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RESUMEN

Empleando las ecuaciones del virial de segundo orden y el super-potencial,
estudiamos la estabilidad a segundo armónico de las figuras ĺıquidas homogéneas
esferoidales reportadas en I, dotadas de un movimiento interno de velocidad angular
diferencial. Esta cantidad, que para el equilibrio era suficiente con especificarla sólo
sobre la superficie frontera del cuerpo, ahora es requerida en todo su interior, con
dos alternativas f́ısicamente aceptables: constante sobre la superficie de cilindros; o
constante sobre discos; estas dos distribuciones se someten al criterio de Goldreich
para estabilidad local. Tal como en la secuencia de Maclaurin, se encuentra que
en cada una de nuestras series hay una figura de frecuencia neutra y una región de
inestabilidad.

ABSTRACT

Employing second order virial equations and super-potential, we investigate
stability to the second-harmonic of the spheroidal homogeneous liquid figures re-
ported in I, whose equilibrium is due to an internal motion of differential rotation.
The angular velocity, which for equilibrium it was enough to be specified on the
body’s boundary surface, is now required throughout its interior, two alternatives
being physically acceptable: constant over cylinder surfaces; or constant over disks;
these two distributions are subjected to Goldreich’s criterium for local stability. Just
as in Maclaurin’s sequence, a figure of neutral frequency and a region of instability
are found in each of our series.

Key Words: gravitation — hydrodynamics — stars: rotation

1. INTRODUCTION

Having constructed the self-gravitating spheroidal homogeneous liquid figures reported in Cisneros et al.
(2015), hereinafter Paper I, whose equilibrium is due to an internal motion of differential angular velocity, we
now investigate their stability to second-harmonic for which virial techniques and super-potential are employed.
In Paper I it was enough to specify the angular velocity distribution on the body’s boundary surface for
establishing equilibrium, now it is required throughout its interior. The surface equation of the distorted
spheroid is

x2 + y2 +
z2

e23
+ d

z4

e43
= 1, e3 =

a3
a1

, (1)

where d is a parameter independent of x, y and z, with d > −1/4 in order for the surface to be closed; a1, a2
(in the current case a1=a2) are semi-axes, but a3 is the third semi-axis only in the limit d → 0; the true third
semi-axis is zM , which is proportional to e3 (= a3/a1); a1 is taken as a scale factor. The general solution for
equilibrium consists of series of series.

1Facultad de Ciencias, Universidad Autónoma de San Luis Potośı, México.
2Instituto de F́ısica, Universidad Autónoma de San Luis Potośı, México.
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256 CISNEROS, MARTÍNEZ, & MONTALVO

The reason for using such a surface responds to our wish to construct figures of exact equilibrium for a
heterogeneous model composed of two concentric ellipsoids, which was fruitless using the purely quadratic
surface equation; for spheroids, on the other hand, the model works well. Just as in Maclaurin’s sequence a
figure of neutral frequency and a region of instability occur; these two results are found in each of our series
with the difference that instead of eccentricity we work with semi-axes. We use

x → a1 x, y → a1 y, z → a1 z, (2)

for the coordinates of points on the surface; and

x1 → a1 x1, x2 → a1 x2, x3 → a1 x3, (3)

for the coordinates of the reference point.

2. THE EQUILIBRIUM EQUATION

The equation governing our body’s equilibrium is Bernoulli’s theorem for steady state (Dryden; 1956 and
Paper I),

V +
p

ρ
+

1

2
ω2 r = cte., r = x2

1 + x2
2, (4)

which holds for any streamline, where V is the gravitational potential, p is the pressure, ω is the angular velocity,
and ρ is the density. Applying the boundary condition of zero pressure at the body’s boundary surface, the
above equation reduces to V + Ω r = Vp, where Vp refers to the pole potential, and Ω (∼ ω2) is the (squared)
angular velocity distribution; these quantities are normalized (see § 5).

3. THE POTENTIAL AND SUPER-POTENTIAL

In Paper I an expression for V was empirically established whose precision, although reasonably good, was
valid only at the body’s boundary surface. In the current context, we shall proceed differently. As before we
assume that V , and now the super-potential χ, are given by

V = αs(x
2
3) + αx(x

2
3) r + αy(x

2
3) r

2, χ = βs(x
2
3) + βx(x

2
3)r + βy(x

2
3)r

2, (5)

where
r = x2

1 + x2
2,

and we demand that they satisfy Poisson’s equation (Chandrasekhar & Lebovitz, 1962):

△V = −4π, △χ = −2V. (6)

Inserting equations (5) in (6) we determine the variables α and β:

αs =
16

15
α0

(

√

x2
3

)5

+
8

3
α1x

4
3 −

4

3
α2

(

√

x2
3

)3

− 2α3x
2
3 + 2α4

√

x2
3 − 2πx2

3 + α5,

αx = −16

3
α0

(

√

x2
3

)3

− 8α1x
2
3 + 2α2

√

x2
3 + α3, (7)

αy = 2α0

√

x2
3 + α1, ,

and

βs = β5 +
4

15

(

√

x2
3

)5

(α2 + 4β0) +
1

3
x4
3 (2α3 + 8β1 + π)− 1

105
16α0

(

√

x2
3

)7

− 2

3
α4

(

√

x2
3

)3

− 1

15
(8α1)x

6
3 + (−α5)x

2
3 −

4

3
β2

(

√

x2
3

)3

− 2β3x
2
3 + 2β4

√

x2
3, (8)

βx = β3 +
16

15
α0

(

√

x2
3

)5

− 2

3
α2

(

√

x2
3

)3

+
8

3
α1x

4
3 − α3 x

2
3 −

16

3
β0

(

√

x2
3

)3

− 8β1x
2
3 + 2β2

√

x2
3,

βy = β1 −
2

3
α0

(

√

x2
3

)3

− α1 x
2
3 + 2β0

√

x2
3,
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EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 257

where α0, . . . , α5 and β0, . . . , β5 are arbitrary constants.
For a particular equilibrium configuration, i.e., for fixed d and zM (zM measures the figure’s flattening),

the constants α and β can be determined through a fit procedure involving, say, 64 random points located all
in the first quadrant—taking advantage of the symmetry— and we can then compute V and χ at each of these
points, where χ is given by the integral relation3

χ = −
∫

|x− x
′| dτ ′, dτ ′ = dx′

1dx
′
2dx

′
3.

Next we fit equations (5) to these 64 values, thus obtaining the parameters α and β.

4. THE ANGULAR VELOCITY DISTRIBUTION

In studying our body’s equilibrium the angular velocity distribution in equation V + Ω r = Vp (see Paper
I), was taken as:

Ω =
αs(x

2
3)

r
+ αx(x

2
3) + αy(x

2
3)r, (9)

where the variables αs, αx, αy are related to equation (7); more precisely, these quantities were established
taking Vp − V in equation (5), instead of V , and letting αs(zM ) = 0; hence, Ω depends on five parameters:
α0, . . . , α4.

To carry out our stability analysis, Ω must be specified throughout the body’s interior, and an adequate
method for extending this—and the other quantities related to the equilibrium—from the boundary surface
inward must be conceived resulting in two physically acceptable alternatives: (a) we can choose it constant
over the surface of cylinders; or (b) constant over disks. Once the desired extension of V and Ω is accomplished,
the corresponding extension of p follows.

(a) The cylindrical angular velocity distribution.
To examine this case we note that on the surface Ω depends on r (= x2

1 + x2
2) and x3. Eliminating x3 by

means of the surface equation written as r = 1− x2
3/e

2
3 − dx4

3/e
4
3, we obtain

Ω(r, x2
3) = Ωr(r) =

αs(x
2
3)

r
+ αx(x

2
3) + αy(x

2
3)r

∣

∣

∣

x2

3
=

e2
3

2d (
√
−4d r+4d+1−1)

; (10)

we will take this Ωr(r) as the angular velocity prevailing for all r within the body, so that it is constant over
cylinders of radius r coaxial with the rotation axis. This kind of distribution will fit for all of our spheroidal
figures.

b) The disklike angular velocity distribution.
If instead of x3 we choose to eliminate r in equation (9), we obtain

Ω(r, x2
3) = Ωx(x

2
3) =

αs(x
2
3)

r
+ αx(x

2
3) + αy(x

2
3)r

∣

∣

∣

r=1−
x2
3

e2
3

−d
x4
3

e4
3

, (11)

which is valid for all points with coordinate x3. Hence, the loci of the points with x3 = const. are disks whose
axis is the rotation axis, and Ω is now constant over disks (‘rigid’ disks) of height x3. This kind of distribution
would only fit for a limited number of our figures.

4.1. Cylindrical distribution vs. disklike distribution

According to Bernoulli’s equation (4) any of the two distributions—both compatible with the continuity
equation—influences the pressure field. Numerical results show that disklike distributions lead to stronger
pressure; this is because cylindrical distributions are more effective to support the gravitational force (except
when the angular velocity decreases from the equator to the rotation axis). The two distributions are in
priciple suitable for all of our figures; nevertheless, as we show in what follows, only for negative d the disklike
distribution is acceptable beyond a certain e3 (see § 6, Figure 1), so that both distributions can coexist beyond
that value of e3. To decide which distribution is pertinent, we will subject our models (even though they are
liquid) to Goldreich’s local stability criterion for gaseous stars.

3The potentials are normalized so that Gρ = 1, see § 5.
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258 CISNEROS, MARTÍNEZ, & MONTALVO

4.2. Goldreich’s criterion for local stability

Goldreich’s criterion for local stability of gaseous stars is (Goldreich & Schubert, 1967)

∂

∂s

(

s2ω
)

− ks
kz

∂

∂z

(

s2ω
)

> 0, (12)

where s2 = x2 + y2, ω (∼
√
Ω) is the angular velocity, ks and kz being wave numbers relative to radial and

z dimensions, respectively, and where it is generally assumed that ∂ω/∂z > 0—so that as usual ω increases
from the equator to the pole—; this might imply that for sufficiently large ks/kz the value of the second term
in the above inequality can override the first, making its left-hand side negative. Hence, for local stability the
angular velocity distribution should be such that ∂ω/∂z = 0, and Goldreich’s criterion reduces to

∂

∂s

(

s2ω
)

> 0, (13)

and the cylindrical distribution Ωr(r) can in principle satisfy it. The disklike distribution Ωx(x
2
3) conforms to

equation (13), but not necessarily to equation (12). If ∂Ωx/∂x3 > 0, which most of our models fulfill (see § 6),
Ωx(x

2
3) will make the model locally unstable ; but when ∂Ωx/∂x3 < 0, a feature that distinguishes some of the

models (§ 6, middle region of Figure 1), we certainly have local stability.

5. THE NORMALIZATION USED

In Paper I, the equilibrium was worked out normalizing the gravitational potential, the angular velocity,
and the length. This time we essentially do the same, but now adding a velocity and a time normalization.
Thus, we take

v1 =
v

v0
, x1 =

x

a1
, t1 =

v0
a1

t, V 1 =
V

Gρa21
, χ1 =

χ

Gρa41
, p1 =

p

v20ρ
, (14)

where v is velocity, x length, t time, V potential, χ super-potential, and p pressure, a1 being the largest semi-
axis. Here, we seek at best to preserve the (quadratic) angular velocity Ω and other variables as they were
used in Paper I. For this purpose, we take

v0 = a1
√

Gρ, (15)

so that ω =
√
Gρ

√
Ω1, the new Ω1 being twice the old one. In what follows, normalized variable indices will

be omitted.

6. A CORRECTION TO PAPER I

In Paper I, an omission of a factor r in our spheroidal figures computing program for Ω was tardily found,
resulting in an erroneous Ω for the spheroidal figures, although it is qualitatively similar to the correct one.
Applying the procedure explained here we reconstructed Ω for the series corresponding to d = 1/8 and d = −1/8
(Tables 1 and 2). For d = 1/8, the angular velocity distribution qualitatively remains as in Paper I; for
d = −1/8, although the forbidden region (Ω < 0) is recuperated, we now find that the allowed region splits
up into two (Figure 1; to be compared with Figure 6 of Paper I): one with increasing Ω from the equator to
the pole, and the other with the inverted tendency, the transition between them not being an abrupt one. On
the left of Figure 1 is shown the frontier curve separating the region where ∂Ω/∂z > 0 from the region where
∂Ω/∂z < 0. In Table 3 we give data related to the forbidden and allowed region boundaries (Figure 1).
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EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 259

TABLE 1

PARAMETERS α0, . . . , α4 FOR DETERMINING THE ANGULAR VELOCITY DISTRIBUTION Ω*

Ω = 1
r
αs(x

2
3) + αx(x

2
3) + αy(x

2
3)r

a

e3 Vp α0 α1 α2 α3 α4

0.90 3.989574 -1.258680 0.698978 5.278133 - 7.782012 - 4.111402

0.80 3.777258 -0.839818 0.560006 3.288077 - 5.550472 - 2.498456

0.70 3.533861 -0.589118 0.485767 2.142312 - 3.970951 - 1.581472

0.60 3.252625 -0.478838 0.500581 1.610184 - 2.911622 - 1.149477

0.40 2.538777 0.408187 - 0.648867 - 1.139885 1.022249 0.738790

0.30 2.079107 0.100747 - 0.156568 - 0.259099 0.422920 0.159540

0.20 1.524583 0.047562 - 0.051667 - 0.113459 0.432160 0.066219

0.10 0.845626 0.015314 - 0.005222 -0.032916 0.321363 0.017581

0.05 0.446944 -0.003803 0.003386 0.012272 0.189735 - 0.008641
*For the series e3, d = 1/8. The potential Vp at the pole is included.
aαs, αx, αy are related to α0, . . . , α4 through equation (7) and the condition αs(zM ) = 0.

Fig. 1. d-curves in the range of negative values separating spheroidal figures with Ω > 0 from those with Ω < 0 (shaded
area), and figures with increasing Ω from those with decreasing Ω, from equator to pole.

7. VIRIAL TECHNIQUE TO SECOND-HARMONIC

The nine second order virial equations for fluid motion are (Tassoul & Ostriker, 1968):

d

dt

∫

τ

vixj dτ = 2Tij +Wij +Πδij , (16)
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260 CISNEROS, MARTÍNEZ, & MONTALVO

TABLE 2

PARAMETERS α0, . . . , α4 FOR DETERMINING THE ANGULAR VELOCITY DISTRIBUTION Ω*

Ω = 1
r
αs(x

2
3) + αx(x

2
3) + αy(x

2
3)r

a

e3 Vp α0 α1 α2 α3 α4

0.95 forbidden

0.90 forbidden

0.80 forbidden

0.70 3.593729 - 0.133209 - 0.041356 0.652807 - 2.693034 - 0.539688

0.60 3.331374 - 0.017090 - 0.002801 0.074007 - 1.658608 - 0.058820

0.50 3.019679 0.009859 0.088398 - 0.070746 - 1.030713 0.064056

0.40 2.645115 - 0.192470 0.563862 0.785828 - 1.519715 - 0.618194

0.30 2.189056 0.197253 - 0.169552 - 0.701692 0.551031 0.517770

0.20 1.625176 0.126071 - 0.070154 - 0.440562 0.531001 0.323031

0.10 0.915033 0.054159 - 0.021556 - 0.191738 0.381757 0.141496

0.05 0.487934 0.005433 - 0.006491 - 0.030662 0.222023 0.026296
*For the series e3, d = −1/8. The potential Vp at the pole is included.
aαs, αx, αy are related to α0, . . . , α4 through equation (7) and the condition αs(zM ) = 0.

TABLE 3

e3a, e3f , AND PARAMETER d*

e3a e3f d

0.159 0.925 -0.050

0.147 0.835 -0.100

0.132 0.718 -0.150

0.105 0.549 -0.200

0.075 0.376 -0.230

0.050 0.206 -0.245
*For the limit curves in allowed (a) and forbidden (f) region, Figure 1.

where all variables are normalized (Gρ = 1, and so on) and

Tij =
1

2

∫

τ

vivj dτ, Wij = −1

2

∫

τ

Bij dτ = −1

2

∫

τ

∫

τ

(xi − x′
i)(xj − x′

j)

|x− x′|3 dτdτ ′, (17)

Π =

∫

τ

p dτ.

To carry out our stability analysis, an equilibrium state must be taken as a starting point and then small
departures from it considered. The perturbed flow is characterized by a small Lagrangian displacement ξ(x, t),
in terms of which the virial equations to the first order in ξ become (Chandrasekhar, 1965)

d

dt

∫

V

(△vixj + viξj) dτ = 2 δTij + δWij , (18)

where δ is the variation of the integrals corresponding to the variables, and

△vi =
∂ξi
∂t

+ vj
∂ξi
∂xj

. (19)
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EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 261

Sum over repeated indices is understood and variables (like vj) accompanying terms in ξ are equilibrium
variables (independent of time, in our case). The interest here is on the proper oscillations of the figure and for
this reason we propose ξ as

ξ(x, t) = ξ(x)eλ t. (20)

If the eigenvalue λ is positive the equilibrium state will be unstable; if it is negative the motion will be damped;
if λ is imaginary we have a stable oscillatory motion. To simplify the analysis we make the approximation
(Chandrasekhar & Lebovitz, 1962, 248; Tassoul & Ostriker, 1968)

ξi(x) = Lijxj , (21)

where Lij is a set of nine constants to be determined. The nine second order virial equations are thus

λ2Lij

∫

x2
j dτ − 2λLik

∫ √
Ωǫjkx

2
k dτ + Lik

∫

Ωǫjlǫlkx
2
k dτ + Ljk

∫

Ωǫilǫlkx
2
k dτ = −LklWlk;ij . (22)

ǫ12 = −1, ǫ21 = 1 and ǫij = 0 for the remaining cases. The super-matrix Wlk;ij is defined as (Chandrasekhar
& Lebovitz, 1962, 238)

Wlk;ij =

∫

xl

∂Bij

∂xk

dτ, (23)

and

Bij =

∫

(xi − x′
i)(xj − x′

j)

|x− x′| dτ ′ = V δij +
∂2χ

∂xi∂xj

. (24)

According to our figure’s symmetry only 7 of the 81 super-matrix components are unequal and different from
zero, namely:

W11;11, W33;33, W11;22, W11;33, W12;12, W13;13, W31;13. (25)

The remaining non-vanishing components are related to these by

W22;22 = W11;11, W22;11 = W11;22, W33;11 = W11;33, W22;33 = W11;33,

W33;22 = W11;33, W12;21 = W12;12, W21;21 = W12;12, W21;12 = W12;12,

W13;31 = W13;13, W31;31 = W13;13, W31;13 = W13;13, W23;32 = W31;13,

W32;32 = W31;13, W32;23 = W31;13. (26)

According to equations (5), (7) and (8), the potential V and the super-potential χ are known and we are
now ready for calculating the necessary Wpq;ij components.

For easy writing, we abbreviate

J1 =

∫

x2
1 dτ, J2 =

∫

x2
2 dτ = J1, J3 =

∫

x2
3 dτ, Ω1 =

∫ √
Ωx2

1 dτ, Ω2 =

∫

Ωx2
1 dτ, (27)

so that equations (22) become

λ2LijIj − 2λΩ1Likǫjk +Ω2Likǫjlǫlk +Ω2Ljkǫilǫlk = −LklWlk;ij . (28)

This is an homogeneous equation system in Lij whose determinant must be zero in order to have a non-trivial
solution. Instead of working with the whole determinant we solve subsystems, as is commonly done. This is
possible by first noticing that the unknowns L13, L23, L31 and L32, and only these, are present in four of the
equations, which bring us to the first oscillation type.

7.1. Transverse-shear modes

These modes are related to the displacements according to

ξ1 = L13x3, ξ2 = L23x3, ξ3 = L31x1 + L32x2,
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262 CISNEROS, MARTÍNEZ, & MONTALVO

and the corresponding equation system is

L31 (W13;13 − Ω2) + L13

(

W31;13 + J3λ
2
)

= 0,

L32 (W13;13 − Ω2) + L23

(

W31;13 + J3λ
2
)

= 0, (29)

L31

(

W13;13 + J1λ
2 − Ω2

)

+ L13W31;13 + 2L32λΩ1 = 0,

L32

(

W13;13 + J1λ
2 − Ω2

)

+ L23W31;13 − 2L31λΩ1 = 0 ,

whose determinant must be zero:

σ2
(

B −M − L+ σ2
)2 − 4A2

(

M − σ2
)2

= 0, (30)

where

λ = i σ, A =
Ω1

J1
, B =

Ω2

J1
, M =

W31;13

J3
, L =

W13;13

J1
. (31)

Equation (30) is the eigenfrequency dispersion relation.

7.2. Toroidal modes

The remaining five equations are

L11

(

W11;11 − 2J1B + J1λ
2
)

+ L22W11;22 + L33W11;33 + 2J1AL12λ = 0, (32)

L22

(

W11;11 − 2J1B + J1λ
2
)

+ L11W11;22 + L33W11;33 − 2J1AL21λ = 0, (33)

L33

(

W33;33 + J3λ
2
)

+ L11W11;33 + L22W11;33 = 0, (34)

L12

(

W12;12 − J1B + J1λ
2
)

+ L21 (W12;12 − J1B)− 2J1AL11λ = 0, (35)

L21

(

W12;12 − J1B + J1λ
2
)

+ L12 (W12;12 − J1B) + 2J1AL22λ = 0. (36)

and these can be handled for obtaining the toroidal modes. Subtracting equation (32) from (33) and adding
equations (35) and (36) we obtain a system in the two variables (L11 − L22) and (L12 + L21), whose solution
is subjected to the vanishing of the determinant (λ = i σ and 2W12;12 = W11;11 −W11;22):

σ4 − 4

(

W12;12

J1
+A2 −B

)

σ2 + 4

(

W12;12

J1
−B

)2

= 0. (37)

Stable oscillatory motion is possible whenever σ2 ≥ 0; neutral modes (σ = 0) result if

B =
W12;12

J1
, or Ω2 = W12;12. (38)

7.3. Pulsatory mode

We come to the last mode following a typical procedure for incompressible fluids (Chandrasekhar, 1969, p.
84). Adding equations (32) and (33), and subtracting twice equation (34), one obtains

(L11 + L22)
(

W11;11 +W11;22 − 2W11;33 − 2BJ1 + J1λ
2
)

− 2L33 (−W11;33

+W33;33 + J3λ
2
)

+ 2AJ1λ (L12 − L21) = 0. (39)

Subtracting now equation (35) from (36), there results

J1λ (L12 − L21)− 2AJ1 (L11 + L22) = 0. (40)

Finally we eliminate L12 − L21 and L11 + L22 from equation (39) with the help of equation (40) and Chan-
drasekhar’s Theorem 17 (Chandrasekhar, 1969, p. 61) based on the figure’s form and the continuity equation
(div ξ = 0), that for our particular figure is

L11 + L22 = −
(

4d
J33
J1e43

+
J3
J1e23

)

L33, (41)
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where

J33 =

∫

x4
3 dτ. (42)

From the last result one arrives at the dispersion relation

σ2 =
C
(

W11;11 +W11;22 − 2W11;33 + 4A2J1 − 2BJ1
)

+ 2W11;33 − 2W33;33

CJ1 − 2J3
, (43)

meaning

C = −
(

4d
J33
e43J1

+
J3
e23J1

)

.

8. NUMERICAL RESULTS

8.1. Stability of figures with cylindrical angular velocity distribution

The various oscillatory modes can be calculated from the figure’s equilibrium state, namely, for given d,
e3 and Vp (pole angular velocity); once these quantities have been determined the surface angular velocity
distribution (equation (9)) can be extended from the surface inward. Next, the potential and super-potential
expressions can be numerically evaluated, as explained in § 3, and the Ω integrals (in equation (27)) along with
the Wpq;ij elements (equations (23), (24) and (25)) can be established.

As an illustration we have worked out two particular cases: d = 1/8 and d = −1/8 (see Tables 1 and 2).
With equations (30), (37) and (43), one builds Tables 4 and 5 for the transverse-shear modes (σ1, σ2 and σ3),
the toroidal modes (σ4 and σ5) and the pulsatory mode (σ6). The entries for σ4 corresponding to the neutral
point, and the beginning of the instability regime, are given with five significative figures.

TABLE 4

PROPER FREQUENCIES σ1, σ2, σ3 (TRANSVERSE-SHEAR MODES), σ4, σ5 (TOROIDAL MODES)
AND σ6 (PULSATORY MODE)a

e3 σ1 σ2 σ3 σ4 σ5 σ6

0.9 0.7579 1.5240 2.2879 0.8115 2.3333 2.0034

0.8 0.9135 1.4788 2.4005 0.4923 2.3275 2.0948

0.7 1.0303 1.4438 2.4856 0.1925 2.2644 2.1651

0.63432 1.0989 1.4179 2.5311 0.0000 2.1918 2.2013

0.6 1.1160 1.4102 2.5407 0.1001 2.1464 2.2039

0.5 1.1701 1.3703 2.5592 0.3960 1.9631 2.1942

0.4 1.1884 1.3162 2.5283 0.7216 1.6789 2.1115

0.32861 1.1749 1.2623 2.4626 1.1876 ± 0.0 i 1.9924

0.3 1.1607 1.2344 2.4226 1.1744 ± 0.2795 i 1.9278

0.2 1.0606 1.0991 2.1968 1.0792 ± 0.5179 i 1.6017

aFor the spheroidal figure characterized by e3, d = 1/8 and a cylindrical angular velocity distribution. The
model with e3 = 0.63432 has a zero frequency (branch model), and e3 = 0.32861 is the instability onset.
The physical frequencies are the given ones multiplied by

√

Gρ (equation (14)).

For the toroidal oscillation modes one has ξ1 = L11x1 + L12x2, ξ2 = L21x1 + L22x2 and ξ3 = 0, so that a
figure’s circular section x2

1 + x2
2 = r is distorted to

(1 + 2L11)x
2
1 + 2(L12 + L21)x

2
1x

2
2 + (1 + 2L22)x

2
2 = r,

neglecting smaller square L-terms as compared to L. This is the ellipse equation, so that a circle is converted
back and forth into an ellipse by the perturbation. For a neutral mode (σ4 = 0), the perturbed circle permanently
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TABLE 5

PROPER FREQUENCIES σ1, σ2, σ3 (TRANSVERSE-SHEAR MODES), σ4, σ5 (TOROIDAL MODES)
AND σ6 (PULSATORY MODE)*

e3 σ1 σ2 σ3 σ4 σ5 σ6

0.7 0.7692 1.5338 2.2878 0.7303 2.2535 2.0651

0.6 0.9559 1.4707 2.4064 0.3332 2.2247 2.1531

0.50929 1.0774 1.4184 2.4645 0.0000 2.1235 2.2071

0.5 1.0860 1.4128 2.4693 0.0342 2.1083 2.2083

0.4 1.1643 1.3535 2.4819 0.4009 1.8917 2.1852

0.3 1.1887 1.2749 2.4153 0.8224 1.5066 2.0569

0.26620 1.1827 1.2408 2.3674 1.1546 ±0 .0 i 1.9819

0.2 1.1387 1.1562 2.2244 1.1034 ±0 .4369 i 1.2947

0.1 0.9537 0.9724 1.7836 0.0912 ±0 .5294 i 1.2464

*For the spheroidal figure characterized by e3, d = −1/8 and cylindrical angular velocity distribution.a

aModel with e3 = 0.50929 has a zero frequency (branching model), and e3 = 0.26620 is the instability onset.
The physical frequencies are the given ones multiplied by

√

Gρ (equation (14)).

TABLE 6

PROPER FREQUENCIES σ1, σ2, σ3 (TRANSVERSE-SHEAR MODES), σ4, σ5 (TOROIDAL MODES)
AND σ6 (PULSATORY MODE)*

e3 σ1 σ2 σ3 σ4 σ5 σ6

0.90 forbidden

0.80 forbidden

0.70 0.8333 1.5089 2.3270 0.6334 2.2847 2.0888

0.60 0.9970 1.4556 2.4321 0.2617 2.2351 2.1735

0.525618 1.0879 1.4174 2.4772 0.0000 2.1477 2.2164

0.50 1.1129 1.4033 2.4863 0.0889 2.1071 2.2251

0.40 1.1810 1.3478 2.4925 0.4432 1.8824 2.1980

0.30 1.1973 1.2720 2.4207 0.8612 1.4849 2.0650

0.272133 1.1902 1.2449 2.3819 1.1636 ± 0.0 i 2.0015

0.2 1.1410 1.1554 2.2258 1.1067 ± 0.4425 i 1.7695
*For the spheroidal figure characterized by e3, d = −1/8 and a disklike angular velocity distribution.a

aModel with e3 = 0.525618 has σ4 = 0; onset of instability is at e3 = 0.272133. The frequencies are
normalized to

√

Gρ (equation (14)).

remains as an ellipse. In our case the neutral frequency marks, in actual fact, a bifurcation point where a series
of ellipsoidal figures branches off; this can be verified by observing Table 1 of Paper I for ellipsoidal figures
(d = 1/8) whose first row corresponds to a nearly spheroidal form (e2 = 0.99 ≈ 1), for which e3 = 0.6574;
this value is similar to the value of the neutral frequency, namely, e3 = 0.6343. For d = −1/8 (not reported in
Paper I), we now know that the spheroidal limit is located at e3 = 0.4657, near to e3 = 0.5093 (Table 5) where
the neutral frequency occurs. These values do not exactly agree due to the imprecision of the virial technique
as applied to our distorted models.

According to Tables 4 and 5, for low d the neutral point is located at a lower zM value. More generally,
numerical results show that for neutral points zM increases with increasing d, so that the figures become less
flattened, a conclusion reached by obtaining the neutral points when d = −1/5,−1/8,−1/16, 1/16, 1/8, 1/5.
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Interpolating our results to d = 0, we obtain e3 = 0.5831 which is very close to Chandrasekhar’s e3 = 0.5827
for Maclaurin spheroids (Chandrasekhar, 1969, p. 85).

8.2. Stability of figures with disklike angular velocity distribution

To discuss this case we take the series for d = −1/8, which spans from about e3 = 0.3 to e3 = 0.7 (for
e3 ∼

> 0.7 the figures are forbidden) with the property ∂Ω/∂x3 = ∂Ω(x2
3)/∂x3 < 0; for e3 < 0.3 we have models

with ∂(s2ω)/∂x3 > 0 (see equation (12) and Figure 1) and the disklike distribution is unsuitable. Results
for transverse-shear modes (σ1, σ2 and σ3), toroidal modes (σ4 and σ5) and pulsatory mode (σ6) are given
in Table 6; the frequencies are plotted in Figure 2. Figure 2 shows that the onset of instability is located at
e3 ≈ 0.27, (σ4 = σ5), and the neutral frequency is located at e3 ≈ 0.53. Here again the figure with neutral
frequency represents the bifurcation of an ellipsoidal sequence. The d = −1/8 ellipsoidal series has a limiting
figure at e3 = 0.4657 (see previous Section), whereas the corresponding neutral frequency occurs at e3 = 0.5256,
and the difference between the two values is even greater than that for the cylindrical distribution. Therefore,
the precision of assumption (21) depends on the angular velocity distribution.

Fig. 2. Frequencies for the series d = −1/8 and disklike angular velocity distribution, ranging from e3 = 0.27 (end of
instability interval) to e3 = 0.7 (start of forbidden region, Figure 1).
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