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RESUMEN

Se presenta un integrador simpléctico optimizado de quinto orden. El desar-
rollo de este nuevo esquema se basa en: (1) un nuevo conjunto de condiciones para
los esquemas simplécticos de paso k hasta de quinto orden, y (2) el error mı́nimo.
Los resultados numéricos muestran la eficiencia del método propuesto.

ABSTRACT

In this paper an optimized fifth algebraic order symplectic integrator is pro-
duced. The development of the new scheme is based: (1) on a new set of conditions
for symplectic k-step schemes with order up to five and (2) on the minimum error.
The numerical results show the efficiency of the proposed method.

Key Words: methods: data analysis — methods: miscellaneous — methods: nu-
merical

1. INTRODUCTION

The approximate integration of Hamiltonian systems is of considerable importance to areas such as molecular
dynamics, mechanics, astrophysics and others. By long-time integration of large systems it is possible to obtain
better understanding of physical properties of the systems. It is well known that geometric integrators, such as
symplectic and reversible integrators, are superior compared with non-symplectic methods for the integration of
Hamiltonian systems (Sanz-Serna & Calvo 1994). The main characteristics of geometric integrators (which give
them superiority in comparison with non-symplectic integrators) are: (1) preservation of the energy integral,
(2) linear error growth and (3) correct qualitative behavior.

The Hamiltonian canonical equations are given below:

{

ṗ = −∂H
∂q

,

q̇ = ∂H
∂p

,
(1)

where the dot denotes the ordinary derivative, with q and p are the ν – dimensional vectors of the coordinates
and momenta respectively and H is the Hamiltonian function:

H = T (p) + V (q) . (2)

Several important equations have been transformed into Hamiltonian canonical equation (for example in
Liu et al. 2000). Liu et al. (2000) has transformed the Schrödinger equation into Hamiltonian canonical
equation using a Legendre transformation.
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12 TSELIOS & SIMOS

During the last decade some symplectic integrators have been developed and used in mathematical pack-
ages3. Ruth (1983) first published symplectic methods for problems of the form (1). Integrators of order three
were constructed by Ruth (1983), integrators of order four were obtained by Candy & Rozmus (1991) and
Forest & Ruth (1990). Yoshida (1990) has constructed reversible symplectic integrators of sixth and eighth or-
der. Recently Tselios & Simos (2003, 2004) have introduced optimized symplectic integrators for the numerical
solution of (1).

A detailed presentation of the relevant literature can be found in Hairer, Lubich, & Wanner (2002), McLach-
lan (1995), McLachlan & Quispel (2006), Forest (2006), Laskar & Robutel (2001), Nadolski & Laskar (2002),
Omelyan, Mryglod, & Folk (2002a,b), and Yoshida (1993).

The purpose of this paper is to introduce an optimized fifth algebraic order symplectic integrator. The
production of the new scheme is based on a new set of conditions for symplectic k-step schemes with order up
to five. Based on this set, forty six symplectic seven-step methods of fifth algebraic order are obtained. The
optimized fifth order symplectic integrator is defined using the minimum error.

The new insights of this paper (compared with the paper of Tselios & Simos 2004) are:

• In this paper the linearly independent system of equations of the produced necessary conditions up to
algebraic order five is proved.

• Based on the sixty two necessary conditions produced in order to achieve the agreement of the relations
for the construction of k-step symplectic integrators of sixth algebraic order (see relations 5 and 6 below)
and using the minimization of the error function, the new proposed optimized fifth algebraic order method
is produced (see for more details Tselios & Simos 2011)4.

The paper is constructed as follows. In § 2 the basic theory on symplectic integrators is presented. The
construction of a new set of conditions for the fifth order k-step symplectic schemes is presented in § 3. The new
proposed fifth order method is developed in § 4. Finally, in § 5 a numerical illustration of the new developed
method is presented.

2. SYMPLECTIC INTEGRATORS

Our investigation on the construction of symplectic integrators is based on the procedure developed by
Forest & Ruth (1990) and Liu et al. (2000):

{

pi = pi−1 − cih(∂V
∂q

)q=qi−1

qi = qi−1 + dih(∂T
∂p

)p=pi

i = 1, ..., k , (3)

where h is a step-size and k is the number of steps. The values (q0, p0), are the initial values and (qk, pk)
are the numerical solution at the k-step. The coefficients ci and di are free parameters and the transformation
from (q0, p0) to (qk, pk) is symplectic (Forest & Ruth 1990).

The parameters ci and di are obtained by Yoshida (1990) using the relation:

eh(A+B) =

k
∏

i=1

ecihAedihB + O(hn+1) , (4)

where k and n are the number of steps and the order of method respectively.

3. NEW SET OF CONDITIONS FOR FIFTH ORDER K-STEP SYMPLECTIC SCHEMES

3.1. Description of the Procedure

The determination of the coefficients ci , di, is based on the expansion of the left-hand side of equation (4)
in powers of h with AB 6= BA, i.e. on the formula:

S(h) = eh(A+B) = 1 + h(A + B) +
1

2
h2(A2 + AB + BA + B2) + ... (5)

3See Wolfram Research Inc. http://reference.wolfram.com.
4http://users.uop.gr/~simos/report_tselios_si5.pdf.
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OPTIMIZED FIFTH ORDER SYMPLECTIC INTEGRATORS 13

Expanding the right hand side of (4) with AB 6= BA it follows that:

S̃(h) =

k
∏

i=1

ecihAedihB = 1 + h

(

k
∑

i=1

ciA +

k
∑

i=1

diB

)

+
1

2
h2

[(

k
∑

i=1

ci

)2

A2 + 2

k
∑

i=1

di

i
∑

j=1

cjAB + 2

k
∑

i=1

di

k
∑

j=i+1

cjBA +

(

k
∑

i=1

di

)2

B

]

+ ... (6)

Demanding the two expressions (5) and (6) to agree up to hn and assuming that the relations (
k
∑

i=1

ci)
m = 1

and (
k
∑

i=1

di)
m = 1 with m > 1 hold, we obtain fifty-four equations for the fifth-order scheme (see for details

Tselios & Simos 2011)5.
Based on the analysis mentioned above, the equations for the k-step schemes till the fifth order are obtained.

The conditions of their dependence are also determined.
Therefore, a new set of equations is produced. Based on this set of equations, one can develop a symplectic

method of fifth-order solving those that are being linearly independent of each other.

3.2. First order

Based on the procedure described above and requiring the agreement of the relations (5) and (6) for the
first power of h and for a k-step method (coefficients of A and B), the following relations hold:

f [1] =
k
∑

i=1

ci − 1 ,

f [2] =
k
∑

i=1

di − 1 ,

(7)

which are linearly independent of each other.

3.3. Second Order

Requiring now the agreement of the relations (5) and (6) for the second power of h and for a k-step method
(coefficients of AB and BA), the following relations hold:

f [3] =
k
∑

i=1

di

i
∑

j=1

cj − 1
2! ,

f [4] =
k
∑

i=1

di

k
∑

j=i+1

cj − 1
2! .

(8)

From the above-mentioned functions it is easy to see that

1 − (1 + f [1]) (1 + f [2]) + f [3] + f [4] = 0 . (9)

For a second order method, the f [1] and f [2] of the first order should be zero; thus the following relation
holds:

f [3] = −f [4] . (10)

Consequently, from the equations of the second-order it is sufficient to choose one of f [3] or f [4].

5http://users.uop.gr/~simos/report_tselios_si5.pdf.
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14 TSELIOS & SIMOS

3.4. Third order

Requiring the agreement of the relations (5) and (6) for the third power of h and for a k-step method
(coefficients of A2B, AB2, BA2, B2A, ABA, BAB), the following relations hold:

f [5] = 1
2!

k
∑

i=1

di

(

i
∑

j=1

cj

)2

− 1
3! ,

f [6] = 1
2!

k
∑

i=1

ci

(

k
∑

j=i

dj

)2

− 1
3! ,

f [7] = 1
2!

k
∑

i=1

di

(

k
∑

j=i+1

cj

)2

− 1
3! ,

f [8] = 1
2!

k
∑

i=2

ci

(

i−1
∑

j=1

dj

)2

− 1
3! ,

f [9] =
k
∑

i=1

ci

k
∑

j=i

dj

k
∑

l=j+1

cl − 1
3! ,

f [10] =
k
∑

j=2

dj

j
∑

i=2

ci

i−1
∑

j=1

dj − 1
3! .

(11)

For the above-mentioned functions it has been found that


















−(1 + f [1])
2

(1 + f [2]) + (1 + f [1]) (1 + 2 f [4]) + 2 (f [5] − f [7]) = 0 ,

1 − (1 + f [1])
2

(1 + f [2]) + 2 (f [5] + f [7] + f [9]) = 0 ,

1 − (1 + f [1]) (1 + f [2])
2

+ 2 (f [6] + f [8] + f [10]) = 0 ,

− (1 + f [1]) (1 + f [2])
2

+ (1 + f [2]) (1 + 2 f [4]) + 2 (f [6] − f [8]) = 0 .

(12)

For the third order method the f [1],...,f [4] of the second order should be zero; thus the following relations
result:

f [9] = −2 f [7] = −2f [5] ,

f [10] = −2 f [8] = −2f [6] .
(13)

Therefore, from the equations of the third-order it is sufficient to choose one of f [5] or f [7] or f [9] and one
of f [6] or f [8] or f [10].

3.5. Fourth order

Requiring the agreement of the relations (5) and (6) for the fourth power of h and for a k-step method
(coefficients of A3B, AB3, BA3,B3A, A2B2, B2A2, A2BA, AB2A, ABA2, B2AB, BA2B, BAB2, ABAB,
BABA),the following relations hold:

f [11] = 1
3!

k
∑

i=1

di

(

i
∑

j=1

cj

)3

− 1
4! ,

f [12] = 1
3!

k
∑

i=1

ci

(

k
∑

j=i

dj

)3

− 1
4! ,

f [13] = 1
3!

k
∑

i=1

di

(

k
∑

j=i+1

cj

)3

− 1
4! ,

f [14] = 1
3!

k
∑

i=2

ci

(

i−1
∑

j=1

dj

)3

− 1
4! ,

f [15] = 1
2!2!

k
∑

p=1

k
∑

j=p

k
∑

i=j

k
∑

m=i

cpcjadidmb − 1
4! , a =

{

1 p = j

2 p 6= j
and b =

{

1 i = m

2 i 6= m
,

f [16] = 1
2!2!

k−1
∑

p=1

k−1
∑

j=p

k
∑

i=j+1

k
∑

m=i

dpdjacicmb − 1
4! a =

{

1 p = j

2 p 6= j
and b =

{

1 i = m

2 i 6= m
,
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OPTIMIZED FIFTH ORDER SYMPLECTIC INTEGRATORS 15

f [17] = 1
2!

k
∑

m=1
cm

k
∑

i=m

ci

k
∑

j=i

dj

k
∑

l=j+1

cl + 1
2!

k
∑

m=1
cm

k
∑

i=m+1

ci

k
∑

j=i

dj

k
∑

l=j+1

cl − 1
4! ,

f [18] = 1
2!

k−1
∑

j=1

cj

k
∑

i=j

di

k
∑

m=i

dm

k
∑

l=m+1

cl + 1
2!

k−1
∑

j=1

cj

k
∑

i=j

di

k
∑

m=i+1

dm

k
∑

l=m+1

cl − 1
4! ,

f [19] = 1
2!

k−1
∑

j=1

cj

k
∑

i=j

di

(

k
∑

j=i+1

cj

)2

− 1
4! ,

f [20] = 1
2!

k
∑

j=2

dj

j
∑

i=2

ci

(

i−1
∑

j=1

dj

)2

− 1
4! ,

f [21] = 1
2!

k
∑

m=1
dm

k
∑

i=m+1

ci

k
∑

j=i

cj

k
∑

l=j

dl + 1
2!

k
∑

m=1
dm

k
∑

i=m+1

ci

k
∑

j=i+1

cj

k
∑

l=j

dl − 1
4! ,

f [22] = 1
2!

k
∑

j=1

dj

k
∑

i=j+1

ci

(

k
∑

j=i

dj

)2

− 1
4! ,

f [23] =
k−1
∑

m=1
cm

k−1
∑

j=m

dj

k
∑

i=j+1

ci

k
∑

l=i

dl − 1
4! ,

f [24] =
k−2
∑

m=1
dm

k−1
∑

j=m+1

cj

k−1
∑

i=j

di

k
∑

l=i+1

cl − 1
4! .

For the above-mentioned functions it has been found that


















































































f [9] + 3 f [11] − f [19] = 0 ,

−f [5] + 3 f [13] + f [19] = 0 ,

f [5] + f [17] + f [19] = 0 ,

−f [6] + 3 f [12] + f [22] = 0 ,

−2 f [6] + 3 f [14] − f [22] = 0 ,

f [6] + f [20] + f [22] = 0 ,

2 f [15] + f [23] = 0 ,

2 f [16] + f [24] = 0 ,

−f [6] + f [18] = 0 ,

−f [5] + f [21] = 0 ,

f [15] + f [16] + f [18] + f [21] + f [23] + f [24] = 0 .

(14)

For a fourth order method the functions f [1],...,f [10] of the third order should be zero; thus the following
relations hold:

f [13] = −f [11] = f [17]
3 = − f [19]

3 ,

f [14] = −f [12] = f [22]
3 = − f [20]

3 ,

f [24] = 2f [15] = −2f [16] = −f [23] ,

f [18] = f [21] = 0 .

(15)

Therefore, from the equations of the fourth-order it is sufficient to choose the f [13], f [14] and f [24].

3.6. Fifth order

Requiring the agreement of the relations (5) and (6) for the fifth power of h and for a k-step method
(coefficients of A4B, AB4, BA4, B4A, A3B2, A2B3, B3A2, B2A3, A3BA, AB3A, ABA3, B3AB, BA3B,
BAB3, A2B2A, A2BA2, AB2A2, B2A2B, B2AB2, BA2B2, A2BAB, AB2AB, ABA2B, ABAB2, B2ABA,
BA2BA, BAB2A, BABA2, ABABA, BABAB), the following relations hold:
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16 TSELIOS & SIMOS

f [25] = 1
4!

k
∑

i=1

di

(

i
∑

j=1

cj

)4

− 1
5! ,

f [26] = 1
4!

k
∑

i=1

ci

(

k
∑

j=i

dj

)4

− 1
5! ,

f [27] = 1
4!

k
∑

i=1

di

(

k
∑

j=i+1

cj

)4

− 1
5! ,

f [28] = 1
4!

k
∑

i=2

ci

(

i−1
∑

j=1

dj

)4

− 1
5! ,

f [29] = 1
3!2!

k
∑

i=1

di

(

i
∑

j=1

cj

)3 k
∑

m=i

dm + 1
3!2!

k
∑

i=1

di

(

i
∑

j=1

cj

)3 k
∑

m=i+1

dm − 1
5! ,

f [30] = 1
2!3!

k
∑

m=1
cm

k
∑

i=m

ci

(

k
∑

j=i

dj

)3

+ 1
2!3!

k
∑

m=1
cm

k
∑

i=m+1

ci

(

k
∑

j=i

dj

)3

− 1
5! ,

f [31] = 1
3!2!

k
∑

i=2

ci

k
∑

l=i

cl

(

i−1
∑

j=1

dj

)3

+ 1
3!2!

k
∑

i=2

ci

k
∑

l=i+1

cl

(

i−1
∑

j=1

dj

)3

− 1
5! ,

f [32] = 1
3!2!

k
∑

m=1
dm

k
∑

i=m

di

(

k
∑

j=i+1

cj

)3

+ 1
3!2!

k
∑

m=1
dm

k
∑

i=m+1

di

(

k
∑

j=i+1

cj

)3

− 1
5! ,

f [33] = 1
3!

k
∑

m=2
cm

m−1
∑

i=1

di

(

i
∑

j=1

cj

)3

− 1
5! ,

f [34] = 1
3!

k
∑

m=1
cm

k
∑

i=m+1

ci

(

i−1
∑

j=m

dj

)3

− 1
5! ,

f [35] = 1
3!

k
∑

m=1
cm

k
∑

i=m

di

(

k
∑

j=i+1

cj

)3

− 1
5! ,

f [36] = 1
3!

k
∑

i=2

ci

(

i−1
∑

j=1

dj

)3 k
∑

m=i

dm − 1
5! ,

f [37] = 1
3!

k
∑

i=1

di

i−1
∑

m=1
dm

(

i
∑

j=m+1

cj

)3

− 1
5! ,

f [38] = 1
3!

k−1
∑

m=1
dm

k
∑

i=m+1

ci

(

k
∑

j=i

dj

)3

− 1
5! ,

f [39] =
k−1
∑

i=1

k−1
∑

j=i

k−1
∑

p=j

k−1
∑

q=p

k
∑

n=q+1
cicjdpdqcnab − 1

5! , a =

{

1
2! i = j

1 i 6= j
and b =

{

1
2! p = q

1 p 6= q
,

f [40] =
k−1
∑

i=1

k−1
∑

j=i

k−1
∑

p=j

k
∑

q=p+1

k
∑

n=q

cicjdpcqcnab − 1
5! , a =

{

1
2! i = j

1 i 6= j
and b =

{

1
2! q = n

1 q 6= n
,

f [41] =
k−1
∑

i=1

k−1
∑

j=i

k−1
∑

p=j

k
∑

q=p+1

k
∑

n=q

cidjdpcqcnab − 1
5! , a =

{

1
2! j = p

1 j 6= p
and b =

{

1
2! q = n

1 q 6= n
,

f [42] =
k−1
∑

i=1

k−1
∑

j=i

k
∑

p=j+1

k
∑

q=p

k
∑

n=q

didjcpcqdnab − 1
5! , a =

{

1
2! i = j

1 i 6= j
and b =

{

1
2! p = q

1 p 6= q
,

f [43] =
k−1
∑

i=1

k−1
∑

j=i

k
∑

p=j+1

k
∑

q=p

k
∑

n=q

didjcpdqdnab − 1
5! , a =

{

1
2! i = j

1 i 6= j
and b =

{

1
2! q = n

1 q 6= n
,

f [44] =
k−1
∑

i=1

k
∑

j=i+1

k
∑

p=j

k
∑

q=p

k
∑

n=q

dicjcpdqdnab − 1
5! , a =

{

1
2! j = p

1 j 6= p
and b =

{

1
2! q = n

1 q 6= n
,

f [45] = − 1
5! + 1

2!

k−1
∑

j=1

cj

k−1
∑

i=j

ci

k−1
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l

dp + 1
2!

k−1
∑

j=1

cj

k−1
∑

i=j+1

ci

k−1
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l

dp ,
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f [46] = − 1
5! + 1

2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k−1
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l

dp + 1
2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k−1
∑

m=i+1

dm

k
∑

l=m+1

cl

k
∑

p=l

dp ,

f [47] = − 1
5! + 1

2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k
∑

l=m

cl

k
∑

p=l

dp + 1
2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k
∑

l=m+1

cl

k
∑

p=l

dp ,

f [48] = − 1
5! + 1

2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k
∑

l=m

dl

k
∑

p=l

dp + 1
2!

k−1
∑

j=1

cj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k
∑

l=m

dl

k
∑

p=l+1

dp ,

f [49] = − 1
5! + 1

2!

k−1
∑

j=1

dj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k
∑

l=m

dl

k
∑

p=l+1

cp + 1
2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

di

k
∑

m=i+1

cm

k
∑

l=m

dl

k
∑

p=l+1

cp ,

f [50] = − 1
5! + 1

2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

cm

k
∑

l=m

dl

k
∑

p=l+1

cp + 1
2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i+1

cm

k
∑

l=m

dl

k
∑

p=l+1

cp ,

f [51] = − 1
5! + 1

2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

dm

k
∑

l=m

dl

k
∑

p=l+1

cp + 1
2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

dm

k
∑

l=m+1

dl

k
∑

p=l+1

cp ,

f [52] = − 1
5! + 1

2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l

cp + 1
2!

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l+1

cp ,

f [53] = − 1
5! +

k−1
∑

j=1

cj

k−1
∑

i=j

di

k
∑

m=i+1

cm

k−1
∑

l=m

dl

k
∑

p=l+1

cp ,

f [54] = − 1
5! +

k−1
∑

j=1

dj

k−1
∑

i=j+1

ci

k
∑

m=i

dm

k
∑

l=m+1

cl

k
∑

p=l

dp .

For the above-mentioned functions it has been found that


















f [25] + f [27] + f [33] + f [35] + f [40] = 0 ,
−f [5]

2 + 3 f [25] + f [27] + f [33] = 0 ,
−f [5]

2 + f [25] + 3 f [27] + f [35] = 0 ,

−f [19] + 3 f [35] + 2 f [40] = 0 ,

(16)



















f [26] + f [28] + f [36] + f [38] + f [43] = 0 ,
−f [6]

2 + f [26] + 3 f [28] + f [36] = 0 ,
−f [6]

2 + 3 f [26] + f [28] + f [38] = 0 ,

−f [22] + 3 f [38] + 2 f [43] = 0 ,

(17)



























































f [29] + f [32] + f [37] + f [39] + f [41] + f [45] + f [47] + f [50] + f [52] + f [53] = 0 ,

f [5] + f [6]
2 − f [11] − f [15] + f [29] − f [32] = 0 ,

−f [5]
2 − f [6]

2 − f [23]
2 − f [39] + f [41] = 0 ,

3 f [5]
2 − 3 f [11] + f [47] − f [50] = 0

−5 f [5]
2 + f [10]

2 + 3 f [11] + 2 f [15] + f [45] − f [52] = 0 ,
−f [5]

4 + f [11]
2 + 2 f [29] − f [37]

2 + f [45] = 0 ,
f [5]
6 − f [11] + f [37] + 2 f [47]

3 = 0 ,
f [5]
2 + f [6] − 2 f [41] + f [45] + f [47] = 0 ,

(18)



























































f [30] + f [31] + f [34] + f [42] + f [44] + f [46] + f [48] + f [49] + f [51] + f [54] = 0 ,
f [5]
2 + f [6] − f [12] − f [15] + f [30] − f [31] = 0 ,

− f [5]
2 − f [6]

2 + f [16] − f [42] + f [44] = 0 ,

f [5] + f [10]
4 + 3 f [12] − 2 f [16] + f [48] − f [49] = 0 ,

f [6]
2 − f [10]

2 − 3 f [12] + f [46] − f [51] = 0 ,
f [6]
6 − f [12] + f [34] + 2 f [46]

3 = 0 ,

f [5] + f [6]
2 − 2 f [44] + f [49] + f [51] = 0 ,

− f [6]
4 + f [14]

2 + 2 f [31] − f [34]
2 + f [49] = 0 .

(19)
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18 TSELIOS & SIMOS

TABLE 1

THE LINEARLY INDEPENDENT SYSTEM OF EQUATIONS FOR THE
CONSTRUCTION OF A SYMPLECTIC INTEGRATOR OF FIFTH ORDER

Order Equations Number of

equations

1 f [1] = 0, f [2] = 0 2

2 f [3] = 0 3

3 f [9] = 0, f [10] = 0 5

4 f [13] = 0, f [14] = 0, f [24] = 0 8

5 f [25] = 0, f [26] = 0, f [29] = 0, f [30] = 0, f [53] = 0, f [54] = 0 14

For the relations (16), (17), (18) and (19) the functions f [1],...,f [24] of the fourth order should be zero; thus
the following relations hold:

f [25] = f [27] = −f [33]

4
= −f [35]

4
=

f [40]

6
, (20)

f [26] = f [28] = −f [36]

4
= −f [38]

4
=

f [43]

6
, (21)

f [37] = −2f [29] + f [53]
2 ,

f [39] = f [41] = − f [53]
4 ,

f [47] = f [50] = 3f [29] − 3f [53]
4 ,

f [45] = f [52] = −3f [29] + f [53]
4 ,

f [32] = f [29] ,

(22)

f [34] = −2f [30] + f [54]
2 ,

f [42] = f [44] = − f [54]
4 ,

f [46] = f [51] = 3f [30] − 3f [54]
4 ,

f [48] = f [49] = −3f [30] + f [54]
4 ,

f [31] = f [30] .

(23)

Therefore, from the equations of the fifth-order it is sufficient to choose the f [25], f [26], f [29], f [30], f [53]
and f [54].

Consequently, the following theorem was proved:

Theorem 1 For the construction of a method of a fifth order and from the fifty four equations that should have
been initially solved (and presented above), it is enough to solve only fourteen linearly independent equations,
which are given in Table 1.
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OPTIMIZED FIFTH ORDER SYMPLECTIC INTEGRATORS 19

4. CONSTRUCTION OF THE NEW FIFTH-ORDER METHOD

In this section we describe the development of the new proposed fifth-order method. Based on the above
mentioned theory the new method is going to be a seven-step method, of the form (3), i.e.























































































































pj,1 = pν
j − c1h(∂V

∂q
)q=qν

j
,

qj,1 = qν
j + d1h(∂T

∂p
)p=pj,1

,

pj,2 = pj,1 − c2h(∂V
∂q

)q=qj,1
,

qj,2 = qj,1 + d2h(∂T
∂p

)p=pj,2
,

pj,3 = pj,2 − c3h(∂V
∂q

)q=qj,2
,

qj,3 = qj,2 + d3h(∂T
∂p

)p=pj,3
,

pj,4 = pj,3 − c4h(∂V
∂q

)q=qj,3
,

qj,4 = qj,3 + d4h(∂T
∂p

)p=pj,4
,

pj,5 = pj,4 − c5h(∂V
∂q

)q=qj,4
,

qj,5 = qj,4 + d5h(∂T
∂p

)p=pj,5
,

pj,6 = pj,5 − c6h(∂V
∂q

)q=qj,6
,

qj,6 = qj,5 + d6h(∂T
∂p

)p=pj,6
,

pν+1
j = pj,6 − c7h(∂V

∂q
)q=qj,6

,

qν+1
j = qj,6 + d7h(∂T

∂p
)p=p

ν+1

j
,

(24)

with j = 1, .., ν where ν is the dimension of the vector p and q.

For the fifth order equations (Table 1), and for k = 7 (number of steps) we have fourteen equations
and fourteen parameters. This set of equations can be solved numerically. Using the Newton or Levenberg-
Marquardt method forty-six solutions for the fifth-order integrator have been obtained, (see for more details
in Tselios & Simos 20116). For internal computations 40-digits of precision are used.

For the study of the forty six produced schemes concerning error control, a similar procedure was followed
(§ 3). Requiring the agreement of the relations (5) and (6) for the sixth power of h and for a k-step method,
sixty two relations were found (eq[1], ..., eq[62]), (see for more details in Tselios & Simos 20117).

We consider as error function the following:

FunError57 =
√

eq[1]2 + eq[2]2 + ... + eq[62]2 . (25)

After checking of all the forty six produced solutions, we have found that the scheme with the minimum
error 0.1495161 is the following

c1 = 0.112569584468347104973189684884327785393840239333314075493 ,

c2 = 0.923805029000837468447500070054064432491178527428114178991 ,

c3 = −1.362064898669775624786044007840908597402026042205084284026 ,

c4 = 0.980926531879316517259793318227431991923428491844523669724 ,

c5 = 0.400962967485371350147918025877657753577504227492190779513 ,

c6 = 0.345821780864741783378055242038676806930765132085822482512 ,

c7 = −0.402020995028838599420412333241250172914690575978880873429 ,

d1 = 0.36953388878114957185081450061701658106775743968995046842 ,

d2 = −0.032120004263046859169923904393901683486678946201463277409 ,

d3 = −0.011978701020553903586622444048386301410473649207894475166 ,

d4 = 0.51263817465269673604202785657395553607442158325539698102 ,

d5 = −0.334948298035883491345320878224434762455516821029015086331 ,

d6 = 0.021856594741098449005512783774683495267598355789295971623 ,

d7 = 0.47501834514453949720351208570106713494289203770372938037 .

(26)

6http://users.uop.gr/~simos/report_tselios_si5.pdf.
7http://users.uop.gr/~simos/report_tselios_si5.pdf.
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20 TSELIOS & SIMOS

5. NUMERICAL EXAMPLES

The illustration of the efficiency of the new proposed method obtained in § 4 is examined by its application
to the Two-body and Henon-Heiles problem. For comparison purposes the following methods are used:

• The four step-fourth order method developed by Yoshida (1990) which is indicated as YOS4.

• The eight step-six order8 method developed by Yoshida (1990) which is indicated as YOS6.

• The new proposed method of seven step-fifth order which is indicated as SI5.

5.1. Two-body problem

The Hamiltonian of the two-body problem is given by

H =
p1

2

2
+

p2
2

2
− 1
√

q2
1 + q2

2

, (27)

where (q1,q2) are the conjugate coordinate and (p1,p2) are the conjugate momentum of the phase space. The
equations of motion are

q̇1 = p1 ,

q̇2 = p2 ,

ṗ1 = − q1
√

(q2
1 + q2

2)3
,

ṗ2 = − q2
√

(q2
1 + q2

2)3
. (28)

The energy error is given by Eerror = p1
2

2 + p2
2

2 − 1√
q2
1
+q2

2

, and the exact energy is Eexact = −0.5.

The initial conditions are

p1(0) = 0, p2(0) =

√

1 + e

1 − e
, q1(0) = 1 − e, q2(0) = 0 , (29)

where the parameter e is the eccentricity.
In Figures 1, 2 and 3 we present for the same NFE (Number of Function Evaluations) and for different

values of the eccentricity, time interval and step size the average energy error Err = log10(Eaverage)

Eaverage =
1

nsteps

nsteps
∑

i=1

‖Ecalculated − Eexact‖ , (30)

where nsteps = tmax/h. In Figure 4 the position variables of the compared methods, for interval (0,1000), time
step 1

64 and eccentricity e = 0.9 are presented.

5.2. Hénon-Heiles problem

The Hamiltonian of the Henon-Heiles problem is given by

H =
1

2
(p1

2 + p2
2) +

1

2
(q1

2 + q2
2) + q1

2q2 −
1

3
q3
2 , (31)

8From the eight-steps sixth-order of Yoshida’s methods it was selected for this comparison the one that gives the better results.
For this method we have extended the precision of the given digits for its coefficients from 16 digits precision (that were proposed
by Yoshida (1990) to 40 digits precision.
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Fig. 1. Values of the average energy error for the eccentricity e = 0.5, 0.6, 0.7, 0.8 of the two body problem with time
interval (0,1000) the same NFE=480000 and different step size h for each method. Methods used: (i) (diamonds) Yoshida
[6] symplectic-scheme method of four step-fourth order with h4 = 8.3333e − 003, (ii) (crosses) Yoshida [6] symplectic-
scheme method of eight step-six order with h6 = 1.6667e−002, (iii) (dots) New method with symplectic-scheme of seven
step-fifth order with h5 = 1.4583e − 002.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
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Fig. 2. Values of the average energy error of the two body problem, for time interval (0, tmax), tmax = 500,700,...,1500,
eccentricity e = 0.8, the same NFE=480000 and different step size h for each method. Methods used: (i) (diamonds)
Yoshida [6] symplectic-scheme method of four step-fourth order with h4 = tmax/nsteps4 where nsteps4=120000, (ii)
(crosses) Yoshida [6] symplectic-scheme method of eight step-six order with h6 = 2h4, (iii) (dots) New Method with
symplectic-scheme of seven step-fifth order with h5 = 7

4
h4.
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Fig. 3. Values of the average energy error of the two body problem, for h4 = 1/25, 1/26, 1/27, 1/28, eccentricity e = 0.8,
the same NFE=400000 and time interval (0, tmax), tmax = h4 ∗ nsteps4, where nsteps4=100000. Methods used: (i)
(diamonds) Yoshida [6] symplectic-scheme method of four step-fourth order with step size h4, (ii) (crosses) Yoshida [6]
symplectic-scheme method of eight step-six order with h6 = 2h4, (iii) (dots) New Method with symplectic-scheme of
seven step-fifth order with h5 = 7

4
h4.

Fig. 4. The numerical solution of the two-body problem with interval (0,1000), eccentricity 0.9, the same NFE=480000
and different step size h for each method. The ellipse with red color is the exact solution. Methods used: (a) [YOS4]
Yoshida [6] symplectic-scheme method of four step-fourth order with h4 = 8.3333e − 003, (b) [YOS6] Yoshida [6]
symplectic-scheme method of eight step-six order with h6 = 1.6667e − 002, (c) [SI5] New Method with symplectic-
scheme of seven step-fifth order with h5 = 1.4583e − 002, (d) [SI5] New Method with symplectic-scheme of seven
step-fifth order with e = 0.9, interval (0,1000), NFE=420000 and the same step size with [YOS6], h = 1.6667e − 002.
The color figure can be viewed online.

where (q1,q2) are the conjugate coordinate and (p1,p2) are the conjugate momentum of the phase space. The
equations of motion are

q̇1 = p1 , q̇2 = p2 , ṗ1 = −(q1 + 2q1q2) , ṗ2 = −(q1
2 + q2 − q2

2) . (32)

The initial conditions are p2(0) = 0, q1(0) = 0.1, q2(0) = 0, and total energy E = 0.15. The p1(0) coordinate
was determined from the following

p1(0) =

√

(2(E − V ) − p2(0)
2
) , (33)
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Fig. 5. (a),(b),(c) the Poincare surface of section of the (q2,p2) points in the q1 = 0 plane with stepsize h = 0.45
and the same NFE=200000 for each method. Methods used: (i) [YOS4] Yoshida [6] symplectic-scheme method of four
step-fourth order with tmax = 25000, (ii) [YOS6] Yoshida [6] symplectic-scheme method of eight step-six order with
tmax = 50000, (iii) [SI5] New Method with symplectic-scheme of seven step-fifth order with tmax = 43750. In (d) the
energy loss for stepsize h = 0.2, 0.3, 0.4, 0.45. Both axes are logarithmic.

where V is the potential function

V =
1

2
(q1

2 + q2
2) + q1

2q2 −
1

3
q3
2 . (34)

In Figure 5d we present for the same NFE and for different values of the step size the energy loss
Err=max‖∆E

E
‖ and in Figures 5a,b,c the Poincare surface of section of the (q2,p2) points in the q1 = 0 plane.

6. CONCLUSION

In this paper an optimized fifth algebraic order symplectic integrator was developed. The production of the
new scheme was based on a new set of conditions for symplectic k-step schemes with order up to five. Based
on this set, forty six symplectic seven-step methods of fifth algebraic order were obtained. The optimized
fifth order symplectic integrator was defined using the minimum error. The numerical illustrations proved the
efficiency of the new developed method compared with well known methods of the literature.

The authors wish to thank the anonymous reviewer for his/her very careful reading of the manuscript and
the very important and fruitful comments and suggestions.



©
 C

o
p

y
ri

g
h

t 
2

0
1

3
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

24 TSELIOS & SIMOS

REFERENCES

Candy, P. J., & Rozmus, W. 1991, J. Comp. Phys., 92, 230
Forest, E. 2006, J. Phys. A: Math. Theoretical, 39, 5231
Forest, E., & Ruth, R. D. 1990, Physica D, 43, 105
Hairer, E., Lubich, C., & Wanner, G. 2002, Geometric Nu-

merical Integration, Structure-Preserving Algorithms
for Ordinary Differential Equations (Springer Series in
Comput. Math., 31, Berlin: Springer-Verlag)

Laskar, J., & Robutel, P. 2001, Celest. Mech., 80, 39
Liu, X. S., Liu, X. Y., Zhou, Z. Y., Ding, P. Z., & Pan,

S. F. 2000, Int. J. Quantum Chem., 79, 343
McLachlan, R. I. 1995, BIT Numerical Math., 35, 258
McLachlan, R. I., & Quispel, G. R. W 2006, J. Phys. A:

Math. Theoretical, 39, 5251
Nadolski, L., & Laskar, J. 2002, in 8th European Particle

Accelerator Conference, ed. T. Garvey, L. Rivkin, J.
Le Duff, C. Petit-Jean-Genaz, P. Le Roux, & J. Poole
(Geneva: EPAC), 1276

Omelyan, I. P., Mryglod, I. M., & Folk, R. 2002a, Phys.
Rev. E, 65, 056706

. 2002b, Phys. Rev. E, 66, 026701
Ruth, R. D. 1983, IEEE Trans. Nucl. Sci., NS-30, 2669
Sanz-Serna, J. M., & Calvo, M. P. 1994, Numerical Hamil-

tonian Problem (London: Chapman & Hall)
Tselios, K., & Simos, T. E. 2003, J. Math. Chem., 34(1),

83
. 2004, J. Math. Chem., 35(1), 55

Yoshida, H. 1990, Phys. Lett., A, 150, 262
. 1993, Celest. Mech., 56, 27

Kostas Tselios: Laboratory of Computational Sciences, Department of Computer Science and Technology,
Faculty of Sciences and Technology, University of Peloponnese, GR-221 00 Tripolis, Greece.

T. E. Simos: Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455, Riyadh
11451, Saudi Arabia and Laboratory of Computational Sciences, Department of Computer Science and
Technology, Faculty of Sciences and Technology, University of Peloponnese, GR-221 00 Tripolis, Greece
(tsimos.conf@gmail.com). Please use the following address for all correspondence: Dr. T. E. Simos, 10
Konitsis Street, Amfithea - Paleon Faliron, GR-175 64 Athens, Greece.


