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RESUMEN

Se presenta un integrador simpéctico optimizado de quinto orden. El desar-
rollo de este nuevo esquema se basa en: (1) un nuevo conjunto de condiciones para
los esquemas simpecticos de pask hasta de quinto orden, y (2) el error mnimo.

Los resultados nurnrericos muestran la e ciencia del metodo propuesto.

ABSTRACT

In this paper an optimized fth algebraic order symplectic integrator is pro-
duced. The development of the new scheme is based: (1) on a new set of conditions
for symplectic k-step schemes with order up to ve and (2) on the minimum error.
The numerical results show the e ciency of the proposed method.

Key Words: methods: data analysis | methods: miscellaneous | methods: nu-
merical

1. INTRODUCTION

The approximate integration of Hamiltonian systems is of considerablernportance to areas such as molecular
dynamics, mechanics, astrophysics and others. By long-time integration ofdrge systems it is possible to obtain
better understanding of physical properties of the systems. It is well known that gometric integrators, such as
symplectic and reversible integrators, are superior compared with non-symplea methods for the integration of
Hamiltonian systems (Sanz-Serna & Calvo 1994). The main characteristics ajeometric integrators (which give
them superiority in comparison with non-symplectic integrators) are: (1) preservation of the energy integral,
(2) linear error growth and (3) correct qualitative behavior.

The Hamiltonian canonical equations are given below:

C o
B 1)
q= @p’

where the dot denotes the ordinary derivative, with g and p are the { dimensional vectors of the coordinates
and momenta respectively andH is the Hamiltonian function:

H=T(p+ V(Q9: (2)

Several important equations have been transformed into Hamiltonian canonichequation (for example in
Liu et al. 2000). Liu et al. (2000) has transformed the Schredinger equatio into Hamiltonian canonical
equation using a Legendre transformation.
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During the last decade some symplectic integrators have been developed and used in timematical pack-
ages. Ruth (1983) rst published symplectic methods for problems of the form (1). Integrators of order three
were constructed by Ruth (1983), integrators of order four were obtained by Cady & Rozmus (1991) and
Forest & Ruth (1990). Yoshida (1990) has constructed reversible symplectic itegrators of sixth and eighth or-
der. Recently Tselios & Simos (2003, 2004) have introduced optimized symplectiotegrators for the numerical
solution of (1).

A detailed presentation of the relevant literature can be found in Hairer, Lubich, & Wanner (2002), McLach-
lan (1995), McLachlan & Quispel (2006), Forest (2006), Laskar & Robugl (2001), Nadolski & Laskar (2002),
Omelyan, Mryglod, & Folk (2002a,b), and Yoshida (1993).

The purpose of this paper is to introduce an optimized fth algebraic order symplecic integrator. The
production of the new scheme is based on a new set of conditions for symplectiestep schemes with order up
to ve. Based on this set, forty six symplectic seven-step methods of fth algebrat order are obtained. The
optimized fth order symplectic integrator is de ned using the minimum error.

The new insights of this paper (compared with the paper of Tselios & Simos 2004are:

In this paper the linearly independent system of equations of the produced necessary conditiongp to
algebraic order ve is proved.

Based on the sixty two necessary conditions produced in order to achieve the agreement the relations
for the construction of k-step symplectic integrators of sixth algebraic order (see relations 5 and 6elow)
and using the minimization of the error function, the new proposed optimized fth algebraic order method
is produced (see for more details Tselios & Simos 20141)

The paper is constructed as follows. Inx 2 the basic theory on symplectic integrators is presented. The
construction of a new set of conditions for the fth order k-step symplectic schemes is msented inx 3. The new
proposed fth order method is developed inx 4. Finally, in x 5 a numerical illustration of the new developed
method is presented.

2. SYMPLECTIC INTEGRATORS

Our investigation on the construction of symplectic integrators is based onthe procedure developed by
Forest & Ruth (1990) and Liu et al. (2000):

(

Pi
G

P Gh(Ge=q .
G 1+ dih(%};}[’zpi

where h is a step-size andk is the number of steps. The values ¢, po), are the initial values and (o, pk)
are the numerical solution at the k-step. The coe cients ¢; and d; are free parameters and the transformation
from (o, po) to (o, px) is symplectic (Forest & Ruth 1990).

The parametersc; and d; are obtained by Yoshida (1990) using the relation:

i=1;:0k; 3)

eh(A+ B) — \k ec. hA ed. hB + O(hn+l); (4)
i=1

where k and n are the number of steps and the order of method respectively.
3. NEW SET OF CONDITIONS FOR FIFTH ORDER K -STEP SYMPLECTIC SCHEMES
3.1 Description of the Procedure

The determination of the coe cients ¢ , d;, is based on the expansion of the left-hand side of equation (4)
in powers ofh with AB 6 BA, i.e. on the formula:

S(hy= "A*B) =1+ h(A+ B)+ %hZ(A2+ AB + BA + B+ (5)

3See Wolfram Research Inc. http:/reference.wolfram.com
4http://users.uop.gr/~simos/report_tselios_si5.pdf
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Expanding the right hand side of (4) with AB 6 BA it follows that:

Y X X
S(hy = M el =14+ h GA+ dB
i=1 " | i=1 i=1 | 4
T XX XX X 2
+§h2 G A?+2 d gAB+2 G BA + d B +: (6)
i=1 =1 j=1 =1 =i+l i=1

FR
Demanding the two expressions (5) and (6) to agree up td" and assuming that the relations ( ¢)™ =1
i=1

and (FR di)™ =1 with m > 1 hold, we obtain fty-four equations for the fth-order scheme (see for details
i=1
Tselios & Simos 2011).
Based on the analysis mentioned above, the equations for thie-step schemes till the fth order are obtained.
The conditions of their dependence are also determined.
Therefore, a new set of equations is produced. Based on this set of equations, one can devedogymplectic
method of fth-order solving those that are being linearly independent of each other.

3.2. First order
Based on the procedure described above and requiring the agreement of the relations) (&nd (6) for the

rst power of h and for a k-step method (coe cients of A and B), the following relations hold:

FR
fll]l= o 1;

a ™
fl21= d 1;

i=1

which are linearly independent of each other.

3.3. Second Order

Requiring now the agreement of the relations (5) and (6) for the second power di and for a k-step method
(coe cients of AB and BA), the following relations hold:

P .
fl81= d ¢ 4

i=1  j=1 )
R R ) (8)
fl4= d G o
=1 j=i+1
From the above-mentioned functions it is easy to see that
1 @+fA) @+ f[2D)+f[3]+f[4]=0: 9)

For a second order method, thef [1] and f [2] of the rst order should be zero; thus the following relation
holds:

f[31= f[4]: (10)

Consequently, from the equations of the second-order it is su cient to choose one of [3] or f [4].

Shttp://users.uop.gr/~simos/report_tselios_si5.pdf
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3.4. Third order

Requiring the agreement of the relations (5) and (6) for the third power of h and for a k-step method
(coe cients of A?B, AB2, BA?, B2A, ABA, BAB ), the following relations hold:

fBl=4 d o &
i=1 j=1 ,
R
fl6]=4 o o &
i=1 j=i 5
R R
tm=5 d g 3
|F;l :P_::-+l ) (11)
-1 ' , 1.
fl8l =5 ¢ dj 3
i=2 j=1
R R R .
flol = a d ¢ o3
=1 j=i 1=j+1
R P Pl )
f[lO]: dj G dj 3 -
j=2 i=2  j=1

For the above-mentioned functions it has been found that

g @+ f[AD* @+ F[2)+ @+ FAD@A+2f[@A)+2(f[5] f[7])=0;
1 @+ f[A)° @+ f[)+2(f[5]+ F[7]+f[O) =0
1 @+ Q) @+ fR)*+2(f[6]+f[8]+f[10])=0;
@+ ) @+ fRY°+@+ fR2DA+2F[4)+2(f[6] f[8])=0:

(12)

For the third order method the f [1],:::,f [4] of the second order should be zero; thus the following relations
result:

f[9]= 2f[7]= 2f[5];

f[10]= 2f[8]= 2f[6]:

Therefore, from the equations of the third-order it is su cient to choose one of f [5] or f [7] or f [9] and one
of f [6] or f [8] or f [10].

(13)

3.5. Fourth order

Requiring the agreement of the relations (5) and (6) for the fourth power ofh and for a k-step method
(coe cients of ASB, AB3, BA3B3A, A?B?, B2A?, A?BA, AB2A, ABA?, B°AB, BA?B, BAB ?, ABAB ,
BABA ),the following relations hold:

R p3

flAl=% d g R
i=1 j=1
N 3
fl121= % o  d @
i=1 j=i
n 3
fl13]= % d G 5
i=1 j=i+l
LR P %
f[l4]=§ G dj o
i=2 j=1 ( (
f[15] = L addnb L; a= > and b= . ;
[15] 2.2.p:1]_:pi:jm:iCpCJ 1m 4 (2 p6 (2 i6m
PLPL R R = i =
f[16] = 55 dpdjacenb 4 a= L P2l gng p= 2 1M ;

p=1 j=pi=j+l m=i pe | 2 ié6m
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(2 R R R R [ R (2
fla71=% o o G+ Cm ¢ d o
m=1 i=m  j=i I=j+1 m=1 i=m+1 =i I=j+1
PR R R PR R R )
fA8]l=5 ¢ di dm o+ G G dm a s
j=1 i=j m=i I=m+1 j=1 i=] m=i+l I=m+1
Pt R R ’ 1
fla9l=%" ¢ d s
j=1 i=j j=i+l
JRoP P2
f[20]: Al d] (o] dJ a0
j=2 i=2 j=1
) R R PR L R R R R )
f[21]=5  dm G G d+5 Om G d s
m=1 i=m+1 =i 1= m=1 i=m+1  j=i+l I=]j
L RR R
f[22] = 5 d,_ G d il
j=1 i=j+1 j=i
P11 P11 R R .
f[23]=  cm ¢ d g
m=1 j=m i=j+1 =i
P2 P1 P11 R L
f[24]: dm j i G 41
m=1 j=m+1 i=j I=i+1

For the above-mentioned functions it has been found that

g fo]+3f[11] f[19]=0;

f[5] +3f[13]+f[19]=0;
f[5]+ f[17]+f[19]=0;
f[6]+3f[12]+f[22]=0;
2f[6]+3f[14] f[22]=0;
f[6]+ f[20]+f[22]=0;
2f [15]+ f[23]=0;
2f [16]+ f[24] =0;
f[6]+f[18]=0;
f[5]+ f[21]=0;
f[15]+ f [16] + f [18] + f [21] + f [23] + f [24] = O:

15

(14)

For a fourth order method the functions f [1],...,f [10] of the third order should be zero; thus the following
relations hold:

Therefore, from the equations of the fourth-order it is su cient to choose the f [13], f [14] and f [24].

fag]= fpa="540= 1.
f[14]= f[12]="'24 = [,
f[24] = 2f[15] = 2f[16]= f[23];
f[18] = f[21] = 0:

3.6. Fifth order

(15)

Requiring the agreement of the relations (5) and (6) for the fth power of h and for a k-step method
(coe cients of A“B, AB*4, BA4, B*A, A®B?, A?B3, B3A2, B2A3, A®BA, AB3A, ABA S, B3AB, BA°®B,
BAB 3, A2B2A, A2BA?, AB2?A?, B2A?B, B2AB?, BA2B?, A2BAB, AB2AB, ABA 2B, ABAB 2, B2ABA,
BAZBA, BAB ?A, BABA ?, ABABA , BABAB ), the following relations hold:
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R p
f251=4 d g &
i=1 j=1
R 4
fl26]=% o  d &
i=1 j=i
R 4
f27]1= % di G R
i=1 j=i+l
p1 4
fl28]= 3 ¢ dj =
i=2 j=1
. P P m , P P R L
f29]= 35 o g dn + 557 G G O g
i=1 j=1 m=i i=1 j=1 m=i+l
® o3 m R o3
f[30] = 5 Cm G O+ Cm ¢ d =
m=1 i=m j=i m=1 i=m+1 j=i
R ipr 3 R R p1 3
fBl=55 o o 4 +3% G G d &
i=2 I=i j=1 i=2 I=i+1 j=1
. R R ] o m R R 3
m=1 i=m j=i+l . m=1 i=m+1 j=i+l
R P 1 p
f33]=5 on d G ok
m=2 i=1 j=1
1 R L ’ 1
f[834]= 5  Cm G d 5
m=1 i=m+1 j=m
1 R R : 1
f[35] = 3 Cm d G 5
m=1 i=m j=i+1
1 L R 1
f[36]:§ G dj dm Bl
i=2 j=1 m=i
R Pl P S
i=1  m=1 j=m+1
L Pl m P
m=1 i=m+1 j=i (

PLPLIPIPL R L=
fl3o]= " = CGdpdqcnab &; a= 2 7 and
i=1 j=ip=j g=pn=q+l ( 1 i6]j
PLPIPL R R Loi=j
f [40] = cGdpcqCrnab &; a= i!. - and
i=1 j=i p=j g=p+l n=g ( i 6 j
PLPIPL R R 2 j=p
f[41] = cdidycqcrab &; a= and
i=1 j=i p=j g=p+1 n=q ( 1j6p
PipL B R R L=
fa21=" ~ ddgedab g a=  # . 0 and
i=1 j=ip=j+l g=pn=q ( 1 I@j
PIPL R R R L=
fas]l= ~  ddgddhab g a= i! g and
i=1 j=ip=j+1 g=pn=g ( J
LR R PR Z j=p
fla41= " _ digcpdgdnab &; a= 2 and
i=1 ]:|+]_ p=j g=pn=g 1 J 6 p

LA T R R LR A T
fl45]= g+ G G Om G oty G
j=1 i=]j m=i I=m+1 p=1 j=1 i=j+1 m=
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LA A S R R

Z G d  dn 6 dty g d O G
j=1 i=]j m=i I=m+1 p=1 j=1 i=j m=i+1l lI=m+1 p=1

LR R R P w1 R R R

n G d m G oty G Cm a  dp;
j=1 i=j m=i+l I=m p=I j=1 i=]j m=i+l I=m+1 p=I

P11 R R P w1 R R R

57 ; d; Cm d d, + 57 G di Cm di d
j=1 i=]j m=i+l I=m p=1 j=1 i=j m=i+l I=m p=1+1

LR R P et R R R

5 i i Cm d Cot+ o G di Cm d Co;
j=1 i=] m=i+l I=m p=1+1 j=1 i=j+1 m=i+l I=m p=1+1

LR R [P WL R R

2 G  Cm d t G Cm d Co;
j=1 i=j+1 m=i I=m p=1+1 j=1 i=j+1 m=i+l I=m p=1+1
P11 R P1 PL R R

1 ; ¢ dn d + = q G m di Cp;
j=1 i=j+1 m=i I=m p=1+1 j=1 i=j+1 m=i I=m+1 p=1+1

LR R LRI R R

G Ci Om G Gty 0 G m G G
j=1 i=j+1 m=i I=m+1 p=1 j=1 i=j+1 m=i l=m+1 p=1+1

P11 P11 R P11 R

G d Cm | Co
j=1 i=j m=i+l I=m p=1+1
1L P11 P R R
dj G m dp
j=1 i=j+1 m=i I=m+1 p=1

For the above-mentioned functions it has been found that

gfpa+fpn+fpa+fpa+fmm=o;
Bl 431 [25] + f[27]+[33] = 0;

3 B+ f[25]+3f[27]+f[35]=0; (16)
f [19] + 3f [35] + 2 [40] = 0;
gfpﬂ+fpﬂ+fBﬂ+fB&+fM$:0;
I+ £[26]+3f[28] +[36]=0; an
§4%@+3fpm+fp&+fB&:0;
f[22] +3f[38] +2f[43] = 0;
f [29] + f [32] + f [37] + f [39] + f [41] + f [45] + f [47] + f [50] + f [52] + f [53] = O ;
f[5]+ "8 f[11] f[15]+f[29] f[32]=0;
2
BT T8 £ 39]+ f [41] = 0;
ST 3f[11]+f[47] f[50]=0 s
STBLL Ty 3 £[11]+ 2f [15] + f[45] f[52]=0; (18)
By T8 4o [29] BT 4 fla5]=0;
Bt + 371+ 2 =o0;
B4 f6] 2f[41]+f[45]+f[47]=0;
f [30] + f [31] + f [34] + f [42] + f [44] + f [46] + f [48] + f [49] + f [51] + f [54] = O ;
Bl+ f[6] f[12] f[15]+f[30] f[31]=0;
Bl T4 f116] f[42]+f[44]=0;
f5]+ "B +3f[12] 2f[16]+f[48] f[49]=0; (19)
f

6] 100 3f[12]+f[46] f[51]=0;

O fra2)+f[34]+ 2 =0
f5]+ O 2f [44]+ f [49] + f [51] = 0;

Oy 109 4 2¢(31] B4+ fla9]=0:
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TABLE 1

THE LINEARLY INDEPENDENT SYSTEM OF EQUATIONS FOR THE
CONSTRUCTION OF A SYMPLECTIC INTEGRATOR OF FIFTH ORDER

Order Equations Number of
equations
1 f[1]=0;f[2]=0 2
2 f[3]=0 3
3 f[91=0;f[10]=0 5
4 f[13]=0;f[14]=0;f[24]=0 8
5 f[25] =0;f[26] =0;f[29] = 0;f [30] = 0;f [653] = 0;f [54] =0 14

For the relations (16), (17), (18) and (19) the functions f [1],...,f [24] of the fourth order should be zero; thus
the following relations hold:

f[33]_ f[35]_ f[40].

f[25]=1[27]= — . -

(20)

f[36]  f[38]  f[43]
4 4 6 '

f[26] = f[28] = (21)

f[37]= 2f [29]+ '3,

f[39] = f[a1]= B3,

f[47] = f[50] = 3f [29] 3% (22)
f[45]=f[52] = 3f[29]+ "B

f[32] = f [29];

f[34]= 2f[30]+ ‘B4,

f[42] = f[44]= B4,

f[46] = f [51] = 3f [30] P4, (23)
f[48] = f[49] = 3f[30]+ BY;

f [31] =  [30]:

Therefore, from the equations of the fth-order it is su cient to choose the f [25], f [26], f [29], f [30], f [53]
and f [54].

Consequently, the following theorem was proved:

Theorem 1 For the construction of a method of a fth order and from the fty four equations that should have
been initially solved (and presented above), it is enough teolve only fourteen linearly independent equations,
which are given in Table 1.
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4. CONSTRUCTION OF THE NEW FIFTH-ORDER METHOD

In this section we describe the development of the new proposed fth-order method. Based othe above
mentioned theory the new method is going to be a seven-step method, of the form (3),&.

Pi=p  ch(GDe=q
G;1=¢g + dlh(@p)p‘pj:l ,
Pi2= P Ch( @\é)q Q1
42 = G 1+ dah(Z p)p p,zv
P = P2 csh( @Tq)q— G 2
G;3= G2t d3h(%p)p= Pji 3 5
Pia=Pis ah(GDo=q s
G;a= Giat d4h(%Dp= P4
Pi;s = Bj; 4 %h(%{:‘)q: G 41
G;5= Giat d5h(%{))l3: Pji s 5
Pi6 = Pis Ceh(%a)q: Q61
q; 6 = q; 5+ dGh(%Dp: Pj; 6 ;
P = pye C7h(%é)q: G 6 7
q +1 g6+ d7h(%r;)p:pj+1 ;

with j =1;::;; where is the dimension of the vectorp and q.

(24)

For the fth order equations (Table 1), and for k = 7 (number of steps) we have fourteen equations
and fourteen parameters. This set of equations can be solved numerically. Usindi¢ Newton or Levenberg-
Marquardt method forty-six solutions for the fth-order integrator have been o btained, (see for more details
in Tselios & Simos 201%). For internal computations 40-digits of precision are used.

For the study of the forty six produced schemes concerning error control, a similar pgcedure was followed
(x 3). Requiring the agreement of the relations (5) and (6) for the sixth power ¢ h and for a k-step method,
sixty two relations were found (eq1]; :::; e62]), (see for more details in Tselios & Simos 207).

We consider as error function the following:

FunError57 = P eqlP + eq2P + ::: + e62F: (25)

After checking of all the forty six produced solutions, we have found that the schera with the minimum
error 0.1495161 is the following

c1 = 0:1125695844683471049731896848843277853938402393333443
Cc; = 0:9238050290008374684475000700540644324911785274283941,
c3 = 1:3620648986697756247860440078409085974020260422P80826,
¢, = 0:9809265318793165172597933182274319919234284918889224,
Cs = 0:4009629674853713501479180258776577535775042274923503,
Cs = 0:3458217808647417833780552420386768069307651320883222,
c; = 0:4020209950288385994204123332412501729146905759883829,
d; = 0:36953388878114957185081450061701658106775743968685R
d, = 0:0321200042630468591699239043939016834866789462D14639
d; = 0:0119787010205539035866224440483863014104736492078946
ds = 0:512638174652696736042027856573955536074421583258398
ds = 0:33494829803588349134532087822443476245551682102386331;
ds = 0:0218565947410984490055127837746834952675983557892633,
d; = 0:47501834514453949720351208570106713494289203778302%

S http://users.uop.gr/~simos/report_tselios_si5.pdf
7http://lusers.uop.gr/~simos/report_tselios_si5.pdf

(26)
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5. NUMERICAL EXAMPLES

The illustration of the e ciency of the new proposed method obtained in x 4 is examined by its application
to the Two-body and Henon-Heiles problem. For comparison purposes the following mbbds are used:

The four step-fourth order method developed by Yoshida (1990) which is indicated as ©S4.
The eight step-six orde method developed by Yoshida (1990) which is indicated as YOSS6.

The new proposed method of seven step- fth order which is indicated as SI5.

5.1 Two-body problem

The Hamiltonian of the two-body problem is given by
=22 P &7

where (q1,00) are the conjugate coordinate and 1,p,) are the conjugate momentum of the phase space. The
equations of motion are

Q = P
Gk = Pp2;
_ Ch )
e A E
@
P2 = =" (28)
(6 + B)°
The energy error is given byEgrror = % + % pﬁ and the exact energy iSEexact = 0:5.
The initial conditions are C
r
1+e
pO=0; p(O= [ wO=1 e @O=0; (29)

where the parametere is the eccentricity.
In Figures 1, 2 and 3 we present for the same NFE (Number of Function Evaluatias) and for di erent
values of the eccentricity, time interval and step size the average energy error e = 109 1¢(E average )

1 ns¢eps

Eaverage = Weps kEcalculated Eexactk; (30)
i=1

where nsteps =tmax =h. In Figure 4 the position variables of the compared methods, for interval 0,1000), time
step & and eccentricity e = 0:9 are presented.

5.2. Henon-Heiles problem

The Hamiltonian of the Henon-Heiles problem is given by

1 1 1
H = é(p12+ p2?) + E(le"' ®?) + a’ep 503; (31)

8From the eight-steps sixth-order of Yoshida's methods it wa s selected for this comparison the one that gives the better r esults.
For this method we have extended the precision of the given di gits for its coe cients from 16 digits precision (that were p  roposed
by Yoshida (1990) to 40 digits precision.
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Two-body problem  t=[0,1000], NFE=480000
T

T T T
<) YOS4
5 [ X YOS |
@ SI5
e
-6 -
O
7+ . B
- X )
g
<
5 8r .
S
9 - o b
210 F N
e
arp e E
o 1 1 1 1 1
0.5 0.55 0.6 0.65 0.7 0.75 0.8

eccentricity

Fig. 1. Values of the average energy error for the eccentricity e = 0:5, 0.6, 0.7, 0.8 of the two body problem with time
interval (0,1000) the same NFE=480000 and di erent step size h for each method. Methods used: (i) (diamonds) Yoshida
[6] symplectic-scheme method of four step-fourth order with h, = 8:3333 003, (ii) (crosses) Yoshida [6] symplectic-
scheme method of eight step-six order with hg = 1:6667e 002, (iii) (dots) New method with symplectic-scheme of seven
step- fth order with hs = 1:4583% 002.

Two-body problem  e=0.8, NFE=480000
T T

T
Q- YOsd
<X YOSH Lo
@ SI5

45 | B 7

55 -
6L 4

log 10(error)

TE e ’ i
75 o 1
8 i

85 | B

Ry » I I I I I I I I I E
500 600 700 800 900 1000 1100 1200 1300 1400 1500
tmax

Fig. 2. Values of the average energy error of the two body problem, for time interval (O ;tmax ), tmax = 500,700,...,1500,
eccentricity e = 0:8, the same NFE=480000 and di erent step size h for each method. Methods used: (i) (diamonds)
Yoshida [6] symplectic-scheme method of four step-fourth order with hs = tmax =nsteps4 where nsteps4=120000, (ii)
(crosses) Yoshida [6] symplectic-scheme method of eight step-st order with hg = 2ha, (iii) (dots) New Method with
symplectic-scheme of seven step- fth order with hs = }h4.
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Two-body problem  e=0.8, NFE=400000

log 10(err0r)
X
°

10 - J

1 1 1
0.002 0.0068 0.0156 0.0273 0.0313
step size h

Fig. 3. Values of the average energy error of the two body problem, for h, = 1=2°%, 1=2% 1=2" 1=28, eccentricity e =0:8,
the same NFE=400000 and time interval (0 ;tmax ), tmax = ha nsteps4, where nsteps4=100000. Methods used: (i)
(diamonds) Yoshida [6] symplectic-scheme method of four step-fourth order with step size hy, (ii) (crosses) Yoshida [6]
symplectic-scheme method of eight step-six order with hg = 2 ha, (iii) (dots) New Method with symplectic-scheme of
seven step- fth order with hs = Zh,.

1.6 o) 0.5 <) 05 )

Y054 . YOS56 08 515 s 515
2 5 1 D5 0 05 2 45 4 05 0 0.5 2 5 1 05 o 05 2 a5 1 05 o 05

9 q 9 9

Fig. 4. The numerical solution of the two-body problem with interval (0, 1000), eccentricity 0.9, the same NFE=480000
and di erent step size h for each method. The ellipse with red color is the exact solution. Met hods used: (a) [YOS4]
Yoshida [6] symplectic-scheme method of four step-fourth order with h, = 8:3333 003, (b) [YOS6] Yoshida [6]
symplectic-scheme method of eight step-six order with he = 1:6667¢ 002, (c) [SI5] New Method with symplectic-
scheme of seven step- fth order with hs = 1:4583 002, (d) [SI5] New Method with symplectic-scheme of seven
step- fth order with e = 0:9, interval (0,1000), NFE=420000 and the same step size with [YOS6], h = 1:6667e 002.
The color gure can be viewed online.

where (q1,00) are the conjugate coordinate and 1,p;) are the conjugate momentum of the phase space. The
equations of motion are

GW=Pik=pPipi= (Q+20%);k= (BP+® §7): (32)

The initial conditions are p,(0) =0, q.(0) =0:1, (0) =0, and total energy E = 0:15. The p1(0) coordinate
was determined from the following

q

mO)= RE V) p0)?); (33)
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Fig. 5. (a),(b),(c) the Poincare surface of section of the (q,p2) points in the ¢ = 0 plane with stepsize h = 0:45
and the same NFE=200000 for each method. Methods used: (i) [YOS4] Yoshida [6] symplectic-scheme method of four
step-fourth order with tmax = 25000, (ii) [YOS6] Yoshida [6] symplectic-scheme method of eight step-six order with
tmax = 50000, (iii) [SI5] New Method with symplectic-scheme of seven step- fth order with tmax = 43750. In (d) the
energy loss for stepsizeh = 0:2; 0:3; 0:4; 0:45. Both axes are logarithmic.

whereV is the potential function
1 1
V=@’ o)t a’e & (34)

In Figure 5d we present for the same NFE and for dierent values of the step sizethe energy loss
Err=max kTEk and in Figures 5a,b,c the Poincare surface of section of thegf,p,) points in the ¢ = 0 plane.

6. CONCLUSION

In this paper an optimized fth algebraic order symplectic integrator was developed. The production of the
new scheme was based on a new set of conditions for sympleckiestep schemes with order up to ve. Based
on this set, forty six symplectic seven-step methods of fth algebraic order were btained. The optimized
fth order symplectic integrator was de ned using the minimum error. The numerical il lustrations proved the
e ciency of the new developed method compared with well known methods of the literature.

The authors wish to thank the anonymous reviewer for his/her very careful reading of he manuscript and
the very important and fruitful comments and suggestions.
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