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RESUMEN

Presentamos un modelo de balance global de “esfera de Strömgren” para el
caso de regiones HII polvorientas. De este modelo, obtenemos prescripciones para
el radio exterior de las nebulosas en función del radio de Strömgren RS (de la
nebulosa correspondiente libre de polvo) y del espesor óptico del polvo. Tambien
obtenemos una nueva solución anaĺıtica aproximada para el problema de transporte
radiativo, dando formas anaĺıticas para la fracción de ionización en función del
radio. Estas soluciones se comparan con los resultados obtenidos del análisis de
esfera de Strömgren. Nuestros resultados pueden ser usados para evaluar bajo
qué condiciones la presencia de polvo puede tener un efecto importante sobre las
estructuras de regiones HII.

ABSTRACT

We present a global balance “Strömgren sphere” approach for the case of
dusty HII regions. From this model, we obtain prescriptions for the outer radius
of the nebulae as a function of the Strömgren radius RS (of the corresponding
dust-free nebula) and the dust optical depth. We also obtain a new, approximate
analytic solution for the radiative transfer problem, giving analytic forms for the
ionization fraction as a function of radius. These solutions are compared with the
results obtained from the Strömgren sphere approach. Our results can be used to
evaluate under what conditions the presence of dust can have an important effect
on the structures of HII regions.

Key Words: ISM: HII regions

1. INTRODUCTION

Strömgren (1939) studied the problem of the
“grey” transfer of ionizing photons in a homoge-
neous, photoionized region, and found an approxi-
mate solution with ionization fraction x = nHII/nH

(where nHII and nH are the ionized and total H
number densities, respectively) as a function of the
spherical radius R which goes to zero at the so-called
“Strömgren radius” RS . This radius can also be ob-
tained from a simple, “Strömgren sphere” analysis,
in which one considers the balance between the ion-
izing photon rate S∗ produced by the star and the
total recombination rate inside a fully ionized sphere.
Petrosian et al. (1972) used the same approximation
as Strömgren (1939) in order to analytically solve the
transfer of ionizing photons within a dusty, homoge-

1Instituto de Ciencias Nucleares, UNAM, México.
2Astronomisches Rechen-Institut, Zentrum für Astronomie

der Universität Heidelberg, Germany.

neous HII region, and found the resulting x vs. R
relation. Also, the paper of Franco et al. (1990)
has an appendix with an interesting discussion of
the effect of dust on the outer radii of HII regions.
Models of photodissociation regions (e.g. Hollenbach
& Tielens 1999; Krumholz et al. 2008; Sternberg et
al. 2014) of course also share many common features
with dusty HII region models.

In the present paper, we derive the “Strömgren
sphere” analysis for a dusty HII region. This analysis
results in simple prescriptions for the outer radius of
the nebula as a function of the dust-free Strömgren
radius (RS) and the dust optical depth λd associated
with a distance RS (see § 2).

We then solve the radiative transfer problem to
find the ionizaton stratification x(R) with the ap-
proximation of Raga (2015), who studied the case of
a dust-free nebula obtaining an improvement on the
simpler approximation of Strömgren (1939). We find
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190 RAGA & LORA

that under this improved approximation, the prob-
lem of a dusty nebula also has an analytic solution
(§ 3), which compares well with exact (i.e., numeri-
cal) solutions of the radiative transfer equation.

The astrophysically relevant ranges of the dimen-
sionless parameters of the problem are discussed in
§ 4, and examples are given of the values of these
parameters for different types of HII regions. A dis-
cussion of the limits of applicability of homogeneous
HII region models is given in § 5. Finally, the results
are summarized in § 6.

2. THE “DUSTY STRÖMGREN SPHERE”
APPROACH

In this section, we extend the “global photoion-
ization balance” condition (which gives in a direct
way the well-known “Strömgren radius” of an HII re-
gion) to the case of a homogeneous nebula with dust.
The dust (assumed to be homogeneously distributed
in the volume of the ionized nebula) contributes to
the absorption of ionizing photons.

The requirement of a global balance between the
rate of stellar ionizing photons S∗ and the total re-
combination rate within the ionized region (together
with the assumption of homogeneous density and
temperature distributions and a H ionization frac-
tion x ≈ 1 within the nebula) gives the Strömgren
radius:

RS =

(

3S∗

4πn2
HαH

)1/3

, (1)

where nH is the H number density and
αH = 2.6× 10−13cm−3s−1 is the “case B” H
recombination coefficient at ≈ 104 K (see, e.g., the
book of Dyson & Williams 1980).

In order to include the effect of absorption of ion-
izing photons by dust particles (present within the
ionized region), we write the balance between the
ionizing photon rate S∗ and the absorptions within
the nebula:

S∗=

∫ R0

0

[
∫ ∞

ν0

4πJν
hν

(nHIσH + nHσd) dν

]

4πR2 dR ,

(2)
where R0 is the outer radius of the photoionized re-
gion, Jν is the angular average of the specific in-
tensity, ν is the frequency (ν0 being the Lyman limit
frequency), h is Planck’s constant, nHI is the neutral
H number density, σH is the H photionization cross
section, and σd is the dust absorption cross section
per H atom.

We now consider the standard “grey ISM” ap-
proximation, namely that σH and σd are indepen-
dent of ν, assume that the ionizing radiation is dom-
inated by the direct stellar photons (the diffuse ion-
izing photons being included in an approximate way
by considering the “case B” value of αH) to obtain:

∫ ∞

ν0

4πJν
hν

dν =
S∗e

−τ

4πR2
, (3)

where

τ = τH + τd =

∫ R

0

nHIσHdR′ +

∫ R

0

nHσddR
′ , (4)

where τH is the photoionization and τd the dust ab-
sorption optical depths.

Substituting equation (3) and the photoioniza-
tion balance condition

nenHIIαH = nHIφH , (5)

with

φH =

∫ ∞

ν0

4πJν
hν

σHdν, (6)

into equation (2) we finally obtain:

S∗ =
4πR3

0n
2
HαH

3
+ nHσdS∗

∫ R0

0

e−τdτ , (7)

where we have considered that the electron den-
sity ne and the ionized H density nHII have values
ne ≈ nHII ≈ nH within the ionized region (i.e., for
R ≤ R0).

Clearly, if we set σd = 0 (i.e., no dust absorption),
equation (7) is the standard Strömgren sphere rela-
tion, giving R0 = RS (with RS given by equation 1).
Using the Strömgren radius to adimensionalize equa-
tion (7) we then obtain:

1 =

(

R0

RS

)3

+
λd

RS

∫ R0

0

e−τdR . (8)

where
λd ≡ nHσdRS (9)

is the dust optical depth corresponding to the
Strömgren radius.

In order to proceed, we now note that in the in-
ner part of the nebula H is mostly ionized, so that
nHI ≪ nH (this is of course not true close to the
outer radius of the nebula, where H has the ionized
→ neutral transition), so that the first term in the
right hand side of equation (4) can be neglected. We
then have

τ ≈ τd = nHσdR , (10)
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IONIZATION STRUCTURE OF A DUSTY STRÖMGREN SPHERE 191

which can be substituted in equation (8) to obtain:

(

R0

RS

)3

= e−λd(R0/RS) . (11)

This is a trascendental equation for (R0/RS) as a
function of λd (see equation 9) that gives R0 = RS

for λd = 0 (i.e., for no dust absorption), and can be
inverted numerically for λd > 0. The result of this
inversion is shown in Figure 1.

Interestingly, in the Appendix of the paper by
Franco et al. (1990, which discusses the effect of dust
on the radii of photoionized regions), equation (11)
is derived through the simple argument that the dust
will attenuate the ionizing photon rate S∗ by a fac-
tor of ≈ e−τd . This attenuated ionizing photon rate
is then inserted in equation (1) to obtain the outer
radius of the ionized nebula. The derivation above
shows that the relation deduced by Franco et al.
(1990) is indeed obtained from a proper “Strömgren
sphere” analysis provided that the assumption of
equation (10) is made.

An explicit, approximate form for R0/RS can be
obtained by taking the cube root of equation (11)
and then expanding the exponential to second order
in λdR0/RS . The resulting quadratic equation can
then be inverted to obtain

R0

RS
≈ λd/3 + 1−

√

1 + 2λd/3− (λd/3)2

(λd/3)2
. (12)

This approximate equation follows well a numerical
inversion of equation (11) for λd ≤ 3, but has large
deviations from the true solution for larger values of
λd.

It is also possible to drop the assumption of equa-
tion (10) by noting that the number of absorptions
due to photoionization out to a radius R is:

S∗(1− e−τH ) =
4π

3
R3n2

HαH , (13)

where τH is the photoionization optical depth (see
equation 4), from which we obtain

e−τH = 1−
(

R

RS

)3

. (14)

Using this value for τH (instead of setting τH = 0, as
we have done for deriving equation 11), equation (8)
then takes the form

1 =

(

R0

RS

)3

+
λd

RS

∫ R0

0

[

1−
(

R

RS

)3
]

e−nHσdRdR .

(15)

Doing the integral, one obtains

λ3
d

(

1− r30
)

=

e−λdr0
[

λ3
d(r

3
0 − 1) + 3λ2

dr
2
0 + 6λdr0 + 6

]

+ λ3
d − 6 ,

(16)
where r0 = R0/RS . This equation can be inverted
numerically to obtain R0/RS as a function of λd.
The results of this excersize are shown in Figure 1,
in which we see that for the displayed range of λd

equation (16) gives very similar results to the ones
obtained from equation (11). The good agreement
between equations (11) and (16) is an indirect justi-
fication of the approximation (see equation 10) used
for deriving equation (11).

In the following section we compare the outer
radii R0 for the photoionized region obtained
from equations (11) and/or (16) with numeri-
cal and analytic solutions of the radiative trans-
fer+photionization equilibrium problem.

3. THE RADIAL STRATIFICATION OF THE
IONIZATION FRACTION

We now write the ionization balance condition
(equation 5) in terms of the (spatially dependent) H
ionization fraction x = nHII/nH = ne/nH :

nH(1− x)φH = x2n2
HαH . (17)

This quadratic equation for x can be inverted to ob-
tain

x =
1

2A

(√
1 + 4A− 1

)

, (18)

with

A ≡ nHαH

φH
=

1− x

x2
. (19)

We now use equations (19) and (6) to define

f ≡ e−τ =
3r2

Aλ
, (20)

in terms of the dimensionless radius

r =
R

RS
, (21)

and where the dimensionless parameter,

λ ≡ RSnHσH , (22)

is the optical depth over a Strömgren radius RS as-
sociated with photoionizations in the neutral gas.

The above derivation is identical to the one of
Raga (2015) and very similar to the one of Strömgren
(1939), who studied the case of a dust-free HII re-
gion.
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192 RAGA & LORA

Now, from equation (4) we see that f obeys the
differential equation

1

f

df

dr
= −λ(1− x)− λd , (23)

where x is given as a function of f and r by equations
(18-20). This differential equation can be integrated
numerically with the boundary condition f(0) = 1,
but no exact analytic integral has been found.

In order to obtain an approximate numerical in-
tegral, one expands the term in parentheses on the
right hand side of equation (18) to first order in A,
obtaining

1− x(A) ≈ A . (24)

This Taylor series expansion is compared with the
exact form of 1− x(A) (obtained from equation 18)
in Figure 1.

We now write A in terms of f and r using equa-
tion (20) and insert the result into equations (24)
and (23) obtaining the differential equation

dfp
dr

= −3r2 − λdfp , (25)

where we have used the notation “fp” in reference to
the paper of Petrosian et al. (1972). This equation
can be directly integrated with the boundary condi-
tion fp(0) = 1 to obtain the approximate solution

fp(r) =
3

λ3
d

(

2λdr − λ2
dr

2 − 2
)

+

(

1 +
6

λ3
d

)

e−λdr .

(26)
This is the approximate analytic solution derived
by Petrosian et al. (1972). It can be easily
shown that for λd → 0 this solution converges to
the f(r) = 1− r3, dust-free solution of Strömgren
(1939). Also, one sees that this solution gives an in-
finite optical depth (i.e., fp = 0, see equation 20) at
a finite value rp, which can be obtained by inverting
numerically the condition fp(rp) = 0 (see equation
26). The resulting values of rp as a function of λd

are shown in Figure 1, in which we see that similar
values to the r0 radii (resulting from global photoion-
ization balance arguments, see equations 11 and 16)
are obtained.

To obtain a better analytic approximation we fol-
low Raga (2015) in approximating the x(A) depen-
dence (see equation 18) with a three-segment inter-
polation of the form

y = 1− x(A) = A ; A ≤ A1

= aAb ; A1 ≤ A ≤ A2

= 1 ; A > A2 , (27)

Fig. 1. Ratio between the outer radius of the ionized
region R0 and the (dust-free) Strömgren radius RS (see
equation 1) as a function of the dust optical depth λd

(see equation 9) obtained from the simplified (short dash
line, see equation 11) and from the full version (solid line,
see equation 16) of the Strömgren sphere analysis. The
long-dash line corresponds to the outer radius obtained
from the approximate solution of the radiative transfer
problem obtained by Petrosian et al. (1972), see equation
(26).

Fig. 2. The fraction 1 − x(A) of neutral H (where
x = nHII/nH is the HII fraction) as a function of the A
parameter (see equation 19). The exact solution (equa-
tion 18) is shown with the solid curve. The linear ap-
proximation to 1− x(A) (equations 24 and 27) is shown
with the thin, dotted line. The other two segments of the
three-power law approximation (equation 27) are shown
with the thicker dotted lines.

with A1 = 0.1, A2 = 8.402, a = 0.316 and
b = 0.5 (Raga 2015 used a b = 0.6 value, but
as will be evident below, it is more convenient to
choose a slightly different value for this coefficient).
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IONIZATION STRUCTURE OF A DUSTY STRÖMGREN SPHERE 193

Fig. 3. The ionization fraction x = nHII/nH as a func-
tion of dimensionless radius r = R/RS (where RS is
the Strömgren radius, see equation 1) obtained for the
(λ, λd) parameter combinations given over each of the
frames. In the four frames, the solid curve is the exact
(i.e., numerical) solution, the long dash curve is the solu-
tion of Petrosian et al. (1972) and the short dash curve
is the new, three-segment approximate analytic solution.

This approximation has a transition from the linear
regime to a ∝ A1/2 power law at a neutral fraction
y1 = A1 = 0.1. The resulting interpolation is com-

pared with the value of 1− x(A) obtained using the
exact form for x(A) (given by equation 18) in Fig-
ure 2.

With the approximate form for 1 − x(A) given
by equation (27), equation (23) can be integrated
analytically to obtain

f(r) = fp(r) , (28)

for r ≤ r1 (see equation 26),

f(r) =

[

E e−λdr/2 − a
√
3λ

(

r

λd
− 2

λ2
d

)]2

, (29)

for r1 < r ≤ r2,

f(r) = f2e
(λ+λd)(r2−r) , (30)

for r2 < r. In equation (29) the a constant has the
value given after equation (27), and we have consi-
dered the b = 1/2 case. It is also possible to obtain
exact analytic integrals for b = n/2 values (with in-
teger n), but for other values of the power law expo-
nent b (see equation 27) only approximate integrals
can be obtained, resulting in more complex forms of
the solution.

In equation (30), f2 is the value given by equa-
tion (29) when evaluated in r = r2. The matching
consant E in equation (29) is given by

E = f
1/2
1 eλdr1/2

[

1 +
λy1
λdr1

(

r1 −
2

λd

)]

. (31)

The switch between equations (28) and (29) oc-
curs at a dimensionless radius r1 which is obtained
from a numerical inversion of the equation

1

y1
=

λfp(r1)

3r21
, (32)

with fp(r) given by equation (26).
The switch between equations (28) and (29) oc-

curs at a dimensionless radius r2 which is obtained
from a numerical inversion of the equation

f2 = f(r2) , (33)

with f(r) given by equation (29).
Approximate explicit forms for r1 and r2 can be

obtained by expanding the corresponding equations
(32 and 33) to first → fourth order around r1,2 = 1,
and then finding analytically the roots of the result-
ing polynomials. We do not give here the results of
this exercise, because they are hardly worthwhile.
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We can now calculate the radial dependence of
the ionization fraction x (see equations 18 and 20)
using the “exact” (i.e. numerical) solution of equa-
tion (23) and the two approximate analytic forms
obtained for f(r) (the solution of Petrosian et al.
1972 given by equation 26 and the 3-segment ap-
proximation given by equations 28-30).

The three corresponding forms for x(r) obtained
for the sets of parameters (λ = 100, λd = 0.2),
(λ = 1000, λd = 0.2), (λ = 1000, λd = 0.0) and
(λ = 105, λd = 20.0) are shown in Figure 3. It is
clear that the 3-segment approximation has a tran-
sition to neutral gas (i.e., for x → 0) that follows the
exact solution in a more accurate way than the so-
lution of Petrosian et al. (1972, which reaches x = 0
at a finite radius).

In Figure 4, we show the radius R0.9 at which the
ionization fraction has a x = 0.9 value as a function
of λd, for three values of the dimensionless parameter
λ (=1000, 100 and 10) obtained from the exact (i. e.,
numerical) and from the 3-segment approximation
(given by equations 28-30). These two solutions give
almost indistinguishable results at the resolution of
the figure. In the three plots we also show the R0 vs.
λd dependence obtained from the “dusty Strömgren
sphere” analysis (see equation 16 and Figure 1). It
is clear that for λ = 100 and 1000, the R0.9 radius
closely follows the R0 vs. λd dependence. For the
lower, λ = 10 value, not surprisingly we find larger
deviations between the R0.9 and R0 radii.

4. THE VALUES OF THE DIMENSIONLESS
PARAMETERS

In § 3 we present solutions of the ionization struc-
ture of a homogeneous HII region which are given in
terms of two dimensionless parameters:

• λ = nHσHRS : the optical depth due to pho-
toionization of H over a distance RS in a com-
pletely neutral medium,

• λd = nHσdRS : the optical depth over a distance
RS due to dust absorption.

Even though λ typically has values ≫ λd, this does
not necessarily imply that the dust absorptions are
negligible, since within the nebula the neutral frac-
tion of H is very low.

Also, in § 2, we presented a “dusty Strömgren
sphere” model, in which the only dimensionless pa-
rameter that appears is λd. This model is applicable
for HII regions in the λ ≫ 1 limit.

Fig. 4. The solid curves correspond to the radius R0.9 at
which the ionization fraction reaches a x = 0.9 value as
a function of λd (see equation 9) for 3 different values of
λ (see equation 22), λ = 1000 (top), 100 (center) and 10
(bottom). The same curves (within the resolution of the
graphs) are obtained from numerical integrations of the
transfer equation (see equation 23) and from the three-
segment, approximate analytic approximation (equations
28-30). The dashed lines show the outer radius R0 as
a function of λd predicted from the “dusty Strömgren
sphere” model (equation 16).

The dimensionless parameter λ (see equation 22)
has values

λ = 1330

(

S∗

1049s−1

)1/3
( nH

1 cm−3

)1/3
(

σH

σν0

)

,

(34)
where we have used typical parameters for a galactic
HII region. The last term on the right (σH/σν0

) is
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the ratio between the average photoionization cross
section (that has to be taken out of the integral in
equation 2) and the Lyman limit cross section. This
ratio is ≈ 1 for an HII region photoionized by a ste-
llar source, but can have substantially smaller values
for the case of a region photoionized by the “mon-
ster” (i.e., the accreting black hole) in the center of
an active galaxy (which has a power law ionizing
spectrum, see, e.g., Binette et al. 1993; Haro-Corzo
et al. 2007). Therefore, for narrow line regions of
AGNs we can have HII regions with substantially
lower λ ∼ 10 → 100 values. Conversely, in very
high density HII regions such as ultracompact re-
gions within molecular clouds (see, e.g., Kurtz 2005),
we can have very high densities, resulting in higher
values, up to λ ∼ 105. Another way to have higher
λ values is to have an HII region photoionized by a
cluster with many O stars.

The average galactic dust absorption cross sec-
tion per H atom at the Lyman limit has a value
σd ≈ 1.15 × 10−21cm2 (see the discussion of Vas-
concelos et al. 2011). Therefore, the dimensionless
parameter λd (see equation 9) has a value

λd = 0.24

(

S∗

1049s−1

)1/3
( nH

1 cm−3

)1/3

ξd , (35)

where ξd ≤ 1 is the fraction of dust that survives
within the HII region.

Combining equations (34-35) we obtain

λd

λ
= 1.81× 10−4

(

σν0

σH

)

ξd . (36)

In Figure 3, we show the ionization stratifications
of four different HII regions:

• an HII region photoionized by a hard spectrum
(resulting in λ = 100), and with average galactic
dust abundance (so that λd = 0.2, see equation
35),

• an evolved galactic HII region (λ = 103) with
average galactic dust abundance (λd = 0.2),

• an evolved galactic HII region (λ = 103) with
no dust (λd = 0),

• an ultracompact HII region with density
nH ≈ 106cm−3, with λ = 105 and λd = 20.

It is clear that in the last case the dust absorption
has a very strong effect on the HII region, which has
an outer radius of ≈ 1/4 of the Strömgren radius of
a dust-free nebula.

5. APPLICABILITY OF A HOMOGENEOUS
MODEL

The models described in this paper are limited
to “Strömgren’s model”, i.e., to the case of a nebula
with a homogeneous density and temperature. The
way to obtain such a configuration is to “turn on” an
O star within a homogeneous, neutral medium, and
to wait for the “initial expansion” to take place. In
this initial expansion, a fast R-type ionization front
travels out and reaches the “initial Strömgren ra-
dius” (see, e.g., the lucid discussion in the book of
Dyson & Williams 1980).

This initial Strömgren sphere does have a homo-
geneous density distribution, so that a homogeneous
model is in principle applicable. However, at the ion-
ization front it has a strong temperature gradient.
The feedback of this temperature gradient on the
ionization structure (through the rather weak tem-
perature dependence of the H recombination coeffi-
cient) is not included in a homogeneous HII region
model.

The other possibility is the application of a ho-
mogeneous model to the final, pressure equilibrium
configuration (in which the HII region has expanded
until it has reached pressure balance with the sur-
rounding, neutral medium). In this final configura-
tion, the almost constant temperature (T ∼ 104K)
resulting from the thermal balance guarantees an
internal region with a quite homogeneous density.
However, in the HII/HI transition region (in which
the temperature has a transition from ∼ 104K to the
∼ 102 → 103 K temperature of the neutral medium),
the pressure balance condition implies a strong den-
sity gradient. This effect is of course not included in
a homogeneous model.

Another effect that will introduce density gradi-
ents within the fully ionized region of a hydrostatic,
dusty nebula is the radiation pressure on the dust
grains. This effect was studied in detail by Draine
(2011). In order to evaluate the importance of the
radiation pressure on dust grains let us consider the
following, semi-qualitative analytic argument.

Let us assume that we have a low enough value
of λd, so that the outer radius of the nebula has a
value ∼ RS (i.e., the Strömgren radius of a dust-free
nebula, see equation 1). This implies that the dust
optical depth is at most of order 1, so that most of
the stellar radiation (dominated by the non-ionizing
photons) reaches regions close to the outer edge of
the nebula. At radii close to RS , we then write the
hydrostatic balance between the pressure gradient
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and the radiation pressure force as

dP

dR
≈ L∗

4πR2
S

σdnH

c
, (37)

where we have assumed a “grey” σd ≈ 10−21cm2

over all of the frequencies of the stellar spectrum.
We can then calculate the radial scale ∆R of the
pressure variations in the outer regions of the hydro-
static stratification as

∆R

RS
≡ P

RS dP/dR
≈ 8πc kT RS

L∗σd
, (38)

where we have set P = 2nHkT . Clearly, the pressure
gradient induced by the radiation pressure force will
be important for ∆R/RS ≈ 1 (or higher). Setting
equation (38) equal to 1 and using equation (1) for
RS , we then derive the density

nH,r = 3500 cm−3

(

S∗

1049s−1

)1/2 (
105.4L⊙

L∗

)3/2

,

(39)
above which the ionized region will develop an im-
portant pressure (and therefore density) gradient. In
equation (39) we have used the values of S∗ and L∗

appropriate for an O5 dwarf, and a T = 104K tem-
perature for the HII region.

If we insert the value of nH,r (equation 39) in
equation (35), we obtain λd ≈ 3.5. Therefore, for
regions with values of λd substantially above unity,
we expect the constant density models (discussed in
this paper) not to be applicable to the final, pre-
ssure equilibrium configuration of a nebula. How-
ever (as discussed above), even for lower λd values,
the homogeneous models do not describe appropri-
ately the ionized to neutral transition in a pressure
equilibrium nebula.

6. DISCUSSION

We have first presented a “Strömgren sphere” de-
scription for calculating the outer radius R0 of a
homogeneous, dusty photoionized region (see § 2).
In its most simple form (see equation 11), this ap-
proach leads to a simple, trascendental equation
which can be inverted to obtain R0/RS (where RS

is the Strömgren radius of a dust-free but otherwise
identical region) as a function of the dust optical
depth λd = nHσdRS associated with Rs (see equa-
tion 35). We also find an approximate, explicit ana-
lytic inversion of this trascendental equation, which
works well for λd < 3 (see equation 12).

We have also studied a more detailed “Strömgren
sphere” approach, which results in a different
trascendental R0/RS vs. λd relation (see equa-
tion 16). However, this relation gives similar results
to the simpler equation (11) for the astrophysically
relevant λd range (see Figure 1 and § 3). Our simpler
relation for the radius of a dusty Strömgren sphere
was previously obtained by Franco et al. (1990) with
a more qualitative approach.

We then compare the results of the “Strömgren
sphere” approach with solutions of the associated
radiative transfer problem (see equation 23), from
which the ionization fraction x = nHII/nH is ob-
tained as a function of radius. We integrate the re-
sulting transfer equation numerically, and we also
integrate it analytically using the approximation
described by Raga (2015), who studied the case
of a dust-free HII region. This approximation is
an improvement on the classical approximation of
Strömgren (1939), which was applied to the case of
a dusty HII region by Petrosian et al. (1972).

The presence of dust has a strong effect in the
size of the ionized region for high nebular densities,
as is the case in compact, ultra-compact and hyper-
compact HII regions (see the review of Kurtz 2005).
Dust has of course been included in the past in de-
tailed photoionization models of dense HII regions
(see, e.g., Morisset et al. 2002 and Draine 2011).

The analysis presented above gives a clear phys-
ical picture of the transfer of ionizing photons in
dusty HII regions, and results in relatively simple
recipes (equations 11, 12 and 16) for obtaining the
outer radius of such a region. We have also obtained
a full analytic solution for the ionization fraction as
a function of radius (see § 3), which can be useful
for initializing numerical simulations of dusty, pho-
toionized flows.

We end by noting again that homogeneous mo-
dels (such as the ones described in the present paper)
are a strong idealization of the situation found in real
HII regions. Very special conditions are indeed ne-
cessary for such models to be directly applicable to
observed objects (see the discussion of § 5).

We acknowledge support from the CONACyT
grants 61547, 101356, 101975 and 167611 and the
DGAPA-UNAM grants IN105312 and IG100214. We
acknowledge an anonymous referee for comments
which lead to the discussion in § 5.
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