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RESUMEN

Estudiamos las soluciones de una versión modificada de la ecuación de Lane-
Emden isotérmica, la cual incorpora el efecto de la presión de radiación (dirigida
hacia afuera) asociada a las fotoionizaciones. Estas soluciones son relevantes para
regiones HII alrededor de un cúmulo con ≈ 500 estrellas O, que puede fotoionizar
el gas hasta distancias de ≈ 200

√

10 cm−3/n0 pc (siendo n0 la densidad central del
gas), donde son importantes los efectos tanto de la autogravedad como de la presión
de radiación. Encontramos que las soluciones tienen una transición de un régimen
“dominado por gravedad” (en el que las soluciones convergen a radios grandes a la
solución de la esfera isotérmica autogravitante no singular) a uno “dominado por
presión de radiación” (en el que la densidad diverge a un radio finito) para regiones
HII con densidades centrales mayores que ncrit = 100 cm−3. Argumentamos que las
soluciones con densidades centrales altas, dominadas por presión de radiación, no
ocurrirán en muchas de las situaciones astrof́ısicamente relevantes, dada la ausencia
de un posible medio confinador de presión suficientemente alta.

ABSTRACT

We study the solutions of a modified version of the isothermal Lane-Emden
equation, which incorporates the effect of the (owtwards directed) radiation pres-
sure resulting from photoionizations. These solutions are relevant for HII re-
gions around a cluster with over ≈500 O stars, which can photoionize gas out
to ≈200

√

10 cm−3/n0 pc (where n0 is the central gas density), where the effects
of the self-gravity and the radiation pressure become important. We find that the
solutions have a transition from a “gravity dominated” regime (in which the so-
lutions converge at large radii to the non-singular, isothermal sphere solution) to
a “radiation pressure dominated” regime (in which the density diverges at a finite
radius) for central HII region densities above ncrit = 100 cm−3. We argue that the
high central density, radiation pressure dominated solutions will not occur in most
astrophysically relevant situations, because of the absence of a possible confining
environment with a high enough pressure.

Key Words: hydrodynamics — ISM: evolution — ISM: kinematics and dynamics
— ISM: HII regions — stars: formation

1. INTRODUCTION

This paper presents solutions to a modified
isothermal, Lane-Emden equation with an extra
term that models the radiation pressure associated
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Autónoma de México, Mexico.
3Department of Astronomy and Oskar Klein Centre, Stock-
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with photoionization processes in the gas. This equa-
tion models an extended HII region (ionized by one
or more centrally concentrated stellar sources), in
which both the self-gravity of the photoionized gas
and the radiation pressure are important.

Some previous work on the relevance of radia-
tion pressure in photoionized region has been done.
(Haehnelt 1995) suggested that the radiation pres-
sure associated with the capture of photons through
photoionization processes might have an important

25



©
 C

o
p

y
ri

g
h

t 
2

0
1

5
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

26 RAGA ET AL.

effect on the formation of concentrations of gas dur-
ing galaxy formation. This scenario was explored
numerically by (Wise et al. 2012), who presented
numerical simulations with HII regions expanding
under the effect of the radiation pressure from the
ionizing sources.

(Krumholz & Matzner 2009) studied an analytic
model of an expanding neutral shell surrounding
an HII region, pushed out by the gas pressure of
the photoionized gas and by the radiation pressure.
These authors also discuss the conditions necessary
for the expansion to stall. Our present work de-
scribes a later evolutionary state, in which such an
expanding HII region has reached a hydrostatic con-
figuration.

The paper is organized as follows. In § 2 we
develop the model, discussing the form of the ra-
diation pressure force term, the resulting modified
Lane-Emden equation, and analytic and numerical
solutions of this equation. In § 3 we discuss the ap-
plication of the results to HII regions. Finally, the
results are summarized in § 4.

2. THE HYDROSTATIC
GRAVITY/GAS+RADIATION PRESSURE

CONFIGURATION

2.1. The radiation pressure force

In order to obtain a simplified model, we only
consider the photoionization of H. The photoioniza-
tion equilibrium condition within an HII region is:

nHIφH = nenHIIαH(T ) , (1)

where nHI is the neutral H number density, nHII and
ne are the HII and electron number densities (respec-
tively), αH(T ) is the recombination coefficient and

φH =

∫ ∞

ν0

4πJν

hν
σν dν (2)

is the H photoionization rate, in which Jν is the an-
gularly averaged intensity of the ionizing radiative
field, ν0 is the Lyman limit frequency, h is Planck’s
constant and σν is the photoionization cross section
of H.

The radiation pressure force per unit volume re-
sulting from the photoionization processes is:

fH = nHI

∫ ∞

ν0

4πJν

hν

hν

c
σν dν , (3)

where c is the speed of light.
We now use the standard ISM “grey” approxi-

mation, in which we assume that all of the ionizing

photons are close to the Lyman limit, and we take
out of the integrals (in equations 2 and 3) all of the
factors which are multiplying Jν/(hν). In this ap-
proximation, we then have that:

fH = nHIφH
hν0

c
. (4)

Finally, we consider that within the HII region
we have nHII ≈ ne ≈ nH (where nH = nHI + nHII

is the total H density), and then combine equations
(1) and (4) to obtain:

fH = n2
HαH

hν0

c
. (5)

This equation is the condition that every photoion-
ization event (balanced by a corresponding recombi-
nation) gives an hν0/c outwards directed mometum
to the gas. Clearly, there are other processes not
considered here which could also contribute to the
radiation pressure. Examples of this could be the
presence of dust within the HII region (absorbing
stellar photons at all wavelengths), or the multiple
scattering of Lyα photons.

2.2. The model equation

We now consider a uniform temperature, spher-
ical HII region in which the gas is subjected to the
gravitational force of the centrally located ionizing
photon source (or sources), the gas pressure force,
and the radiation pressure force derived in § 2.1. The
equation describing the resulting hydrostatic config-
uration is:

dρ

dR
= −

Gρ

a2R2

[

4π

∫ R

0

R′2ρ(R′) dR′ + M∗

]

+
n2

HαHhν0

a2c
, (6)

where M∗ is the mass of the central source
(or sources), R is the spherical radius, ρ the
mass density, G the gravitational constant and a
(≈10 km s−1) is the isothermal sound speed of the
ionized gas. The last term on the right of equation
(6) is the radiation pressure force derived in § 2.1
(equation 5).

If we multiply equation (6) by R2/ρ and take the
derivative with respect to R we obtain:

d

dR

(

R2

ρ

dρ

dR

)

= −
4πG

a2
ρR2 +

αHhν0

µ2m2
Ha2c

d

dR

(

ρR2
)

,

(7)
where mH is the mass of the hydrogen atom and
µ is the mean molecular mass of the atoms+ions.
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HYDROSTATIC HII REGIONS 27

Note that in taking the derivative of equation (6)
after multiplying by R2/ρ, the term with the central
mass M∗ automatically disappears. In the resulting
second order differential equation (see equation 7)
the effect of a central mass has to be introduced in
the form of a boundary condition.

This absence of an explicit term corresponding to
a central mass is of course also present in the stan-
dard, isothermal Lane-Emden equation (without a
radiation pressure term). In this equation, if one in-
troduces the effect of a central mass (in the form of a
boundary condition for the second order differential
equation), one can show that solutions exist only for
zero or negative (i.e., repulsive) values of M∗ (see,
e.g., the book of Chandrasekhar 1967). As will be
shown in § 2.4, the modified isothermal Lane-Emden
equation with radiation pressure (equation 7) does
allow solutions with M∗ > 0.

This is the traditional, isothermal Lane-Emden
equation (hereafter, the L-E equation) with an extra
term representing the radiation pressure force. As is
usually done for the Lane-Emden equation, we write
equation (7) in dimensionless form by defining

r =
R

R0

; η =
ρ

ρ0

, (8)

where the core radius R0 and the central density ρ0

obey the relation

R0 =

√

3a2

2πGρ0

. (9)

In terms of these dimensionless variables, equation
(7) takes the form:

d

dr

(

r2

η

dη

dr

)

= −6ηr2 + λ
d

dr

(

ηr2
)

, (10)

where λ is a dimensionless parameter defined as:

λ =

√

3ρ0

2πG

αHhν0

µ2m2
Hac

. (11)

2.3. The radiation pressure dominated case

Neglecting the gravitational term in equation (6),
one obtains the trivial integral:

ρrad(R) =
ρ0

1 − R/Rrad
, (12)

with

Rrad ≡
(µmHa)2c

αHhν0ρ0

, (13)

and where ρ0 is the central density. This solution has
a flat inner region, and a divergence in the density
at R → Rrad.

In the dimensionless variables of the previous sec-
tion, equation (12) takes the form

ηrad =
1

1 − λr
, (14)

with

λ =
R0

Rrad
, (15)

which coincides with the definition of λ given in
equation (11). The dimensionless density stratifica-
tion given by equation (14) diverges at

rrad = 1/λ . (16)

2.4. The singular solution

It is clear that equation (7) shares the singular
solution

ρs(R) =
a2

2πGR2
, (17)

of the (radiation pressure-less) isothermal L-E equa-
tion, as the second term on the right hand side of
equation (7) is equal to zero for this radial density
dependence.

However, if we insert solution (17) into the
integro-differential equation (6), we see that this sin-
gular solution requires the presence of a central mass

M∗,s =
αHhν0a

2

2πG2µ2m2
Hc

= 7.17 × 105 M⊙

( a

10 km s−1

)2

, (18)

where we have set αH = 2.60 × 10−13cm3 s−1 (the
H case B recombination coeficient at 104K) and
µ = 1.3. This assumption for the value of µ amounts
to assuming that the gas is 90% H and 10% He, and
treating the HeI to HeII photoionization and recom-
bination as if it had the same properties as the HI/II
ionization.

M∗,s (equation 18) is the central mass that is nec-
essary to provide a gravitational force that exactly
balances the radiation pressure term (last term on
the right of equation 7) at all points when ρ = ρs.
Therefore, the singular solution of equation (7) is
only valid for a precise choice of central mass of the
modeled HII region.

Furthermore, the singular solution of course has
an infinite number of recombinations for volumes
with R → 0, so that a source with an ionizing photon
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28 RAGA ET AL.

rate S∗ → ∞ would be necessary to photoionize this
solution. This problem could in principle be avoided
by requiring the existence of an empty inner sphere
of radius Rw (which could correspond to a region oc-
cupied by a hot stellar wind bubble), and a ρ ∝ R−2

solution for R > Rw. However, the requirement of
a precise central mass (necessary for balancing the
radiation pressure force) will still remain, so that
the singular solution described above remains only
as a mathematical curiosity. Of course, other non-
singular solutions (corresponding to different values
of M∗) of equation (7) probably exist, and deserve
further study.

2.5. The non-singular solution: second order in r

Since more than a century of research has not
lead to the discovery of an analytic non-singular so-
lution to the isothermal, L-E equation, we can safely
assume that we will not find such a solution for its
extended version (equation 10, including the radia-
tion pressure term). Therefore, we propose a Taylor
series expansion to second order in dimensionless ra-
dius r (of the form η = 1 + a1r + a2r

2), insert this
expansion into the right and left hand terms of equa-
tion (10) and equate the resulting coefficients multi-
plying r and r2. In this standard way, we obtain the
second order solution

η2(r) = 1 + λr + (λ2 − 1)r2 . (19)

For λ = 0, this solution correctly coincides with the
η = 1 − r2 solution of the isothermal L-E equation,
and deviates substantially for λ ≈ 1 and above.

Inserting the second order solution (equation 19)
into equation (6), it is clear that it corresponds to the
M∗ = 0 case. Even though the L-E equation does not
have solutions for central masses M∗ > 0 (though it
does have solutions with unphysical M∗ < 0 values),
we see that equation (10) has at least one solution
with M∗ = M∗,s > 0 (i.e., the singular solution de-
scribed in § 2.4, see equations 17-18), and might also
have (singular) solutions for central masses in the
0 < M∗ < M∗,s range.

2.6. Numerical solution

It is trivial to integrate equation (10) numeri-
cally. We first choose a value for the dimensionless
parameter λ, and use the second order solution (19)
to compute ηi = η(ri), where we take ri = 10−5 (or
any r ≪ 1 value such that the second order solution
is accurate). These (ri, ηi) values, together with the
value of the

Ii =

∫ ri

0

r2η2(r)dr (20)

Fig. 1. Dimensionless density η = ρ/ρ0 (where ρ is the
density and ρ0 its central value) as a function of dimen-
sionless radius r = R/R0 (where R0 is the core radius)
obtained from numerical integrations of equation (10)
with different values of the dimensionless parameter λ
(see equation 11). The lower curve in the r < 1 region
corresponds to λ = 0 (i.e., the nonsingular solution of the
L-E equation), and going upwards in density we have the
λ = 0.1, 1.0 and 2.0 solutions. The λ = 2.0 solution di-
verges at a finite radius.

integral are then used to initialize the numerical in-
tegration of equation (10). We have checked that
for high values of λ, the numerical integration fol-
lows the “gravity less” solution (equation 14) and
for λ ≪ 1 it follows the non-singular solution of the
isothermal L-E equation (see, e.g., Raga et al. 2013).

Figure 1 shows the η(r) solutions obtained for
different values of the dimensionless parameter λ (see
equation 11). It is clear that for λ = 0.1 we obtain a
solution similar to the λ = 0, radiation pressure-less
solution. For λ = 1, we obtain an η(r) solution with
a density hump at r ≈ 0.6. For λ = 2, we obtain a
solution in which the density diverges at r ≈ 0.5, in a
qualitatively similar way to the gravity-less solution
(see equation 14).

Therefore, we find that the numerical solutions
fall into two categories:

• λ < λc → solutions that for r → ∞ approach
the λ = 0 solution (i.e., the non-singular solu-
tion of the isothermal L-E equation),

• λ > λc → solutions in which the density di-
verges at a finite value rmax of the dimensionless
radius.
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HYDROSTATIC HII REGIONS 29

Fig. 2. Radius of density divergence rmax (solid line) as a
function of the dimensionless parameter λ obtained from
the numerical integrations of equation (10). Also shown
is the radius of density divergence rrad (dashed line) de-
duced from the “no self-gravity” model (see equation 16).

In Figure 2 we show the maximum (dimension-
less) radius rmax as a function of λ, as obtained from
numerical integrations of equation (10). We see that
rmax → ∞ for λ → λ+

c with λc = 1.60.
In this figure we also show the radius of density

divergence rrad deduced from the “radiation pressure
only” model (see equation 16). It is clear that the
values of rmax obtained from the full model closely
approach the values of rrad for λ > 2.

Finally, with the numerical solutions of equation
(10) we have computed the dimensionless mass

m(r) = 3

∫ r

0

r′2η(r′)dr′ , (21)

(in units of M0 = 4πR3
0ρ0/3) and recombination rate

qrec(r) = 3

∫ r

0

r′2η2(r′)dr′ , (22)

[in units of Q0 = 4παhR3
0ρ

2
0/(3µ2m2

H)] within a ra-
dius r.

From Figure 3, we see that the λ < λc solutions
share the asymptotic m(r) ∝ r large r dependen-
dence of the λ = 0 solution (i.e., the solution of the
L-E equation). The λ > λc solutions have masses
that strongly diverge as r → rmax.

From Figure 4, we see that the recombination
rates qrec(r) of the λ < λc solutions reach an asymp-
totic value q∞(λ) for r → ∞. On the other hand,
the λ > λc solutions have qrec(r) that diverge for
r → rmax.

Fig. 3. Dimensionless mass m as a function of dimension-
less radius r (see equation 21) for solutions with λ = 0
(bottom curve), 0.1, 1.0 and 2.0 (top curve).

Finally, in Figure 5 we show the value of total
recombinations q∞ within the stratified structures as
a function of λ. The total number of recombinations
diverges for λ → λ−

c (with λc = 1.60).

3. APPLICATION TO HII REGIONS

In § 2.6, we have shown that the hydrostatic
structure resutling from the balance between the self-
gravity, the gas pressure and the radiation pressure
in a photoionized gas has two regimes, depending
on whether the dimensionless parameter λ is larger
or smaller than the critical λc = 1.60 value. The
solutions with λ < λc have densities (and therefore
pressures) which asymptotically go to zero for large
radii. These hydrostatic solutions could either be
fully photoionized (since they have a finite rate of re-
combinations, see Figure 5), or could have a pressure
equilibrium outer boundary with neutral material.

Interestingly, if we use the case B recombination
coefficient of H at 104K (αH = 2.60 × 10−13cm3 s−1)
and set µ = 1.3 (i.e., assuming abundances by num-
ber of 90% for H and 10% for He, and assuming that
the He I/II and ionizations follow H I/II), the di-
mensionless parameter λ (see equation 11) has the
value

λ = 0.50

(

10 km s−1

a

)

( n0

10 cm−3

)1/2

, (23)

where n0 = ρ0/(µmH) is the central number density
of the self-gravitating HII region. It is a somewhat
curious coincidence that we obtain λ ≈ λc = 1.60
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30 RAGA ET AL.

Fig. 4. Dimensionless recombination rate qrec as a func-
tion of dimensionless radius r (see equation 22) for solu-
tions with λ = 0 (bottom curve), 0.1, 1.0 and 2.0 (top
curve). The solutions with λ < λc = 1.60 asymptotically
tend to a finite recombination rate q∞(λ) for r → ∞.

(the critical value of λ for the transition between the
two regimes of the solutions, see equation (23) for a
n0 ≈ 100 cm−3 central density.

The dimensional recombination rate

Qrec =
4πR3

0

3
n2

0αHqrec(R/R0) , (24)

with qrec(r) given by equation (22) has to be bal-
anced by the total rate S∗ of ionizing photons pro-
duced by the central, stellar sources. As we see from
Figure 5, q∞ ≈ 1 for λ < 1/2. For this range of
λ, we can then set qrec ≈ q∞ ≈ 1 in equation (24)
and use the resulting value of Qrec to estimate the
photon rate

S∗,0 = 2.06 × 1052s−1
( a

10 km s−1

)3 ( n0

10 cm−3

)1/2

(25)
necessary for photoionizing the HII region out to
R → ∞. In other words, in order to maintain the
photoionization of a self-gravitating HII region with
a central density of 10 cm−3, it is necessary to have
the combined photoionization rate of ≈ 650 O5 stars.

The value of the core radius of the self-gravitating
structure is obtained from equation (9):

R0 = 186 pc

(

10 km s−1

a

)(

10 cm−3

n0

)1/2

, (26)

Fig. 5. Total dimensionless recombination rates q∞ (of
the density stratifications out to r → ∞) as a function
of the dimensionless parameter λ (see equation 22 and
Figure 4).

and the mass of the HII region within the core radius
R0 is

M0 ≈
4πR3

0

3
n0µmH =

8.61 × 106 M⊙

( a

10 km s−1

)3
(

10 cm−3

n0

)1/2

. (27)

The full mass of the HII region could be substantially
larger, depending on the value of the maximum ra-
dius of the self-gravitating structure (see Figure 3).

The above considerations assume that we have
λ < λc = 1.60 (implying n0 < 100 cm−3, see equa-
tion 23). The solutions with λ > λc are less well
behaved, since they have a density (and therefore a
pressure) which diverges at a finite radius Rmax (see
Figure 2). If the photoionization rate of the cen-
tral source(s) is large enough to balance the recom-
binations in the steeply increasing density vs. radius
structure out to a Strömgren radius RS ≈ Rmax (see
the λ = 2 solution of Figure 1), it will be neces-
sary to have a very high pressure external, confining
medium.

In the general situation in which such a high
pressure confining medium does not exist, the
λ > λc = 1.60 regime will not be hydrostatic, and
the HII region might adopt an outward flowing, ra-
diation pressure driven wind solution.

4. CONCLUSIONS

We have studied the hydrostatic configuration of
an HII region, resulting from the balance between
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the pressure force, the self-gravity of the gas and the
radiation pressure due to the photoionization pro-
cesses. In this model, the gravitational force due
to the central stars has been neglected, as this is a
necessary requirement for obtaining solutions of the
hydrostatic equation extending to the origin.

Clearly, the model is only relevant for HII re-
gions ionized by a cluster with many O stars. We
find that in order to photoionize a self-gravitating
HII region out to infinity, it is necessary to have
≈ 650 (n0/10 cm−3)1/2 O5 stars (where n0 is the cen-
tral density of the HII region, see equation 25). A
comparable number of O stars is necessary to ionize
the HII region only out to its core radius (where the
effects of the self-gravity become important).

If one assumes a Salpeter initial mass function,
a cluster with ≈ 600 O stars has a total mass of
≈6 × 104M⊙ (see Leitherer & Heckman 1995). This
mass is indeed much smaller than the total mass of
the HII region (of ≈ 107M⊙ within the core radius,
see equation 27), so that it is indeed a reasonable as-
sumption to neglect the gravity of the central stars.

We find a dimensionless parameter λ basically de-
pending only on the central density n0 of the cloud
(see equation 23), which measures the relative im-
portance of the radiation pressure associated with
the photoionization processes. A sharp transition to
a “radiation pressure dominated” regime is obtained
for densities in excess of ncrit = 100 cm−3 (equation
23 with λ = λc = 1.60), in which the gas pressure of
the HII region monotonically grows as a function of
radius.

We argue that these λ > λc solutions are un-
likely to occur in astrophysical objects because of
the high outside pressure that would be needed
to confine them. Therefore, this regime of high
radiation pressure will probably result in an out-
ward flowing, wind-type solution. As this wind
lacks an interior resupply (because the stellar winds
from the sources contribute a negligible amount of
mass), the central density will drop. Once a low
enough central density is attained, the configura-
tion will reach the λ < λc regime, and a hydro-
static configuration with low outer pressure could
be attained. Therefore, we might expect to observe
a large number of giant HII regions with densities
in the n0 ≈ 10 → 100 cm−3 range, which have pre-
viously shedded mass in order to settle into a com-
fortable hydrostatic, self-gravitating regime with λ
somewhat below λc = 1.60.

We should note that the formation of the ex-
tended, self-gravitating HII regions described in
this paper will take a rather long time. Using

a value R0 ≈ (10 cm−3/n0)
1/2 × 200 pc for the

core radius (equation 26) and an expansion veloc-
ity a = 10 km s−1, one obtains an expansion time
texp ≈ (10 cm−3/n0)

1/2 × 2 × 107 yr. Clearly, in
order to reach the hydrostatic situation it will be
necessary to have a resupply of central O stars as a
result of ongoing star formation.

The earlier, expanding regime of the HII regions
can in principle be modeled with analytic, “expand-
ing shell” models such as the one of (Matzner 2002)
and (Krumholz & Matzner 2009), who included a
radiation pressure term). However, it is not clear
whether or not it will be possible to derive an an-
alytic (or semi-analytic) model that will converge
at long times to the hydrostatic solution (as has
been done for the non-gravitating case by Raga et
al. 2012a, b).

We should note that in the present models the
presence of stellar winds from the ionizing photon
stellar sources has not been considered. These winds
could have important effects in many cases. Also,
the effect of the gravity of the stellar sources (or of
an associated dark matter distribution) has not been
included. Finally, the effect of the radiation pressure
on dust grains that could be present within the neb-
ula has not been considered (Draine 2011 studies this
effect in nebulae not subject to gravitational forces).
Clearly, a substantial amount of work remains to be
done.
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