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RESUMEN

Los cráteres de impacto existen en los planetas con superficies sólidas, en
sus satélites y en muchos asteroides. El objeto de este art́ıculo es proponer una
expresión teórica para el producto ρr3v2

1 , donde los tres śımbolos denotan la den-
sidad de masa, el radio y la velocidad del impacto, respectivamente. Se deriva esta
expresión utilizando resultados conocidos de la f́ısica del estado sólido. La fórmula
puede usarse para estimar los parámetros de los impactadores que han causado la
formación de cráteres en diversos cuerpos sólidos del Sistema Solar.

ABSTRACT

Impact craters exist on solid surface planets, their satellites and many aster-
oids. The aim of this paper is to propose a theoretical expression for the product
ρr3v2

1 , where the three symbols denote the mass density, radius and speed of the
impactor. The expression is derived using well known results of solid state physics,
and it can be used in estimating parameters of impactors which have led to forma-
tion of craters on various solid bodies in the Solar System.

Key Words: planets and satellites: interiors — planets and satellites: surfaces

1. INTRODUCTION

Craters of various sizes have been observed on the terrestrial planets, their satellites and the major part of
the asteroids. The study of these craters, and the resulting constraints on the related impactors has become
a separate field of research in planetary science (see for example Melosh 1989). At the time of this writing,
the latest example testifying about the importance of impacts into the Earth and their consequences is the
small asteroid which entered the atmosphere over the city of Chelyabinsk in Russia on February 15, 2013. One
of the fundamental questions concerning the impactors is what can be concluded about them by combining
astronomical data with results of solid state physics.

Recent theoretical work for example (Celebonovic & Souchay 2010) has shown that the application of
elementary principles of solid state physics to this problem gives physically plausible results in reasonable
agreement with those obtained by celestial mechanics. It was assumed there that the material of the target
was a crystal lattice, and the calculations were performed per unit volume. It was assumed in that paper that
the condition for the formation of a crater is that the kinetic energy of a unit volume of the impactor has to be
equal to the internal energy of a unit volume of the material of the target. The result was an expression for the
minimal speed which an impactor of given parameters must have when hitting a target with a predefined set
of parameters, in order to form a crater. Obviously, a certain part of surfaces of planets, satellites, asteroids...
in which impacts occur are granular. For recent theoretical work on “granular impact” see, for example Clark
& Behringer (2013) or Ringl, Bringa, & Urbassek (2012).

The aim of the calculation reported here is to take into account the dimensional effects – to consider both
the impactor and the crater it forms as objects of finite dimensions. The novelty of the approach discussed in
the next section, compared to existing work such as Holsapple & Housen (2007), is its generality – it is based on
principles of solid state physics, and it can be applied to any solid material. The formation of impact craters is
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here discussed from the viewpoint of pure solid state physics as the following analogous problem: what kinetic
energy of an impactor is needed to produce a hole of given dimensions in a material with a predefined set of
parameters? The calculations will be performed under the assumptions that the material of the target is a
crystal, that one of the five usual bonding types exists in it and that in the impact the target does not heat
up to its melting temperature, so that solid state physics can be applied. For recent work on the problem of
heating in impacts, see Celebonovic (2012). The expression for the cohesion energy used in the present work
is one of the theoretically possible expressions. More details are avaliable, for example, in Landau & Lifchitz
(1976).

2. CALCULATIONS

The physical keypoint of the calculation to be discussed in this section is the idea that the kinetic energy
of the impactor must be greater than or equal to the internal energy of some volume, V2 of the material of the
target. The kinetic energy Ek of the impactor of mass m1 and speed v1 is obviously:

Ek =
1

2
m1v

2
1 . (1)

The internal energy EI of a volume V2 of the target material is equal to the sum of the following three
“contributions”: the cohesion energy EC , the thermal energy ET and the energy EH(T ) required for heating
the specimen by an amount ∆T in the moment of impact:

EI = EC + ET + EH(T ) . (2)

The condition for the formation of a crater as a consequence of impact of a projectile into a target is, in general
terms, given by

Ek = EI . (3)

In order to ensure the stability of matter, the interatomic interaction energy must have the form

E =
−K

Rp
+

C

Rn
, (4)

where R is the inetartomic distance, the first term on the right hand side is attractive and the second one
repulsive. It can be shown (Dolocan, Dolocan, & Dolocan 2008) that the cohesion energy is given by

EC = −
9B0Ωm

pn
, (5)

where B0 = −V (∂P/∂V )T = ρ(∂P/∂ρ)T is the bulk modulus of a material and Ωm the volume per pair
(Dolocan et al. 2008). The speed of sound waves in a material with pressure P and density ρ is given by

ū2 =
∂P

∂ρ
, (6)

and therefore

EC = −9
ΩmB0

pn
= −9(

Ωm

pn
)ρ

∂P

∂ρ
= −9

Ωmρū2

pn
. (7)

The analytical form of the function ET depends on the temperature of the solid. It can be shown (for example
Landau & Lifchitz 1976) that for temperatures

kBT0 ≫
h̄ū

a
, (8)

(h̄ is Planck’s constant divided by 2π, ū is the mean speed of sound in the solid and a is the lattice constant),
one should use the “high temperature” limit for the thermal energy. Inserting for example ū = 5 km s−1 and
a = 5 × 10−6 m it follows that T0 ≫ 77 K.



©
 C

o
p

y
ri

g
h

t 
2

0
1

3
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

IMPACT CRATERS 223

The thermal energy ET is given by
ET = 3NνkBTD3(x) , (9)

where x = TD/T , TD is the Debye temperature, ν is the number of particles in the elementary crystal cell, N
is the number of elementary crystal cells in the specimen, and kB is Boltzmann’s constant. The symbol D3(x)
denotes the n = 3 case of the Debye function, which is given by

Dn(x) =
n

xn

∫ x

0

tndt

exp[t] − 1
= (n/xn)xn

[

1

n
−

x

2(n + 1)
+

∞
∑

k=1

B2kx2k

(2k + n)(2k)!

]

, (10)

and B2k denote Bernoulli’s numbers. Integrating and retaining the terms up to and including second order
leads to:

ET
∼= 3NνkBT

[

1 −
3

8

TD

T
+

(

1

20

) (

TD

T

)2
]

. (11)

The specific heat CV is given by

CV =
∂ET

∂T
= 3NνkB [D3(TD/T ) − (TD/T )D′

3(TD/T )] , (12)

which leads to the following approximate result:

CV
∼= 3NνkB

[

1 −

(

1

20

) (

TD

T

)2

+

(

1

560

) (

TD

T

)4
]

. (13)

The energy EH(T ) is obviously given by EH = CV (T1 − T ), where T1 is the temperature to which the
material of the target heats up in the moment of impact and T is the initial temperature.

One of the problems consists in knowing the volume V2, which is, in first approximation, equal to the volume
of the crater. It is known from theoretical work (Holsapple & Housen 2007, and references therein) that the
form of a crater is determined by a combination of “gravity scaling” and “strength scaling”, where the term
“strength” refers to the material strength of the target. Explicit expressions for the form of craters exist in
Holsapple & Housen (2007) but they are applicable to four material types. In order to simplify somewhat the
calculations, and to get slightly more general results, it was assumed in the present work that craters have the
shape of a half of a rotating elipsoid, with distinct semi axes, denoted by a,b and c. Physically, a and b denote
the semi axes of the “opening” of the crater, while c is the depth. In that approximation, the volume of the
crater is obviously given by

V2 =
2

3
πabc . (14)

Inserting the definition of the mass density (ρ1 = m1/V1) in equation (1) and assuming further that the
impactor has the form of a sphere of radius r1, the following expression for the kinetic energy of the impactor
is obtained:

Ek =
1

2
m1v

2
1 =

1

2
×

4

3
πr3

1ρ1v
2
1 =

2

3
πρ1r

3
1v

2
1 . (15)

Inserting equations (7), (11), (13) and (15) into equation (3) one gets the final form of the energy condition
which has to be satisfied for the formation of an impact crater:

3kBT1Nν

[

1 −
3

8

TD

T1

−
1

20

(

TD

T

)2

+
1

10

(

T 2
D

TT1

)

+

(

1

560

)(

TD

T

)4

−
1

560

T 4
D

T 3T1

−
3ū2ρΩm

npνkBT1

]

=
2πρ1

3
r3
1v

2
1 .

(16)
The number N is equal to the ratio of the volume of the crater, approximated by equation (14), and the volume
of the elementary crystal cell, ve: N = V/ve. Equation (16) groups known or measurable parameters on the left
hand side, while on the right hand side it contains parameters of the impactor. Applying this equation demands
the knowledge of the equation of state (EOS) of the material of the target. Generally speaking, regardless of
its detailed form, an EOS can be expressed in the following analytical form

P (ρ) =
∞
∑

i=0

ai

(

ρ

ρ0

)i

, (17)
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where ai are some coefficients, ρ0 is the density at some pressure P0 and ρ is the density at pressure P . It
follows that

(

∂P

∂ρ

)

=

∞
∑

i=0

(i + 1)ai+1

(

ρ

ρ0

)i

. (18)

A well known example of the EOS of a solid is the Birch-Murnaghan EOS (Stacey 2005)

P (ρ) =
3B0

2

[

(

ρ

ρ0

)7/3

−

(

ρ

ρ0

)5/3
]

×

{

1 + (3/4)(B′

0 − 4)

[

(

ρ

ρ0

)2/3

− 1

]}

. (19)

The symbols ρ0 and ρ denote the mass density of a specimen under consideration at the initial value of the
pressure P0 and at some arbitrary value P .

More refined results could be obtained by using analytic approximations to the Helmholtz free energy,
from which all the thermodynamic potentials can be derived. This is, for example, the approach used in the
ANEOS EOS (Thompson 1990). However, ANEOS uses a file of up to 40 parameters for the characterization
of materials, which complicates its applications.

3. A TEST EXAMPLE

As a test of the applicability of the procedure discussed in the preceeding paragraph, it was applied to the
Barringer crater in Arizona. One of the minerals found in and around the crater is Forsterite – Mg2SiO4. The
dimensions of the crater are a = b = 1.186 km and c = 0.17 km. Take that the exponents in the expression for
the interparticle potential are p = 1 and n = 9. Assume furher that V̄ = 5 km s−1, which is the mean value
of the measured velocity of seismic waves in the Earth, that the temperature before impact is T = 300 K and
that the target heats up to T1 = 550 K at the point of impact. This is safely far from the melting temperature
of Forsterite (which is around TM = 1900 C) so that solid state physics can be applied. All the parameters of
Forsterite exist in the literature, such as Pandey & Srivastava (2011) or http://webmineral.com. Taking the
necessary values, and assuming that the impactor had a radius of r1 = 65 m and density of ρ1 = 8500 kg m−3

one finally gets that v1
∼= 41 km s−1.

This value is larger than existing results, such as for example Melosh & Collins (2005) or Kring (2007). The
discrepancy can be traced to the assumption, made in the calculation reported here, that the target material
is only Forsterite. In reality, this is certainly not the case. Taking that 10 percent of the target is Forsterite,
and that the object had a radius of r1 = 60 m would give v1

∼= 15 km s−1, which is much closer to the results
of celestial mechanics.

4. DISCUSSION

In this paper we have presented a simple procedure which gives the possibility of estimating the value of
the product of the density and radius of the impactor and the speed of impact: ρ1r

3
1v

2 in terms of various
material parameters of the target and the impactor. The expression for this product has been derived using
basic principles of solid state physics, without any special assumption(s) about the materials. In (at least
some of the) terrestrial applications the density of the impactor and the inclination of the trajectory can (in
principle) be measured or estimated, which gives the possibility of estimating the impact speed if the value of
r1 can somehow be estimated.

The shape of the craters has been approximated as a half of a rotating elipsoid, regardless of the composition
of the material of the target. As a first approximation, the speed of the seismic waves has been “put in” instead
of being calculated from the equation of state of the material of the target. Calculating this speed would have
demanded the precise knowledge of the chemical composition of the target materials, and of B0 and B′

0 for
them. The impact of a projectile into a target leads to heating, and possibly melting and even vaporisation
of the target around the impact point. The thermodynamic result of an impact depends on the heat capacity
of the material of the target and on the kinetic energy of the impactor. The heat capacity can be measured,
or theoretically estimated, assuming prior knowledge of the chemical composition of the target. Knowledge of
the heat capacity is vital for estimates of the temperature to which the target heats in the impact. Therefore,
the question is which impacts lead to melting and vaporisation of the material of the target, and which just
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provoke heating of the target. Even if the material of the target gets partially melted and as such flows away,
the dimensions of the crater formed by the impact are determined by the volume of the material pushed away
in the impact. This volume is, in turn, determined by the ratio of the kinetic energy of the impactor to the
internal energy of some volume of the target. Some details of this problem have been discussed in (Celebonovic
2012).

The general conclusion of the work reported here is that by using simple well known results of solid state
physics and a given appoximation of the shape of impact craters, it becomes possible to estimate the value of
the product ρ1r

3
1v

2
1 . This in turn can be used to draw conclusions about the impactors which made various

craters on the solid surfaces of objects in the planetary system.

This paper was prepared within the research project 174031 financed by the Ministry of Education Science
and Technological Development of Serbia. I am grateful to the referee for helpful comments and to Dr. Jean
Souchay from Observatoire de Paris for correspondence.
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