of
isothermal sound speed c0 embedded in an environ-
ment of pressure ρec

2
0 (so that the outer density of

the sphere has a value ρe). From equation (2) we
can then obtain the outer radius Re of the sphere:

Re =

√

c2
0

2πGρe
f(re) , (8)

and from equation (6) the total mass:

M =
2c3

0
√

2πρeG3

f1/2(re)F (re)

re
, (9)

as a function of the ratio re = Re/Rc between the
external radius and the core radius of the sphere.

The outer radius and total mass of the sphere
(equations 8 and 9) are plotted as a function of
Re/Rc in Figure 1. In this figure, we see that for
a sphere with weak gravity (i.e., with Rc ≫ Re) we
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RADIAL STABILITY OF ISOTHERMAL SPHERE 129

naturally obtain Re ∝ Re/Rc and M ∝ (Re/Rc)
3,

as would be expected for a sphere with an approxi-
mately uniform density (with a value ≈ρe).

From Figure 1 we also see that for Re/Rc ≫ 1,
the outer radius and the total mass reach asymptotic
values Ra and Ma (respectively), with values

Ra =

√

c2
0

2πGρe
, (10)

Ma =
2c3

0
√

2πρeG3
, (11)

corresponding to the radius and mass of the singular
isothermal sphere solution (equation 4). These val-
ues can be obtained from equations (8) and (9) by
setting f(re) = 1 and F (re) = re.

From Figure 1, we see that the outer radius of
the sphere has a maximum value Rm = 1.289Ra

(obtained for Re/Rc = 1.661) and the mass has a
maximum possible value Mm = 1.918Ma (obtained
for Re/Rc = 9.034). Therefore, the maximum possi-
ble radius is ≈30% larger than the one of the singu-
lar sphere, and the maximum possible mass is ≈90%
larger than the one of the singular sphere.

In the top frame of Figure 1 we also see that
for M > Ma (corresponding to R > 2.646Rc) there
are two isothermal sphere solutions (with mass M
and external density ρe) with different radii. The
existence of these two possible solutions was noted
by Hunter (1977).

In the bottom frame of Figure 1 we see that for
external radii Re ≈ Ra (see equation 10) two or more
isothermal spheres with the same Re and ρe but with
different M can be constructed. Actually, in the
Re → Ra limit an infinite number of spheres (sharing
the same values of Re and ρe) exist, with masses
which all tend to Ma (and hence differ from each
other infinitesimally). These spheres, however, have
significantly different values of their core radii (and
hence, different Re/Rc values, see the bottom plot
of Figure 1).

4. BONNOR’S STABILITY ANALYSIS

Bonnor (1956) suggested the following stability
criterion for radial perturbations of an isothermal
sphere. If we have a sphere of total mass M and ex-
ternal radius Re, it is gravitationally stable provided
that
(

dPe

dRe

)

M=const.

= c2

0

(

dρe

dRe

)

M=const.

< 0 , (12)

where Pe is the outer pressure of the sphere and ρe its
outer density (obtained by setting R = Re in equa-
tion 2). In other words, the self-gravitating sphere

Fig. 1. Dimensionless mass (top) and outer radius (bot-
tom) of a non-singular isothermal sphere as a function of
the outer to core radius ratio Re/Rc (solid lines). The
long dash, horizontal lines represent the values obtained
for the singular sphere. The short dash lines represent a
M ∝ (Re/Rc)

3 (top graph) and a Re ∝ Re/Rc depen-
dence (bottom).

is stable if it can react to an increase in the pressure
of the surrounding environment by generating a new
hydrostatic structure with a smaller external radius.

Bonnor (1956) used a tabulation of the den-
sity stratification of the isothermal sphere of Emden
(1907) in order to evaluate numerically the radial
dependence of ρe as a function of Re (actually, as a
function of the volume 4πR3

e/3 of the sphere) at con-
stant M . Interestingly, the more recent approximate
analytic solutions of the full non-singular isothermal
sphere solution (Raga et al. 2013) now allow us to
obtain an analytic evaluation of the stability crite-
rion (equation 12). This can be done as follows.

First, differentiating equation (6) we obtain:

G

2c2
0

dM =

[

F (re) + Rc
dF

dre
(re)

∂re

∂Rc

]

dRc

+ Rc
dF

dre
(re)

∂re

∂Re
dRe , (13)
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130 RAGA ET AL.

where re = Re/Rc. In this equation, ∂F/∂re =
f(re), ∂re/∂Rc = −Re/R2

c and ∂re/∂Re = 1/Rc.
Setting dM = 0 in equation (13) we then have:

dRc

dRe
=

1

re − F (re)/f(re)
, (14)

for a variation at constant M .
We now evaluate equation (2) at the external ra-

dius Re and differentiate to obtain:

2πG

c2
0

dρ

dRe
=

1

R2
e

[

− 2

Re
f(re) +

df

dre

dre

dRe

]

, (15)

where
dre

dRe
=

1

Rc
− Re

R2
c

dRc

dRe
. (16)

Finally, combining equations (14–16) we obtain

2πG

c2
0

dρ

dRe
=

1

R3
e

[

ref
′(re)

1 − ref(re)/F (re)
− 2f(re)

]

,

(17)
where f(re) (see equation 2), F (re) (equation 7) and
f ′ = df(re)/dre are obtained from the approximate
analytic solution of Raga et al. (2013), as described
in the Appendix.

Figure 2 shows the fractional deviation q be-
tween the non-singular and singular solutions (equa-
tion 5), and the appropriately dimensionless val-
ues of |dρ/dRe| and R3

e dρ/dRe obtained from equa-
tion (17) and from the numerical non-singular so-
lution. The results obtained from the approximate,
analytic and the numerical isothermal sphere solu-
tions are basically indistinguishable.

From the two lower plots of Figure 2 we see that
dρ/dR < 0 for small radii, and that dρ/dR = 0 for
a radius Rs = 2.633Rc. This value agrees numeri-
cally with the value obtained by Bonnor (1956) and
Hunter (1977), who used a different definition of the
core radius Rc (smaller than the one of equation 28
by a factor of 1/

√
6).

For Rs < R < 3.672Rc we have dρ/dR > 0 (and,
hence, an unstable behavior, see equation 12), and
at larger radii we have an approximately logarithmi-
cally periodical repetition of radial bands of stable
(i.e., negative dρ/dR) and unstable (positive dρ/dR)
behavior, following the periodical crossings in lnR
between the non-singular and singular solutions of
the asymptotic, large R regime (seen in the top graph
of Figure 2 and in equation 31 of the Appendix).

Bonnor (1956) argued that all of the isothermal
spheres with R > Rs are unstable (regardless of
whether their outer radius R is within one of the
stable or unstable outer bands). The argument is

Fig. 2. Fractional deviation q between the non-singular
and the singular solutions (top), and dimensionless forms
of |dρ/dRe| (centre) and R3

edρ/dRe (bottom) as a func-
tion of Re/Rc. The values derived from the approximate
analytic solution (shown with solid lines), and the val-
ues obtained from the numerical non-singular solution
(shown with dashed lines) are basically indistinguishable.

that a perturbation at the outer radius will propa-
gate inwards, eventually reaching one of the unstable
radial bands. Once one of these unstable bands has
been reached, the inner part of the sphere will col-
lapse, leading to a later collapse of the outer regions
(which have lost inner support). We explore this ef-
fect numerically in § 5.

We are then in the situation of being able to ob-
tain the Jeans mass of a self-gravitating isothermal
sphere embedded in an environment of pressure Pe.
The density at the outer boundary of the sphere then
is ρe = Pe/c2

0.

The maximum possible mass for stability is ob-
tained setting Re = Rs = 2.633Rc in equations (6),
obtaining

Ms =
2c2

0Rc

G
F (2.633) = 1.634

c2
0Rs

G
, (18)
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RADIAL STABILITY OF ISOTHERMAL SPHERE 131

where for the second equality we have used the fact
that F (2.633) = 2.151 (see equation 36).

Using equation (2), we can write Ms in terms of
the density ρe at the edge of the sphere:

Ms = 2πR3

sρe
F (2.633)

f(2.633)
= 9.120R3

sρe . (19)

In other words, the maximum mass for radial stabil-
ity of the isothermal sphere is only 2.177 times the
mass of a uniform sphere of density ρe.

5. NUMERICAL SIMULATIONS

In order to check the accuracy of Bonnor’s stabil-
ity criterion (equations 12, 17) we consider an initial
hydrostatic, self-gravitating isothermal sphere and
then numerically integrate the spherically symmet-
ric, Lagrangean gasdynamic equations written in the
form:

∂

∂t′

(

1

ρ′

)

− ∂r2u

∂m
= 0 , (20)

∂u′

∂t′
+ r2

∂

∂m
[ρ′ − ρ′h(r0)] = 6m

[

1

r2
− r2

r4
0
(m)

]

,

(21)
with dimensionless variables are defined as

u′ = u/c0 , r = R/Rc , t′ = tc0/Rc , ρ′ = ρ/ρc ,
(22)

where u is the (radial) flow velocity, R the spherical
radius, t the time and ρ the density of the flow, and
c0 the isothermal sound speed, Rc the core radius
and ρc the central density of the initial isothermal
sphere.

The dimensionless mass coordinate m (in equa-
tion 21) is defined as:

m ≡ 1

ρcR3
c

∫ R

0

ρR2 dR . (23)

Finally r0(m) is the initial radius of the fluid parcels
as a function of the mass coordinate m, and ρh(r) is
the initial hydrostatic solution (obtained from equa-
tion 2).

These equations of motion are then integrated
forward in time with a simple, MacCormack finite
difference method, preserving in an exact way the
initial, hydrostatic solution. In order to obtain a
time-dependence, we perturb the density at the outer
boundary of the sphere.

We compute a set of models, for which we choose
different values of the external radius Re = reRc

of the initial isothermal sphere, and impose a per-
turbed density ρe + ∆ρe (where ρe = ρh(Re) is the

TABLE 1

RADIAL COLLAPSE MODELS

Model Re/Rc
a ∆ρe

ρe

b c0tcon
Rc

c c0tcoll
Rc

d Ne

C2.5 2.5 +10−3 · · · · · · 1000

E2.5 2.5 −10−3 · · · · · · 1000

C2.7 2.7 +10−3 20.1 21.6 1000

E2.7 2.7 −10−3 · · · · · · 1000

C2.9 2.9 +10−3 17.1 18.0 1000

E2.9 2.9 −10−3 56.4 57.5 1000

C10 10.0 +10−3 20.0 28.1 2000

E10 10.0 −10−3 88.8 98.8 2000

C100 100.0 +10−3 39.1 170.7 2000

E100 100.0 −10−3 39.1 172.4 2000

aInitial radius Re in units of the core radius Rc.
bFractional density perturbation at the outer radius.
cTime tcon at which the central condensation starts to
form.
dTime tcoll at which all of the sphere has collapsed.
eNumber of radial cells in the simulation.

outer density of the hydrostatic solution given by
equation 2) at the outer boundary. The initially
hydrostatic sphere (except at the outer boundary,
see above) is divided into N unequal mass cells, dis-
tributed so that they all have an initial ∆R = Re/N
spatial thickness. The models that we have com-
puted have N = 1000 or 2000 mass cells (see Ta-
ble 1).

We have chosen the five values for the initial outer
radius Re of the sphere given in the second column
of Table 1. The first three values of Re straddle the
Rs = 2.633Rc maximum radius of Bonnor’s stability
criterion (see § 4). The fourth value is Re = 10Rc,
falling in the first of the radial “stability bands” (see
the bottom plot of Figure 2). The fifth value is Re =
100Rc, falling in the second of the stability bands of
Bonnor’s criterion.

For each of the chosen initial radii Re of the
sphere, we have computed two models, with ∆ρe =
±10−3ρe (see Table 1). In other words, the den-
sity (or pressure) of the outer boundary of the ini-
tial, hydrostatic sphere is perturbed with a fractional
change of ±0.1% . This perturbation is maintained
throughout the computed time evolution of the flow.

Figure 3 shows the density stratifications in the
(t, R)-plane of the models of Table 1. Models C2.5
and E2.5, both with initial radii Re = 2.5Rc < Rs,
show an undamped, oscillatory time-evolution (top
panels of Figure 3). For an initial radius Re = 2.7Rc,
slightly above the Rs = 2.633Rc Bonnor’s stabil-
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132 RAGA ET AL.

Fig. 3. Density stratifications in the (t, R)-plane obtained from the numerical models given in Table 1. The models with
positive density perturbations at the outer boundary are in the left column, and the ones with negative perturbations in
the right one. The dimensionless densities of the models with different values of Re/Rc are shown with the logarithmic
colour scheme given by the bars on the right. In all of the plots, the lighter regions with large R are external to the
outer radius of the sphere. The color figure can be viewed online.
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RADIAL STABILITY OF ISOTHERMAL SPHERE 133

ity radius, we obtain a collapsing solution for a
∆ρe = 10−3ρe perturbation, and an oscillatory so-
lution for the ∆ρe = −10−3ρe perturbation (models
C2.7 and E2.7, respectively, see Table 1 and Fig-
ure 3). For a larger, Re = 2.9Rc initial radius we ob-
tain collapsing solutions for both positive and neg-
ative density perturbations in the outer boundary
(models C2.9 and E2.9).

Finally, for the models with initial radii Re =
10Rc and 100Rc (four bottom frames of Figure 3),
we obtain collapsing solutions for both positive and
negative density perturbations in the outer bound-
ary, even though these initial radii have been chosen
so as to lie in the outer stability bands of Bonnor’s
criterion (see Figure 2). The fact that these models
collapse confirms Bonnor’s argument that all spheres
with Re > Rs (= 2.633Rc, see § 3) are unstable.

From this, we conclude that the Rs = 2.633Rc

maximum radius for stability obtained from Bon-
nor’s criterion does represent the approximate max-
imum radius for stability to small radial perturba-
tions at the outer boundary of the isothermal sphere.
However, the precise value of the maximum radius
appears to depend on whether the density (or pres-
sure) perturbations are positive or negative (with a
slightly larger stability radius for negative perturba-
tions).

In all collapsing solutions there is an initial
regime in which perturbations travel inwards and
outwards over all of the spherical cloud. At some
point, a condensed inner core is formed, and the re-
maining part of the evolution is a collapse of the
outer material onto this core. From the simulations,
we then compute two characteristic times:

• tcon, at which the condensed core first starts to
form,

• tcoll, at which all of the material of the sphere
collapses into the central condensation.

These times are given in the 4th and 5th columns of
Table 1. It is clear that for larger values of the ini-
tial radius Re, these two times become significantly
different, so that the central core is present during a
substantial part of the time-evolution of the collaps-
ing sphere.

6. CONCLUSIONS

We have used the analytic approximation of the
non-singular isothermal sphere of Raga et al. (2013)
to explore the total mass/external radius configura-
tions which are possible for external media of differ-
ent pressures (i.e., for different outer densities of the

isothermal spheres, see §§ 2 and 3). We reproduce
the results of Hunter (1977, obtained numerically),
who noted that for some values of the environmental
pressure it is possible to have two isothermal sphere
configurations with the same mass. We also note
that for special values of the environmental pressure
one can have a large number of isothermal spheres
with the same outer radius and with very similar
masses, but with substantially different values of the
core radius. Finally, we note that for given values of
the isothermal sound speed c0 and outer density ρe,
the maximum possible mass of an isothermal sphere
is ≈2 times higher than the mass Ma of the singu-
lar solution (see equation 11). This maximum mass
is obtained for a ratio Re/Rc = 9.034 between the
outer radius and the core radius of the sphere.

In the context of molecular cloud cores, for a sin-
gular isothermal sphere of outer, molecular number
density nmol = ρe/m (where m ≈ 2mH is the mass
per molecule) from equations (10–11) we obtain an
outer radius and a mass:

Ra ≈ 0.056 pc

(

T

10K

)1/2(

104cm−3

nmol

)1/2

, (24)

Ma ≈ 1.1 M⊙

(

T

10K

)3/2(

104cm−3

nmol

)1/2

, (25)

where we have set c0 ≈
√

kT/(2mH). These equa-
tions can be combined to obtain a “mass-radius” re-
lation:

Ma ≈ 2.0 M⊙

(

Ra

0.1 pc

)(

T

10 K

)

. (26)

The mass Mm and radius Rm of the maximum
mass sphere (i.e., the sphere with an external to core
radius ratio Rm/Rc = 9.034, see above and § 3) fol-
low a similar mass-radius relation (see equation 26),
but with a leading constant of 3.0 M⊙. These num-
bers agree with the physical scales of molecular cores
in regions of low mass star formation.

We have then rederived analytically Bonnor’s
(1956) stability criterion for radial perturbations of
an isothermal sphere (§ 4). We find that the results
obtained from the analytic derivation are basically
indistinguishable from the ones obtained from an nu-
merical solution of Lane-Emden’s equation, as shown
in Figure 2. In particular, we find that the maxi-
mum external radius of a stable isothermal sphere
is Rs = 2.633Rc, which coincides with the value
found by Bonnor (1956) and with the more precise
value found by Hunter (1977), noting that Bonnor
and Hunter defined a core radius smaller by a factor
of 1/

√
6 with respect to the one used in the present
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paper (see equation 28). The mass of this “maximal
sphere” is 2.177 times larger than the mass of a uni-
form sphere of radius Rs, in pressure balance with
the surrounding environment (see equation 19).

Finally, we computed spherically symmetric nu-
merical simulations of isothermal spheres with differ-
ent values of the external to core radius ratio Re/Rc

(see § 5). These simulations were carried out with
the Lagreangean gasdynamic equations written in a
form that preserves the initial hydrostatic equilib-
rium in an exact way. We find that imposing small,
time-independent density perturbations at the outer
radius of the sphere we obtain oscillating solutions
for smaller values of Re/Rc and collapsing solutions
for larger Re/Rc values. The transition between the
oscillating and collapsing solutions occurs for initial
external radii within ≈10% of Bonnor’s (1956) sta-
bility radius, regardless of the sign of the density
perturbation at the outer radius. We also show that
isothermal spheres with radii Re > Rs within the
outer stability bands of Bonnor’s criterion are also
unstable (as predicted by Bonnor 1956).

Even though Hunter (1977) computed simula-
tions of isothermal spheres close to the stability
limit, he does not say whether or not his simula-
tions confirm the transition to collapsing solutions
for Re > Rs. Hunter mentions that in some unsta-
ble simulations with Re “well in excess” of Rs he fails
to obtain collapsing solutions due to the fact that his
numerical integration does not preserve with enough
precision the initial hydrostatic configuration. Our
simulations avoid this problem by solving a set of
equations which automatically preserves the initial
equilibrium.

The time-evolution obtained from our simula-
tions is similar to the ones of Hunter (1977) or to
more recent calculations like the ones of Foster &
Chevalier (1993) and Hennebelle et al. (2003). These
authors compare their solutions with self-similar col-
lapse solutions (see, e.g., Larson 1969 and Pen-
ston 1969) and with observations of molecular cloud
cores. We have not carried out such comparisons.

We end our discussion by noting that the max-
imum stable radius Rs = 2.633Rc obtained from
Bonnor’s (1956) radial stability analysis does not
necessarily correspond to the maximum possible ra-
dius of stable molecular cloud cores. One of the pos-
sible caveats is that it is highly unlikely to have a
coordinated radial perturbation which will lead to
a collapse giving rise to the formation of a core at
the precise center of the configuration. Perturba-
tions with a strong asymmetry (which are more eas-

ily imaginable in an astrophysical context, see, e.g.,
Esquivel & Raga 2007) will be less efficient in pro-
ducing a collapse.

Another possible effect is that the presence of a
finite timescale for reaching thermal equilibrium will
produce deviations from a precisely isothermal be-
havior. We will explore the effect of a finite thermal
timescale on the stability of isothermal spheres in a
future paper.

Finally, we should note that Bonnor’s (1956) sta-
bility analysis is not applicable for isothermal sphere
configurations in the context of N-body systems,
which react adiabatically to external perturbations.
The stability analysis of Lynden-Bell & Wood (1968)
is more relevant for such systems.

We acknowledge support from the Conacyt
grants 61547, 101356, 101975, 165584 and 167611,
and the DGAPA-Universidad Nacional Autónoma de
México grants IN105312 and IN106212. We thank
an anonymous referee for several sugestions (out of
which arose the discussion at the end of § 4, with
equations 18 and 19, and to equations 24–26 in § 6).

APPENDIX. THE NON-SINGULAR SOLUTION

We consider the second approximation for the
full, non-singular isothermal sphere proposed in § 6
of Raga et al. (2013). This solution has a density
stratification which can written in the form:

ρ(R) =
c2
0

2πGR2
f

(

R

Rc

)

, (27)

where R is the spherical radius, G the gravitational
constant, c0 the isothermal sound speed,

Rc =

√

3c2
0

2πGρc
, (28)

is the core radius and ρc the central density.
The f(r) function (with r = R/Rc) is approx-

imated by a “near” and a “far field” interpolation
(fnear and ffar, respectively), with a switch at a ra-
dius r1 = 27.643:

f(r) = fnear(r) , r ≤ r1 ; f(r) = ffar(r) , r > r1 ,
(29)

with

fnear(r) =

4
∑

j=1

Aj

2 + a2
j/(3r2)

, (30)



©
 C

o
p

y
ri

g
h

t 
2

0
1

3
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

RADIAL STABILITY OF ISOTHERMAL SPHERE 135

and

ffar(r) = 1 +
A

r1/2
cos

(√
7

2
ln r + φ

)

, (31)

where A = 0.735, φ = 5.396 and the values of Aj

and aj given in Table 2 of Hunter (2001).
With these forms for fnear(r) and ffar(r) it is

straightforward to calculate the derivative f ′(r) of
f with respect to r:

f ′(r) = f ′

near(r) , r ≤ r1 ;

f ′(r) = f ′

far(r) , r > r1 , (32)

with

f ′

near(r) =
2

3

4
∑

j=1

a2
jAjr

(2r2 + a2
j/3)2

, (33)

and

f ′

far(r) = − A

2r3/2

[

√
7 sin

(√
7

2
ln r + φ

)

+

cos

(√
7

2
ln r + φ

)]

. (34)

We can also calculate the integral

F (r) =

∫ r

0

f(r′)dr′ (35)

as
F (r) = I1(r) , r ≤ r1 ;

F (r) = I1(r1) + I2(r) − I2(r1) , r > r1 , (36)
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where

I1(r) =

4
∑

j=1

Aj

2

[

r − aj√
6

tan−1

(√
6r

aj

)]

, (37)

I2(r) = r +
Ar1/2

4

[

√
7 sin

(√
7

2
ln r + φ

)

+

cos

(√
7

2
ln r + φ

)]

. (38)
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