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RESUMEN

Presentamos modelos anaĺıticos de una región fotoionizada en equilibrio de
presión con el medio ambiente neutro. Los modelos están basados en la suposición
de una dependencia lineal entre la fracción de ionización de H y el cuadrado de la
velocidad del sonido del gas. Demostramos que bajo estas suposiciones el problema
de transporte radiativo “gris” tiene soluciones anaĺıticas, que dan la estructura de
ionización y la densidad de la nebulosa en función del radio.

ABSTRACT

We present analytic models for a photoionized region in pressure equilibrium
with the surrounding, neutral material. The models are based on the assumption
of a linear relation between the H ionization fraction and the square of the sound
speed of the gas. We show that under these assumptions the “grey” radiative
transfer equation has analytic solutions that provide the ionization structure and
the density of the nebula as a function of radius.

Key Words: ISM: HII regions

1. INTRODUCTION

In his classical paper, Strömgren (1939) derived
analytic solutions for the radially dependent ioniza-
tion structure of a homogeneous, photoionized re-
gion. He derived both an “inner” and an “outer”
approximate solution for the H ionization fraction
x = nHII/nH (where nHII and nH are the ion-
ized and total H number densities, respectively) as
a function of the spherical radius R. Strömgren’s
“outer solution” is not entirely satisfactory, because
it is based on a plane approximation, and therefore
does not fix the position of the outer ionization front.
Strömgren’s “inner solution” shows substantial de-
viations from the “exact” (i.e., numerical) solution
close to the Strömgren radius. Raga (2015) showed
that it is possible to use a method similar to the
one employed by Strömgren to obtain his “inner so-
lution”, to derive piecewise solutions with improved
accuracy. In this way, analytic solutions for the full
ionization structure of a homogeneous, photoionized
region are obtained.

In the present paper, we consider the problem of
a pressure equilibrium, photoionized region. This
problem might be relevant for compact or ultra-

1Instituto de Astronomı́a, UNAM, México.
2Instituto de Ciencias Nucleares, UNAM, México.

compact HII regions (which are embedded in molec-
ular clouds, see e.g. the review of Kurtz 2005) or for
giant HII regions, photoionized by a large number of
O stars.

A pressure equilibrium HII region has a den-
sity that is approximately homogeneous in the in-
ner, fully ionized region. However, towards the outer
edge of the photoionized region (in which the tem-
perature has a transition from the ≈ 104K of the
photoionized gas to the ≈ 100 → 1000 K of the
outer, neutral environent), the density has a steep
rise. The simplest way to approach this problem is to
assume a parametrized relation between the tempe-
rature and the H ionization fraction x = nHII/nH ,
leading (through the condition of pressure equilib-
rium) to a relation between x and nH (the total H
density).

We show that in this approximation the (grey) ra-
diative transfer+ionization equilibrium problem has
different possible analytic solutions, depending on
the assumed temperature dependence of the recom-
bination coefficient. The basic equations describing
the photoionization of a stratified nebula are derived
in § 2. The problem of a pressure equilibrium nebula
(in the cases of a temperature-independent recombi-
nation coefficient αH , and of αH ∝ c−1, where c is
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the isothermal sound speed) is presented in § 3. The
possible applicability of pressure equilibrium HII re-
gion models is explored in § 4. Finally, the results
are discussed in § 5.

2. THE PHOTOIONIZATION OF A PURE H
NEBULA

Let us consider the photoionization equilibrium
of a pure H nebula:

nH(1− x)φH = x2n2

HαH , (1)

where x = nHII/nH = ne/nH is the ionization frac-
tion, nH = nHI + nHII the total H number density
(with nHI the neutral H density), ne the electron
density, αH the recombination coefficient and φH the
photoionization rate of H.

In the “grey approximation of the ISM” (i.e.,
using a constant, average value σH for the photoion-
ization cross section), the H photoionization rate is
given by

φH =
S∗σH

4πR2
e−τ , (2)

with

τ = nHσH

∫ R

0

(1− x)dR , (3)

where R is the spherical radius (measured from the
central star) and S∗ is the stellar ionizing photon
rate. The photoionizations resulting from the dif-
fuse, ionizing photon field have been neglected.

Equation (3) can be written in the form:

1

f

df

dr
= −λ(1− x)

(

nH

n0

)

, (4)

with f ≡ e−τ , r = R/RS , and

λ ≡ RSn0σH , (5)

where n0 = nH(R → 0) is the central density of the
nebula. The radius has been adimensionalized with
the Strömgren radius

Rs =

(

3S∗

4πn2

0
α0

)1/3

(6)

of a homogeneous nebula of density n0 and (con-
stant) recombination coefficient α0.

Equation (4) has to be integrated with the
boundary condition f(0) = 1. However, the integra-
tion is not necessarily trivial because the ionization
fraction x has to be obtained as a function of r and

f through equations (1) and (2), which lead to the
dimensionless relation

x2

1− x
=

λf

3r2

(

n0

nH

)(

α0

αH

)

. (7)

The derivation of equations (4) and (7) is equivalent
to the one presented in § 2 of Raga (2015), but we
have allowed here for possible position-dependencies
of the density (nH) and the recombination coefficient
(αH).

3. A PRESSURE EQUILIBRIUM HII REGION
MODEL

3.1. The relation between density and ionization

fraction

In order to proceed analytically, we assume that
the square of the isothermal sound speed of the gas
is a linear function of the H ionization fraction:

c2(x) = x c2i + (1− x) c2n ≈ x c2i , (8)

where ci ≈ 10 km s−1 and cn ≈ 1 km s−1 are the
isothermal sound speeds of the ionized and neutral
media, respectively. The temperature can be calcu-
lated as a function of c(x) through the relation

c2(x) =
k(1 + x)T

mH
, (9)

where k is Boltzmann’s constant and mH the H
mass.

A linear temperature vs. ionization fraction rela-
tion has been extensively used in the past to model
photoionized regions (see, e.g., Esquivel & Raga
2007). This kind of relation clearly does not repro-
duce the temperature peaks that are found in more
detailed models of the partially ionized, outer bound-
aries of photoionized regions (see, e.g., O’Dell et
al. 2007). However, these peaks (which result from
the hardening of the ionizing radiation, obtained in
multi-frequency transfer models) have temperatures
only ≈ 10 % in excess of the interior temperature
of the HII region, and are unlikely to have a strong
effect on the associated, pressure equilibrium density
stratification.

Then, for a pressure equilibrium nebula (i.e., with
constant P = nHmHc2), from equation (8) we ob-
tain:

nH =
P

mHc2(x)
=

n0

x+ (1− x)c2n/c
2

i

≈ n0

x
, (10)

where n0 is the central density of the nebula. To
obtain the third equality, we used the fact that
cn/ci ≪ 1 (see above).
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Also, inserting the nH(x) dependence resulting
from the pressure equilibrium condition (third equal-
ity of equation 10) in the photoionization balance
(equation 7) we obtain:

x

1− x
=

λf

3r2

(

α0

αH

)

. (11)

Finally, combining equations (4) and (10) we ob-
tain the differential equation:

1

f

df

dr
= −λ

1− x

x
, (12)

which has to be solved with the x values given by
equation (19) as a function of f and r. After an
appropriate choice for the temperature-dependence
of the recombination coefficient αH , equation (12)
has to be combined with equation (11) to obtain the
resulting structure of the photoionized region.

3.2. Case of constant αH

Let us now assume that the recombination coeffi-
cient has a temperature-independent value αH = α0.
From equation (11) we then obtain:

1− x

x
=

3r2

λf
. (13)

We then combine this result with the differential
equation for f (equation 12) to obtain

df

dr
= −3r2 , (14)

which (with the f(0) = 1 condition, see above) has
the solution

f(r) = 1− r3 . (15)

Inserting this result in equation (13) we finally obtain
the ionization fraction as a function of dimensionless
radius r = R/RS :

x(r) =

[

1 +
3r2

λ(1− r3)

]−1

. (16)

This solution (which has x(0) = 1 and x(1) = 0)
coincides with the “inner solution” of Strömgren
(1939) for a homogeneous HII region. In other words,
Strömgren’s “inner solution” is the exact analytic
solution for a pressure equilibrium HII region with
the “temperature law” given by equation (8) (with
cn = 0) and for a temperature-independent recom-
bination coefficient. The radial dependencies of the
ionization fraction obtained for three different values
of λ (10, 100 and 1000) are shown in Figure 1.

Fig. 1. Ionization fraction vs. dimensionless radius
r = R/RS obtained for three different values of the λ
parameter (λ = 10, 100 and 1000, from top to bottom).
The solid curves show the exact (i.e., numerical) solu-
tion for the αH ∝ c−1 case, and the short dash curves
show the corresponding, approximate analytic solutions
(see § 3.3). The long dash curves show the constant αH

analytic solutions (see § 3.2).
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3.3. Case of αH ∝ c−1

Let us now assume that the recombination coef-
ficient has a temperature dependence of the form

αH = α0

[

ci
c(x)

]

. (17)

This dependence is similar to an αH ∝ 1/T 1/2 de-
pendence, except for the fact that the isothermal
sound speed squared, c2(x), has an extra “1 + x”
factor (see equation 9). Combining equations (17)
and (10) we then have αH = α0/x, which we insert
in equation (11) to obtain:

1− x

x1/2
=

3r2

λf
≡ A , (18)

which has the solution

x(A) =
1

4

[

√

A2 + 4−A
]2

. (19)

This equation gives the ionization fraction x as a
function of f and r (see the definition of A in equa-
tion 18). This result has to be inserted in the right-
hand side of equation (12) to obtain the differential
equation describing the model (which has to be in-
tegrated starting from the f(0) = 1 condition at the
origin). The resulting equation does not have an ex-
act analytic solution.

An approximate analytic solution can be derived
as follows. We first note that equation (19) has the
asymptotic limiting behaviors:

1− x

x
= A , for A ≪ 1 ;

1− x

x
= A2 , for A ≫ 1 .

(20)
We then propose the approximate form

1− x

x
≈ A+ 0.7A2 , (21)

which in the A = 0 → 5 range has deviations of less
than 13% from the results obtained using the exact
form for x(A) (see equation 19).

We now combine equations (21), (18) and (12) to
obtain:

df

dr
= −3r2 − 0.7

9r4

λf
, (22)

which has to be integrated with the f(0) = 1 bound-
ary condition.

An approximate integral of equation (22) can be
obtained as follows. For small r the first term on
the right-hand-side dominates over the second term,
so that we recover Strömgren’s solution (f = 1− r3,
see equation 15). We now use this solution for a first

iteration, obtained by substituting f = 1− r3 in the
second term on the right-hand-side of equation (22).
In this way, the differential equation becomes:

df

dr
= −3r2 − 0.7

9r4

λ(1− r3)
, (23)

which can be directly integrated to obtain:

f(r) = 1− r3 + 0.7
3

2λ

{

3r2 + ln

[

(1− r)2

r2 + r + 1

]

+

2
√
3

[

tan−1

(

2r + 1√
3

)

− π

6

]

}

. (24)

With this solution, we can calculate A = 3r2/(λf)
and use equation (19) to obtain the radial depen-
dence of the ionization fraction. The ionization
structures obtained for three choices of λ (10, 100
and 1000, see equation 5) are shown in Figure 1. The
lower values of this λ range correspond to photoion-
ized gas in the narrow line regions of active galaxies
(see, e.g., Binette et al. 1993), and the λ = 1000
value corresponds to an HII region photoionized by
an O star (see, e.g., Raga 2015).

In this figure, we also show the x(r) obtained
from numerical integrations of equations (12), (18)
and (19). It is clear that the approximate, analytic
solution (equation 24) reproduces the main features
of the “exact” (i.e. numerical) solution. Figure 1
also shows the ionization structure obtained from the
constant αH solution (equation 16).

4. THE APPLICABILITY OF A PRESSURE
EQUILIBRIUM HII REGION MODEL

De Pree et al. (1995) pointed out that compact
HII regions embedded in molecular clouds would
rapidly reach pressure equilibrium with the sur-
rounding neutral material, provided that the envi-
ronmental density is high enough. The argument is
as follows.

Raga et al. (2012a) showed that an HII region
within a homogeneous environment reaches the final,
pressure-equilibrium configuration at a time

tf ≈ 6× 105 yr×

(

S∗

1049s−1

)(

105cm−3

na

)2/3(
1 km s−1

ca

)7/3

, (25)

where na and ca are the number density and the
sound speed (respectively) of the neutral environ-
ment, and S∗ is the stellar ionizing photon rate.
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This equation was derived assuming a temperature
of 104 K for the photoionized gas (see equation 19 of
Raga et al. 2012a). Therefore, an HII region driven
by an O7 star (with S∗ = 1049s−1) in a high den-
sity environment (with a density na = 105cm−3 or
higher) will stop expanding in under 106 yr, within
the lifetime of the central O star. Therefore, it is
possible that some (though definitely not all) of the
observed ultracompact HII regions might already be
in a non-expanding, pressure equilibrium configura-
tion.

This of course will not be true if the wind from
the central source has an important effect in pushing
out the HII region. The importance of this effect can
be evaluated as follows. Raga et al. (2012b) derived
a model for a wind-driven HII region expanding into
a homogeneous medium. Their analytic model de-
pends on the dimensionless parameter

κ = 63

(

Ṁ

5× 10−7M⊙yr−1

)

( vw
2500 km s−1

)2

×

( na

105 cm−3

)1/3
(

1049 s−1

S∗

)2/3

×

(

1 km s−1

c0

)1/3

, (26)

where Ṁ is the mass loss rate and vw the termi-
nal velocity of the wind from the central source
(normalized to the values corresponding to an O7
central star). This is equation (29) of Raga et al.
2012b), obtained by setting a temperature of 104K
for the ionized gas (i.e., an isothermal sound speed
of 10 km s−1) and correcting two typos.

Raga et al. (2012b) show that for κ > 1, the HII
region continues expanding in a substantial way due
to the outward momentum deposited by the stellar
wind. Therefore, a pressure equilibrium model is
an appropriate description only for HII regions with
κ ≤ 1. From equation (26) we see right away that
for an HII region excited by an O7 star, the effect
of the stellar wind will be important, and the HII
region will never reach a hydrostatic configuration.

Our present pressure equilibrium models are ap-
plicable for evolved objects in which tf is smaller
than the main sequence lifetime of the central star
(see equation 25) and, at the same time, have κ ≤ 1
(see equation 26). If one looks at the properties of
O/B stars (see, e.g., Sternberg et al. 2003), one sees
that in order to simultaneously satisfy these two con-
ditions, it is necessary to have HII regions with type

B stellar sources (which have much weaker winds,
see Babel 1996, Kudritski & Puls 2000 and Raga et
al. 2012b).

Another source of departures from a pressure
equilibrium configuration is the possible motion of
the central star with respect to the surrounding envi-
ronment. Such a motion can result in complex mor-
phologies for the photoionized region (see, e.g., Zhu
& Zhu 2015 and references therein). Therefore, a
pressure equilibrium model might be applicable for
some specific objects, but definitely not to all com-
pact or ultracompact HII regions!

It is also possible that pressure equilibrium mo-
dels might be applicable for giant HII regions, pho-
toionized by a large number of O stars. However, the
final, hydrostatric configuration of this kind of object
is likely to have a pressure stratification resulting
from gravitational and radiation pressure forces (see
Raga et al. 2015).

5. SUMMARY

We have studied the problem of an HII region in
pressure equilibrium with the surrounding, neutral
environment. This problem is relevant for compact
or ultracompact HII regions, which rapidly evolve to
a pressure equilibrium configuration (see de Pree et
al. 1995; Raga et al. 2012).

We show that for a linear “temperature law”
(relating the square of the isothermal sound speed
with the H ionization fraction, see equation 8) it is
possible to derive analytic solutions for the “grey
ISM radiative transfer” model. For the case of a
temperature-independent recombination coefficient,
a full analytic solution is obtained. This solution
has the same radial dependence of f = e−τ as the
“inner solution” obtained by Strömgren (1939) for
a homogeneous HII region (though it has a different
radial dependence for the H ionization fraction x, see
equations 15 and 16).

We have also studied the case of a recombina-
tion coefficient with a temperature dependence of
the form αH ∝ c−1 (which approximately follows the
temperature dependence of the “case B” recombina-
tion coefficient, see, e.g., Cantó et al. 1998). In this
case, we have been able to obtain an approximate
analytic solution, which closely follows the “exact”
results (obtained from a numerical integration of the
radiative transfer equation). It is clear that it is also
possible to obtain approximate analytic solutions for
other power-law interpolations of the recombination
coefficient.
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From the ionization fractions as a function of ra-
dius, it is also possible to obtain (through equation
10) the density structure of the nebulae. These struc-
tures obviously have a peak at the outer radii of the
ionized regions.

Therefore, we have found exact and approximate
analytic solutions for the problem of a pressure equi-
librium HII region. This is a quite satisfying result
in itself. Also, these analytic solutions could be use-
ful for initializing more detailed numerical models of
static (e.g., Morisset et al. 2002) or dynamical (e.g.,
Tremblin et al. 2012) photoionized regions.

We note that our solutions strictly correspond to
a region in equilibrium with a surrounding environ-
ment of finite pressure, but zero sound speed. In
practice, the sound speed of the neutral gas has a
small but finite value. The effect of this finite sound
speed could be easily incorporated in the analytic
models by cutting off the growth in the nebular den-
sity (see equation 10) at a maximum density. The
effect of this is to introduce the presence of an ex-
ponential tail in the ionization fraction vs. radius
relation at low values of x (see Raga 2015). We have
not discussed this effect in the present paper because
we feel that it does not add relevant insights.

To conclude, we point out that the direct appli-
cability of the pressure equilibrium models described
in this paper is quite limited (see § 4). The pro-
cedures discussed in our paper could be included
in more complex HII region models, describing a
broader range of the configurations found in the ob-
served nebulae.

M. González Boĺıvar, R. Medina Covarrubias, and A. Tinoco Arenas: Instituto de Astronomı́a, Uni-
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