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RESUMEN

Se muestra que si en un disco de acreción clásico falla la aproximación de
disco estrecho dentro de un cierto radio, se debe dar una transición de trayectorias
keplerianas hacia trayectorias en cáıda radial. Se espera que esta transición ocurra
al interior de un cierto radio cŕıtico, siempre y cuando los perfiles de densidad su-
perficial tengan una pendiente mayor que Σ(R) ∝ R−1/2. Las trayectorias de cáıda
dan lugar a una concentración de materia hacia las regiones centrales, donde la
mayor parte de la materia será tragada por el objeto central. Mostramos, a través
de un análisis hidrodinámico perturbativo, que lo anterior tiene como resultado na-
tural la formación de un par de chorros (jets) polares bien colimados. Se propone
un primer tratamiento anaĺıtico del problema, y se muestra que es posible generar
chorros astrof́ısicos a partir de mecanismos puramente hidrodinámicos. El mecan-
ismo aqúı descrito complementa las ideas existentes sobre el papel de los campos
magnéticos, que muy probablemente dan lugar a la colimación a gran escala y a la
estabilidad de los chorros.

ABSTRACT

Whenever in a classical accretion disk the thin disk approximation fails inte-
rior to a certain radius, a transition from Keplerian to radial infalling trajectories
should occur. We show that this transition is actually expected to occur inte-
rior to a certain critical radius, provided surface density profiles are steeper than
Σ(R) ∝ R−1/2, and further, that it probably corresponds to the observationally
inferred phenomena of thick hot walls internally limiting the extent of many stellar
accretion disks. Infalling trajectories will lead to the convergent focusing and con-
centration of matter towards the very central regions, most of which will simply be
swallowed by the central object. We show through a perturbative hydrodynamical
analysis, that this will naturally develop a well collimated pair of polar jets. A
first analytic treatment of the problem described is given, proving the feasibility of
purely hydrodynamical mechanisms for astrophysical jet generation.

Key Words: accretion, accretion disks — hydrodynamics — galaxies: jets — ISM:
jets and outflows

1. INTRODUCTION

Astrophysical jets occur over a large range of astronomical scales, from the stellar Newtonian scales of HH
objects (e.g., Reipurth & Bally 2001), to the relativistic cases of microquasars and gamma ray bursts (e.g.,
Mirabel & Rodriguez 1999; Mészáros 2002), and to the Mega-parsec extragalactic scales of AGN jets (e.g.,
Marscher et al. 2002). Although the processes of propagation and collimation appear to be relatively well
understood in terms of the interplay between the hydrodynamics of the problem (Scheuer 1974) and magnetic
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24 HERNÁNDEZ ET AL.

fields (e.g., Blandford 1990), the precise mechanism of jet generation remains as the most uncertain part of the
scheme.

Existing jet generation mechanisms focus on the interaction between the rotating material in the inner
regions of the accretion disk and the magnetic field of the central (rotating or otherwise) star, or perhaps
an external magnetic field threading the disk. See for example Blandford & Payne (1982), Henriksen & Valls-
Gabaud (1994), Meier, Koide, & Uchida (2001), Price, Pringle, & King (2003). Although generically successful,
detailed comparisons with observations do not always yield consistent results, e.g., Ferreira, Dougados, & Cabrit
(2006). Further, the details of relative orientation of stellar spin, accretion disk and magnetic field configurations
have to be supplied in highly specific manners.

As an alternative, we explore the possibility of a hydrodynamical jet generation mechanism where magnetic
fields play no rôle, but only the intrinsic hydrodynamical physics of the interplay between the accretion and the
central star wholly determine the characteristics of the jet. The main obstacle to such a scheme is the presence
of a centrifugal barrier associated with the angular momentum content of the material in the accretion disk.
We show, however, that the thin disk approximation for accretion disks, which is equivalent to the assumption
of quasi-circular orbits for the disk (e.g., Pringle 1981), is expected to break down internal to a certain critical
radius, resulting in a transition to quasi-radial flow for the disk. Then, an analytic first order perturbation
treatment serves to demonstrate the feasibility of purely hydrodynamical jets. We show also that many generic
features of observed astrophysical jets across a wide range of scales can be naturally accounted for in the
general model presented. The presence of magnetic fields in jet phenomena is evident empirically. However,
it is not impossible that their main contribution to the problem could be restricted to the radiation of the jet
material and to its long range collimation, with purely hydrodynamical physics playing a part in the actual jet
generation mechanisms.

The problem of jet formation has been studied extensively in the context of classical hydrodynamics, most
often regarding fluid-body interactions. The appearance of stable coaxial jets resulting from radially-symmetric
velocity fields over thin fluid sheets has been established by, among others, Taylor (1960). The rôle played
by both the magnitude and the direction of velocity in the formation of this type of jet is the subject of a
theoretical study by Glauert (1956), where it is shown that at the point at which the jet forms, a large velocity
gradient is observed and momentum flux is constant, with horizontal momentum being transformed into vertical
momentum. Similar results were obtained by King & Needham (1994), who provide an asymptotic study of a
jet formed by a vertical plate accelerating into a semi-infinite expanse of stationary fluid of finite depth with a
free surface and a gravitational restoring force. It is found that as the fluid approaches the plate in a horizontal
direction, a gradual rise in free-surface elevation occurs. Eventually, a thin region is reached where the vertical
velocity dominates the horizontal velocity as a consequence of the fluid finding it more difficult to overcome the
inertia it would meet by continuing its horizontal motion than by escaping vertically towards the low-pressure
free surface. In essence, this same mechanism can allow for jet formation in the context of the problem we
study here.

In § 2 we develop the criterion for transition to radial flow in a standard accretion disk. The perturbative
solution to the resulting problem of a radially infalling disk is then developed in § 3. § 4 presents trajectories
for particular cases of the solution obtained in the previous section, in dimensionless units. Finally, we give
our conclusions in § 5.

2. THE TRANSITION TO RADIAL FLOW

We start from a standard thin accretion disk where material orbits on quasi-circular Keplerian orbits around
a central star of mass M. Assuming axial symmetry and cylindrical coordinates, the total angular momentum
of a ring at radius R of width ∆R will be:

L = 2πR3∆RΣ(R)Ω(R), (1)

where Σ and Ω are the surface density and orbital frequency profiles of the disk, respectively. If the breaking
torque on a given ring of the disk, due to its exterior ring is denoted by τ(R), the total breaking torque on the
ring at radius R will be:

τB = τ(R + ∆R) − τ(R). (2)
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The rate of change of the angular momentum of the ring in question can now be calculated as:

L̇ = τB =
dτ

dR
∆R. (3)

If at any radius a substantial fraction of the angular momentum of the ring is lost through viscous torques
over an orbital period, the assumption of quasi-circular orbits will break down, and the disk will make a
transition to mostly radial orbits. This condition can be stated as:

L

2L̇
<

2π

Ω
. (4)

Substitution of equations (1) and (2) into the above yields:

R3Ω2Σ < 2

(

dτ

dR

)

, (5)

as the condition for the onset of radial flow in the disk.
We can now introduce a model for the torques in terms of the rate of shear and the effective viscosity ν

(e.g., von Weizsäcker 1943; Pringle 1981) as:

τ = 2πR3νΣ
dΩ

dR
. (6)

Taking Ω2 = GM/R3 to substitute the above equation into condition (5) gives

(GM)1/2Σ < −6π
d

dR

(

R1/2νΣ
)

. (7)

To proceed further we can take for example, ν =constant and a model for the disk surface density profile
of the form:

Σ = Σ0

(

R

R0

)−n

, (8)

of the type often used in models of accretion disks when fitted to observations (e.g., Hughes et al. 2009). Use
of the two above forms for ν and Σ(R) reduces condition(7) to:

6πν(n − 1/2) > (GMR)1/2. (9)

The above condition will always be met in any accretion disk with n > 1/2, interior to a transition radius
RT given by:

RT =
[6πν(n − 1/2)]2

GM
. (10)

It is interesting that directly observed accretion disks have spectra which when modelled typically yield
n ∼ 1, in general 0 < n < 1.5, e.g., Hartmann et al. (1998), Lada et al. (2006), Hughes et al. (2009). This
leads one to expect the transition to radial flow to occur in many of the stellar accretion disks, interior to radii
given by equation (10).

Finally, we can explore the consequences of introducing an α prescription (Shakura & Sunyaev 1973) into
condition (9), ν = αcH, where c and H are respectively the sound speed and height of the disk, with α a
dimensionless number, yielding the dimensionless condition:

M

(

R

H

)

< 6πα(n − 1/2), (11)

where M is the ratio of the Keplerian orbital velocity in the disk to the sound speed in the disk. Although
the above condition is only valid for constant ν, it illustrates the equivalence between the assumption of quasi-
circular orbits for the material in the disk, and the assumption that the disk is thin. We see that the breakdown
of the assumption of quasi-circular orbits (condition 9), corresponds to the point where disk becomes fat.
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Writing M in astrophysical units as:

M = 1.8

(

200K

T

)1/2(

50AU

R

)1/2(

M

0.5M⊙

)1/2

, (12)

we see that for values typical of what is observationally inferred for the stellar mass and position and temperature
of accretion disk walls in T Tauri protoplanetary disks, those indicated in the above equation (e.g., D’Alessio
et al. 2005; Espaillat et al. 2007; Hughes et al. 2009), one approaches the breakdown of the thin disk
approximation, M < 1, and consequently the transition to radial flow.

Taking typical inferred values for R/H at the wall of ∼5 (e.g., D’Alessio et al. 2005; Espaillat et al. 2007;
Hughes et al. 2009), we can now write the condition for the transition to radial flow, locally at the wall, as:

10 = 6πα(n − 1/2). (13)

We see that for a standard value of n ∼ 1 the above equation implies a reasonable value of α ∼ 1 at the thick
wall, significantly higher than the values of ∼0.01 and lower, which apply for the body of the thin accretion
disk beyond this radius. A substantial increase of α as R/H decreases is expected in any turbulence driven
viscosity model for accretion disks, e.g., Firmani, Hernández, & Gallagher (1996), in the context of galactic
disks.

In terms of the debate surrounding the inference of inner holes in observed accretion disks, many solutions
have been proposed in terms of disk clearing mechanisms; grain growth (e.g., Strom et al. 1989; Dullemond
& Dominik 2005), photoevaporation (e.g., Clarke, Gendrin, & Sotomayor 2001), magnetorotational instability
inside-out clearing (e.g., Chiang & Murray-Clay 2007; Dutrey et al. 2008), binarity (e.g., Ireland & Kraus
2008) and planet-disk interactions (e.g., Rice et al. 2003). None of the above is entirely satisfactory, as noted
by Hughes et al. (2009), mostly due to their incompatibility with a steady state solution. An alternative
solution under the proposed scenario, is that there is no actual disk material clearing, only a transition to
predominantly radial flow at the thick wall, and consequently a shear-free flow interior to this point. Once the
disk heating mechanism is removed, as one should expect from the analysis presented in this section, the inner
disk disappears from sight.

This transition at a thickened inner boundary is qualitatively what ADAF models propose. In those models,
substantial turbulent and thermal pressure remain within the inner flow. Still, given the present lack of a
definitive jet generation mechanism, we consider it interesting to explore the consequences of a model where
cooling drives the flow to a ∇P0/ρ ≪ ∇Φ condition. As we show in the following sections, we prove that such
a situation will quite naturally yield purely hydrodynamical jet solutions, which we find encouraging.

3. HYDRODYNAMICAL JET SOLUTIONS

We shall now model the physical situation resulting from the scenario described above as an axially sym-
metrical distribution of gas in free fall towards a central star of mass M . Taking a spherical coordinate system
with θ the angle between the positive vertical direction and the position vector ~r we have:

1

r2

∂(r2ρV )

∂r
+

1

rsin(θ)

∂(sin(θ)ρU)

∂θ
= 0, (14)

V
∂V

∂r
+

U

r

∂V

∂θ
−

U2

r
= −

1

ρ

∂P

∂r
−

GM

r2
, (15)

V
∂U

∂r
+

U

r

∂U

∂θ
+

V U

r
= −

1

rρ

∂P

∂θ
, (16)

for the continuity equation, and the radial and angular components of Euler’s equation. In the above, V , U , ρ
and P give the radial velocity, angular velocity, matter density and pressure, respectively. We have neglected
temporal derivatives, as we are interested at this point, in the characteristics of steady state solutions, although
the temporal derivatives are reinstated in the Appendix for the purpose of stability analysis. We take as a
background state a free-falling axially symmetrical distribution of gas described by V0 = −(2GM/r)1/2, U0 = 0
and all components of ∇P0/ρ0 negligible, a consistent solution to equations(15) and (16), used only in the
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description of this background. Having ignored the inclusion of the radius at which the transition to radial
flow takes place in the choice of V0 limits the validity of the analysis to radial scales along the plane of the disk
much smaller than RT . This is justified by the fact that jets appear as phenomena extremely localised towards
R → 0. We now take a density profile given by:

ρ0(r, θ) = f(r)g(θ), (17)

were f(r) is a dimensionless function of r and g(θ) describes the polar angle dependence of the infalling material,
for example, one can ask for g(θ = π/2) = ρ̄0, diminishing symmetrically towards the poles. The choice of this
last function will determine the details of the problem, and can be thought of as something of the type

g(θ) = ρ̄0e
−

“

θ−π/2
√

2θ0

”

2

(18)

with ρ̄0 a normalisation constant and θ0 a form constant describing the flattening of the disk of infalling
material. However, we shall mostly leave results indicated in terms of g(θ). The continuity equation (14) now
fixes f(r) through:

−
g(θ)

r2

d

dr

[

(2GM)1/2r3/2f(r)
]

= 0, (19)

and hence f(r)r3/2 = constant, which completes the description of the background state through:

ρ0(r, θ) =
( r̄

r

)3/2

g(θ), (20)

with r̄ a constant which determines the point at which g(θ = π/2) ⇒ ρ0 = ρ̄0.
We now study the first order departures from the assumed background state through a perturbative ap-

proach, to explore the possibility that such departures might naturally give rise to a hydrodynamical jet.
Regarding these first order perturbations, we shall also be interested in steady state solutions given by:

V (r, θ) = V0(r) + V1(r, θ), (21)

U(r, θ) = 0 + U1(r, θ), (22)

ρ(r, θ) = ρ0(r, θ) + ρ1(r, θ), (23)

where quantities with subscript (1) denote the perturbation on the background solution. Notice that V0 is,
as required by the assumed background state, a function only of the radial coordinate r. For the background
state assumed, the perturbations on it will be solved for in a fully self-consistent manner. Writing equa-
tions (14), (15) and (16) to first order in the perturbation one obtains after rearranging terms:

g(θ)
∂
(

r1/2V1

)

∂r
− B

∂
(

r3/2ρ1

)

∂r
=

−1

r1/2sin(θ)

∂ (sin(θ)g(θ)U1)

∂θ
, (24)

∂
(

V1/r1/2
)

∂r
=

Ar3/2

g(θ)

∂ρ1

∂r
, (25)

∂ (rU1)

∂r
=

Ar2

g(θ)

∂ρ1

∂θ
, (26)

In the above we have assumed an isothermal equation of state for the perturbation P1 = c2ρ1, an assumption
often used in the modeling of astrophysical jets, e.g., the T Tauri jets observed and modelled by Hartigan,
Edwards, & Pierson (2004). This idealised case serves to illustrate clearly the consequences of the physical setup
being considered, as it allows for an analytic solution. The generalisation to more realistic adiabatic, polytropic
or other equations of state can be performed numerically, and can be expected to yield qualitatively similar
results, although interesting differences in the details can be expected to emerge, which will be considered latter.
In the above three equations we have introduced the constants A = (c4/2GMr̄3)1/2 and B = (2GM/r̄3)1/2.

To make further progress we can attempt a solution through the method of separation of variables, proposing
a solution of the form: V1 = VrVθ, U1 = UrUθ, ρ1 = ρrρθ. This ansatz yields two independent systems of



©
 C

o
p

y
ri

g
h

t 
2

0
1

4
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
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three equations each, one for the radial, and one for the angular dependences of the perturbations. The radial
equations become:

d
(

Vr/r1/2
)

dr
= Crr

3/2
dρr

dr
, (27)

d(rUr)

dr
= Cθr

2ρr, (28)

d
(

r1/2Vr

)

dr
−

(

BCr

A

)

d
(

r3/2ρr

)

dr
= Cc

Ur

r1/2
, (29)

where we have used the results of the angular ones:

Vθg(θ) =

(

A

Cr

)

ρθ, (30)

dρθ

dθ
=

(

Cθ

A

)

g(θ)Uθ, (31)

d (sin(θ)g(θ)Uθ)

dθ
= −Ccsin(θ)g(θ)Vθ. (32)

In splitting the radial and angular dependences of the perturbed continuity equation, equation (24), we have
used the result of the angular equation of the perturbed radial Euler equation, equation (30). The constants
Cr, Cθ and Cc are the separation constants of the problem. Firstly we turn to the angular system, which allows
an exact solution.

We can take equation (32) and substitute into it the product g(θ)Uθ from equation (31), and the product
g(θ)Vθ from equation (30) to obtain an equation involving only ρθ:

d2ρθ

dθ2
+ cot(θ)

dρθ

dθ
+

(

CcCθ

Cr

)

ρθ = 0, (33)

having solution:

ρθ = c1Pm(cos(θ)) + c2Qm(cos(θ)). (34)

In the above equation c1 and c2 are normalisation constants, and Pm and Qm are the Legendre polynomials
of the first and second kinds, respectively. The index of these functions is given by the relation 2m = (4CT +
1)1/2 − 1, where CT = (CcCθ/Cr). As typical of separation of variables problems, we see the solution as
an eigenvalue problem, with the separation constants determining the order of the solution function. The
requirement of axial symmetry forces m to be even. Any such desired angular distribution for ρθ can now be
constructed as an infinite series of the above functions. For simplicity we analyse the case of m = 2 (CT = 6),
c1 = ρ̄θ, c2 = 0:

ρθ = ρ̄θ(3cos2(θ) − 1). (35)

This will result in slightly less material along the plane of the disk, and slightly more along the poles, for the
total density ρ = ρ0 + ρ1, with respect to the background state ρ0. At this point equations (30) and (31) can
be used to obtain:

Vθ =

(

Aρ̄θ

Cr

)(

3cos2(θ) − 1

g(θ)

)

, (36)

Uθ = −

(

6Aρ̄θ

Cθ

)(

cos(θ)sin(θ)

g(θ)

)

. (37)

We see the potential for jet formation already in the two above equations; if the background state is relatively
devoid of material towards the poles, g(θ) could be small for θ = 0, θ = π and equation (36) will lead to large
radial velocities along the poles. Further, equation (37) shows that the angular velocity will always tend to
zero both on the plane of the disk, and along the poles, where movement will necessarily be radial, although
not necessarily positive.
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The case of the radial system is more cumbersome, as the linear operator which appears is of third order.
However, in the Appendix we show through a first order stability analysis which terms can be safely ignored
in the high-frequency approximation, and for small r, the region where jets develop. Equation (58) is used to
show that the right-hand side of equation (29) can be ignored to leading order, so that the resulting equation
can be readily integrated to give:

Vr =

(

BCr

A

)

rρr. (38)

In the above we have taken the integration constant which appears as being equal to zero, from requiring
Vr → 0 for ρr → 0. Substituting the above relation for Vr into equation (27) leads to:

dρr

dr

[(

B

A

)

r − r2

]

+

(

B

A

)

ρr

2
= 0. (39)

We see from equation (59) in the Appendix that the second term on the left-hand side of the above equation
can be dismissed, to leading order, in the regime of validity there established. We then obtain:

ρr = ρ̄r

( r̄ρ

r

)1/2

, (40)

Vr =

(

BCr

A

)

ρ̄r r̄
1/2

ρ r1/2, (41)

where r̄ρ is a characteristic radius at which ρr = ρ̄r. Now from equation (28), where all the terms are of the
same order, as is shown in equation (62), we have

Ur =

(

2Cθρ̄r r̄
1/2

ρ

5

)

r3/2. (42)

In the above equation we have also taken the integration constant as zero, from requiring Ur → 0 for r → 0.
Choosing without loss of generality the two characteristic radii r̄ and r̄ρ both equal to GM/c2, we can now
write the full solution to the perturbation as:

ρ1 = ρ̄J

(

GM

c2r

)1/2
(

3cos2(θ) − 1
)

, (43)

V1 = c

(

ρ̄J

ρ̄0

)(

2c2r

GM

)1/2(

3cos2(θ) − 1

gθ

)

, (44)

U1 = −c

(

3ρ̄J

5ρ̄0

)(

2c2r

GM

)3/2(

cos(θ)sin(θ)

gθ

)

, (45)

where we have introduced ρ̄J = ρ̄θρ̄r and gθ as the angular part of g(θ), g(θ)/ρ̄0. The full solution to the
perturbation can be seen to depend only on the two parameters ρ̄0 and ρ̄J , normalisation constants for the
densities of the background state and the perturbation, with the velocities of the perturbation solution depend-
ing only, and linearly, on the ratio Q = 21/2ρ̄J/ρ̄0, which determines the validity regime of the perturbative
approach through the condition Q < 21/2.

As was already evident from equation (37), we see from equation (45) that the angular velocity will be zero
only for θ = π/2, θ = 0 and θ = π. Thus, movement along the plane of the disk will remain along the plane,
but also, along the poles movement will be exclusively radial. This last point, together with the positive sign
of the radial velocity along the poles (c.f. equation (44) for θ = 0), provides for a well collimated jet along the
poles. Hence, the background state proposed is seen to be unstable towards jet formation.

From equation (44) we see that one has only to ask for a background state where matter density does not
grow towards the poles in order to obtain ejection velocities along them, which could become very large for
flattened disks with relatively empty poles. The axial symmetry condition imposed on equation (34) guarantees
both axial symmetry and symmetry above and below the plane of the disk for the full solution. We see also that
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if one takes higher orders for m, the index of the Legendre polynomial solution to equation (33), one obtains
increasingly more critical angles at positions intermediate between 0 and π/2 at which the angular velocity
goes to zero. In fact, more complex geometries and asymmetric jets appear, as inferred observationally by e.g.,
Ferreira et al. (2006), if m is taken as an arbitrary real number. However, modelling a situation where a polar
jet dominates the ejection identifies m = 2 as the leading order.

Notice that the qualitative behaviour of the solution is guaranteed by the exactness of the angular solution;
the approximation r < 2GM/c2 used for solving the radial problem will only introduce an error in the mag-
nitudes of the velocities outside of r < 2GM/c2, but will not change the fact that velocities will be of radial
infall along the plane of the disk, θ = π/2, and of radial outflow along the poles, the jet solution for θ = 0, π.
This is reinforced by the stability analysis performed in the Appendix, where we show that the angular system
of equations does not respond to a temporal perturbation to the first order solution treated here, while the
response of the radial system is merely the introduction of periodic and bound factors multiplying the radial
solutions given in this section.

The two constants of the problem, ρ̄0 and ρ̄J , can be calculated once a choice of g(θ) is specified, from the
two conditions:

Ṁa = 2π

∫ π

0

ρ0V0sin(θ)r2dθ, (46)

Ṁj = 2π

∫ θJ

0

ρ1V1sin(θ)r2dθ, (47)

where θJ is a suitable angle defining the opening of the jet, in all likelihood very small, as will be see in the
following section. In the above equations Ṁa gives the matter accretion rate onto the central star, and Ṁj the
matter ejection rate due to the jet. Dimensionally, the two quantities above will scale as:

Ṁa = Ca
(πGM)

2

c3
ρ̄0, (48)

Ṁj = Cj
(πGM)

2

c3

ρ̄2

J

ρ̄0

, (49)

where Ca and Cj are two dimensionless constants which will depend on the choice of gθ, and which would be
expected to be of order 1.

Qualitatively, this type of model naturally furnishes a tight disk-jet connection (c.f. equation 44) e.g., as
now firmly established in microquasars and AGN jets (see e.g., Marscher et al. 2002; Chatterjee et al. 2009).
In the above systems bursts of enhanced jet activity are seen to follow temporal dips in disk luminosity output
after small characteristic delay times. In the present model, such a situation would be expected if the critical
radius for transition to radial flow in the disk made a sudden transition to higher values. Again, the drop in
disk output might not reflect the disk material disappearing (in this case being swallowed by the central black
hole, as sometimes proposed), but simply fading from view as heating mechanisms shut down, then naturally
enhancing jet activity as the effective Ṁa increases.

4. PARTICULAR SOLUTIONS

In order to present a sample of the trajectories expected in the model, we turn to the full solution to the
problem for m = 2, equations (21) and (22), but written in dimensionless form:

dR

dT
=

−1

R1/2
+ QR

1/2

(

3cos2(θ) − 1

gθ

)

, (50)

dθ

dT
= −

6

5
QR

1/2

(

sin(θ)cos(θ)

gθ

)

. (51)

The above remain in spherical coordinates, where R = rc2/GM and T = tc3/GM . Notice that the threshold
for jet development can now be stated as the condition dR/dT > 0, QR(3cos2(θ)− 1) > gθ. A choice of Q and
gθ now allows to numerically integrate trajectories. We take:

gθ = e
−

“

θ−π/2
√

2θ0

”

2

, (52)
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Fig. 1. Trajectories for the complete solution, for a range of initial vertical height positions atR = 1.4. The dimensionless
parameters of the problem were chosen as θ0 = π/2, Q = 0.3. We see the lowermost six trajectories converging onto
the central potential, but the six upper ones shooting up into a polar jet, with velocities exceeding the local escape
velocities.

as a model for the background state, where small values of θ0 will result in thin disks, while more spherical mass
distributions correspond to large values of θ0. As a first example we take Q = 0.3 (ρ̄J/ρ̄0 = 0.2) and θ0 = π/2,
a fairly thick disk, with only very small changes in density from the plane to the poles of a factor of 1.6, an
almost spherically symmetric density configuration compatible with what appears in some ADAF models. This
value of θ0 is far from representing a flattened disk, and hence one which does not force the jet solution, see
equation (44). With these parameters, and initial conditions specified in dimensionless cylindrical coordinates
as R = 1.4 and Z ranging from 1.0 to 1.4, we solve equations (50) and (51) through a finite differences scheme
to plot Figure 1.

In spite of having taken ρ̄J/ρ̄0 < 1, the validity of the perturbative approach could be broken by the
appearance of large velocities in the perturbation, breaking the validity condition V1/V0 < 1. We explicitly
keep track of this condition, and show the appearance of perturbation radial velocities violating it with a change
to thin lines in Figure 1; angular velocities for the perturbation will always remain of order Q, provided R < 1.

For this case, the two lowermost curves present trajectories which all turn downwards to converge onto the
central star. These are solutions which essentially follow the background state, infalling onto the bottom of the
potential well. As one raises the initial value of Z however, the following 4 curves begin to increasingly deviate
from the free fall trajectories and, although still ending up at R = 0, clearly show a change in behaviour.
A threshold is eventually crossed and curves of a very different type ensue, the six upper jet trajectories
shown in Figure 1. We see the pressure gradients associated with the distribution of matter in the background
solution acting to break the fall of the incoming material, turn it back, and then accelerate it vertically through
the vertical density gradients. These jet trajectories rapidly converge with height to eventually yield a well
collimated structure.

Note that the region where the perturbation condition V1 < V0 ceases to be valid appears only on the “jet”
trajectories, and only after these have turned upwards, at points where in fact, velocities already exceed the
local escape velocities. This point guarantees the appearance of a jet, even though the details of the flow in
this jet region could differ somewhat from what is shown by the thin lines in the figure. The same applies to
the R < 2 validity region of the radial equation: the jet solution appears within the validity regime of all the
approximations taken. the qualitative form of the full solution will not deviate much from what is shown in
Figure 1, due to the exact character of the angular solution.
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Fig. 2. Trajectories for the complete solution, for a range of initial vertical height positions atR = 1.4. The dimensionless
parameters of the problem were chosen as θ0 = π/9, Q = 0.01. We see the lowermost four trajectories converging onto
the central potential, but the six upper ones shooting up into a polar jet, with velocities exceeding the local escape
velocities.

Notice that the generic validity of the solution proposed does not require that all of the disk material should
lose all of its angular momentum at the critical radius RT , only that some of the disk material should lose most
of its angular momentum at that point. Any minor, residual angular momentum remaining on the disk fraction
which forms the jet will only establish a finite jet cross-sectional area through the appearance of a centrifugal
barrier, which will present only a small correction on the scenario given here. Still, the empirical presence of
spectroscopically studied accretion disks truncated interior to certain critical radii suggests the very substantial
reduction of the shears in that region, as could happen if a transition to mostly radial flow takes place.

Going back to equations (50) and (51) we see that one expects

Q2
∼

Ṁj

Ṁa

. (53)

It is reassuring that for the jets associated with T Tauri stars for example, values of Ṁj/Ṁa of between 0.1 and
0.01 on average are observationally inferred and therefore of order 0.3 < Q < 0.1 (e.g., Hartigan, Edwards, &
Gandhour 1995; Gullbring et al. 1998; Hartigan et al. 2004; Ferreira et al. 2006). These are compatible with
the value used to plot Figure 1, and hence ones which will readily yield jet solutions.

Figure 2 is analogous to Figure 1, but presents an example for a much more flattened disk having θ0 = π/9,
a significantly flattened disk where the density contrast between plane and pole at fixed radius is now of a
factor of 2.5×104, orders of magnitude larger than in the last example. We take this time Q = 10−2. Again, we
see the main features of the solution being well established in the region interior to R < 2, with a jet solution
again established within the validity regime of all approximations used.

The long range stability and coherence of these structures lies outside the scope of this work, and is in
all probability furnished by a series of mechanisms extensively explored in the literature including angular
momentum, magnetic fields and pressure containment of the surrounding medium, e.g., Begelman, Blandford,
& Rees (1984), Blandford (1990), Falle (1991), Kaiser & Alexander (1997).

In going to the more extreme jet phenomena associated with stellar black holes (e.g., Mirabel & Rodŕıguez
1999), quasars (e.g., Marscher et al. 2002) and gamma ray bursts (e.g., Mészáros 2002), it is natural to
expect the ideas presented here to apply, but amplified to a much more extreme regime by the appearance
of corresponding relativistic and general relativistic effects, to first order, the shift in the divergence in the
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potential from r = 0 in the Newtonian case to r = rs in the general relativistic one. It is therefore natural to
expect a purely hydrodynamic jet generation mechanism to apply across all classes of astrophysical objects,
specially given the qualitative scalings and similarities which appear over all astrophysical jet classes (e.g.,
Mirabel & Rodŕıguez 1999; Mendoza, Hernández, & Lee 2005), in addition to the magnetically driven processes
traditionally found in the literature.

Notice from equation (44) the intimate link between the jet velocity and the physical state of the infalling
material, c and Ṁa through ρ̄0. This implies that temporal variations in the parameters of the infalling
material will result in temporal variations in the density and velocity of the jet material, in a way described
by equations(43) and (44). The above can serve as a physical description of the key processes relevant to the
formation of internal shocks in astrophysical jets, the main ingredient behind phenomena such as HH objects
and gamma ray bursts.

Although the solution to the problem presented is rigorous, and the appearance of the resulting hydrody-
namical jets solid, the relevance of our model is clearly constrained by the validity, or otherwise, of the starting
hypothesis; most critically, the appearance of an inner region in free fall. Although plausibility arguments for
the appearance of this regime have been given, the reality of it is certainly not assured. Still, given the absence
of a fully satisfactory and general solution to the problem of jet generation, and given the clear and transparent
physics of the one shown here, we believe it is interesting to present such a simple hydrodynamical jet solution.

5. CONCLUSIONS

We show that given a radially infalling accretion, a purely hydrodynamical jet ensues.
We calculate the condition for the transition from quasi-circular to quasi-radial flow in a standard accretion

disk, and show it will always occur for power law surface density profiles of the form Σ ∝ R−n, interior to a
critical radius, provided n > 1/2.

Comparison with inferred inner holes in observed accretion disks yields results consistent with our estimates
for the above transition radius, the point where shears in the flow would be substantially reduced.

Well collimated jets readily appear, proving the existence of purely hydrodynamical mechanisms for the
generation of astrophysical jets.
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stay during which many of the ideas presented here were first developed, and financial support from project
PAPIIT IN103011 DGAPA Universidad Nacional Autónoma de México. Pablo L. Rendón and Rosa Rodŕıguez
acknowledge financial support from project PAPIIT IN110411 DGAPA Universidad Nacional Autónoma de
México. Antonio Capella acknowledges financial support from project PAPIIT IN101410 DGAPA Universidad
Nacional Autónoma de México.

APPENDIX: STABILITY ANALYSIS

We study the stability of the system by means of a standard linear perturbation approach. Furthermore, we
develop here a first order analysis that also serves to justify the approximations made in § 3 of the main body
of the paper. We follow the approach used by Papaloizou & Pringle (1984) to study the stability of this system
by means of linear perturbation of the time-dependent equations of the fluid, as opposed to the steady-state
versions stated previously as equations (24)–(26). The time-dependence of the perturbed quantities is written
as exp(iωt), where ω is a temporal frequency. We then obtain

iωρ1

r2

r̄3/2
+ g(θ)

∂
(

r1/2V1

)

∂r
− B

∂
(

r3/2ρ1

)

∂r
=

−1

r1/2sin(θ)

∂ (sin(θ)g(θ)U1)

∂θ
, (54)

for the continuity equation, and

iω

(

1

2GM

)1/2

V1 +
∂
(

V1/r1/2
)

∂r
=

Ar3/2

g(θ)

∂ρ1

∂r
, (55)

−iωr

(

1

2GM

)1/2

U1 +
∂ (rU1)

∂r
=

Ar2

g(θ)

∂ρ1

∂θ
, (56)
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for the radial and angular components of the Euler equation, respectively. We now proceed as before, sep-
arating variables in such a way that we require the angular components ρθ, Vθ and Uθ to be dimensionless,
while the radial components ρr, Vr and Ur have the same dimensions as the original functions. Encouragingly,
the equations for the angular components are exactly the same as those obtained for the steady-state analysis,
equations (30)–(32). We conclude that the angular components are not time-dependent and are thus uncondi-
tionally stable, reinforcing the overall character of the solution presented in § 3. The resulting equations for
the radial components do include an extra term due to the temporal dependence. In order to establish the
relative magnitude of the different terms in these equations, we shall rewrite them in dimensionless form, using
the following scalings for that effect:

r∗ =
r

r0

, ρ∗ =
ρr

ρ0

, V ∗ =
Vr

ωr̄
, U∗ =

Ur

ωr0

, (57)

where ρ0 is a characteristic density, r̄ = 2GM/c2, and r0 = (2GM/ω2)1/3. We now consider the high-frequency
limit, as Papaloizou & Pringle (1984) have also done. Notice then that ǫ = r0/r̄ = c2/(2GMω)2/3 ≪ 1.
equation (54) may now be rewritten as

∂(r∗1/2V ∗)

∂r∗
− β

∂(r∗3/2ρ∗)

∂r∗
+ iβr∗2ρ∗ = ǫCc

U∗

r∗1/2
, (58)

where β = Crρ0(2GM/ω5)1/3. If we now require Cc ∼ 1 and Cr ∼ ρ−1

0
(ω5/2GM)1/3, we observe that all the

terms on the left-hand side of the equation are O(1), whereas the term on the right-hand side is O(ǫ). Thus,
at leading order the term on the right-hand side vanishes.

Using this same scaling, equation (55) is now

∂(r∗−1/2V ∗)

∂r∗
+ iV ∗ = ǫβr∗3/2 ∂ρ∗

∂r∗
, (59)

where we observe that the term on the right-hand side is O(ǫ). Again, at O(1), the right-hand side of the
equation vanishes, and we may solve the equation to obtain

V ∗ = α1r
∗1/2 exp

(

−i
2

3
r∗3/2

)

, (60)

where α1 is a constant. Substituting the real part of solution (60) in (58) we now solve for ρ∗,

ρ∗ =
α1

2βr∗1/2

[

exp

(

i
2

3
r∗3/2

)

+
1

2
exp

(

−i
2

3
r∗3/2

)]

+ α2r
∗−3/2 exp

(

−i
2

3
r∗3/2

)

+
iα1r

∗

5β
exp

(

i
2

3
r∗3/2

)

+
i4/3α1

4 · 61/3 βr∗3/2
exp

(

i
2

3
r∗3/2

)

Γ

(

2

3
, i

4

3
r∗3/2

)

, (61)

where α2 is a constant, and Γ is the incomplete gamma function. The real parts of these solutions are the
dimensionless forms of the solutions we obtained for Vr and ρr in § 3 of this paper, modulated by an oscillating
and bounded function.

Finally, in dimensionless form, equation (56) is

∂(r∗U∗)

∂r∗
− ir∗3/2U∗ = β′r∗2ρ∗. (62)

where β′ = Cθρ0(2GM/ω5)1/3. If we now require Cθ ∼ ρ−1

0
(ω5/2GM)1/3, all three terms are O(1). Notice that

the orders of magnitude chosen here for the separation constants give as a result CT ∼ 1, so that the choice of
value given to CT in § 3 is consistent with our analysis. Taking the real part of the solution given in (61) and
substituting in the above equation, we may solve to obtain

U∗ = exp

(

i
2

3
r∗3/2

)[

α3

r∗
+

1

10

α1β
′

β
r∗3/2

]

+
α1β

′

β

i1/3

8 · 61/3r∗
exp

(

i
2

3
r∗3/2

)

Γ

(

2

3
, i

4

3
r∗3/2

)

+
α1β

′

β

i

8
exp

(

−i
2

3
r∗3/2

)

, (63)
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where α3 is a constant. Considering the real part of the above solution, we again find that we have the
dimensionless form of the solution obtained for Ur earlier in this paper, modulated by an oscillating, bounded
function.

Thus, the effect of linear perturbations on the time-dependent system is to provoke bounded oscillations
around the steady-state solutions for density and both angular and radial velocities. We conclude that the
system is neutrally stable.

Our choice of scalings has permitted us to write the equations of the fluid in dimensionless form in terms
of only three dimensionless parameters, ǫ, β and β′. In this form, as is expected, it becomes rather more
straightforward to establish the leading-order terms in the equations. The hypothesis of small radial distance
translates into the smallness of ǫ, and β and β′, formally very similar, are related to the separation constants.
It should be pointed out that the dimensional constants Cr and Cθ are independently required to be of the
same order, and by simply letting the dimensionless constant Cc be O(1), the sole restriction placed upon these
three constants in § 3, that CT also be O(1), is fulfilled. We can then consistently fix the order of the Legendre
polynomial solutions presented in § 3 as a function of the particular values given to the separation constants,
a behaviour typically associated with the method of separation of variables.
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Circuito Exterior, Ciudad Universitaria, C.P. 04510, México, D.F., Mexico (capella@im.unam.mx).
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