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RESUMEN

Presentamos un conjunto de simulaciones numéricas del colapso gravitacional
de un núcleo uniforme y rotante, en el cual semillas de masa con simetŕıa azimu-
tal se implementan inicialmente con el propósito de favorecer la formación de un
filamento denso, a partir del cual un sistema binario se puede formar mediante
fragmentación directa. Observamos que este proceso de formación binaria se inhibe
cuando la masa total del núcleo progenitor M0 se incrementa; entonces aumentamos
el nivel de la razón de enerǵıa rotacional a la enerǵıa gravitacional, denotada por
β, que se proprociona inicialmente al núcleo rotante con el propósito de lograr la
fragmentación directa deseada del filamento. Medimos la masa binaria Mf que se
obtiene a partir de una masa inicial M0 y construimos un diagrama esquematico M0

vs β, en donde las configuraciones binarias deseadas se ubican. También reportamos
algunos datos f́ısicos básicos de los fragmentos.

ABSTRACT

We present a set of numerical simulations of the gravitational collapse of a
uniform and rotating core, in which azimuthal symmetric mass seeds are initially
implemented in order to favor the formation of a dense filament, out of which
a binary system may be formed by direct fragmentation. We observe that this
binary formation process is diminished when the total mass of the parent core M0

is increased; then we increase the level of the ratio of rotational energy to the
gravitational energy, denoted by β, initially supplied to the rotating core, in order
to achieve the desired direct fragmentation of the filament. We measure the binary
mass Mf obtained from an initial M0 and then show a schematic diagram M0 vs
β, where the desired binary configurations are located. We also report some basic
physical data of the fragments.

Key Words: hydrodynamics — methods: numerical — stars: formation

1. INTRODUCTION

The formation of low mass-star binaries is well
understood with regard to its basic physical princi-
ples; (Boden 2011; Stahler & Palla 2004). The essen-
tial events of this formation process are the gravita-
tional collapse of cores and their fragmentation dur-
ing an early evolution stage of the collapsing cores
(Reipurth et al. 2002; Duchêne et al. 2004; Girart
et al. 2004).

With regard to the theoretical aspect, numeri-
cal simulations aimed at reproducing the collapse of
rotating cores began to be performed four decades
ago. The best known example of isothermal frag-
mentation during a core collapse was first calculated

by Boss & Bodenheimer (1979). This model is now
called the ”standard isothermal test case” as it has
been used for testing new codes and making code
comparisons. The outcome of this classic model and
of a variant of thereof calculated by Burkert & Bo-
denheimer (1993) and Bate & Burkert (1997) was a
protostellar binary system.

The earliest papers on collapse were largely done
with insufficient spatial resolution; see for instance
Boss (1991). Therefore, these calculations suffered
from artificial fragmentation due to violation of the
Jeans condition (Truelove et al. 1997). Nowadays,
a new generation of three-dimensional collapse cal-
culations have improved so much in resolution, that
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they now reveal, in very valuable detail, the forma-
tion of a binary system or multiple systems of low
mass proto-stars by starting with a density pertur-
bation with azimuthal symmetry. This was success-
fully implemented long ago by Boss et al. (2000);
see also Truelove et al. (1998), Klein et al. (1999),
Boss et al. (2000), Kitsionas & Whitworth (2002)
and Springel (2005). Many of these numerical ex-
periments were done using a solar mass parent core,
that collapsed under its self-gravity against its ther-
mal pressure and rotational support to form a bi-
nary system composed of very low mass proto-stars
(see the review by Tohline 2002). However, taking
advantage of scaling relations valid in a nearly ho-
mologous isothermal collapse, Sterzik et al. (2003)
demonstrated that the final properties of the binary
system depend on the initial conditions of the par-
ent core, such as its temperature, mass and angular
momentum. The assumption of isothermality allows
the existence of such scaling relations, so that the
results obtained for the collapse of a one solar mass
parent core can be scaled to cores of arbitrary mass
only in the isothermal regime.

As for the observational aspect, recent tech-
nical improvements have made it possible to im-
prove the spatial resolution and observe a few pro-
tostars in their Class 0 evolution stage; for instance,
L1157-mm, CB230 IRS1 and L1165-SMM1, all iso-
lated and located in the Cepheus Flare region (Tobin
at al. 2013); there was evidence of direct observation
of a disk, for instance, that with a radius of 125 AU
surrounding the protostar L1527 (Tobin et al. 2012).
However, spatial resolutions better than 50 AU are
needed in order to produce basic physical informa-
tion and provide clues regarding the mechanisms of
binary system formation.

For the Taurus dark cloud, a correlation between
the mass of the newly formed stars and the mass of
the associated dense proto-stellar cores in the cloud
was observed long ago (Myers 1983).

Recent VLA and CARMA observations have
shown proto-stars in binaries with unprecedented
resolution. Specifically, the proto-stellar masses of
systems such as CB230 IRS1 and L1165-SMM1 have
been detected in the range of 0.1 − 0.25M⊙. These
are much more massive than the masses generally ob-
tained by numerical simulations of binary formation,
which result in an initial fragment mass of around
0.01M⊙, when the calculations must be stopped be-
cause of insufficient spatial resolution and small time
steps. However, the fragments will accrete mass and
continue to grow so long as infalling gas is avail-
able. Motivated by these discrepancies in mass, in

this paper we study the formation mass of a binary
system as a function of the total mass of its par-
ent core. To achieve this objective, we present high-
resolution three-dimensional hydrodynamical simu-
lations, done with the public code Gadget2, which
implements the SPH technique in order to follow the
gravitational collapse of a uniform and rotating core.
This is a variant of the standard test case, in which
we implemented a mass perturbation with the same
mathematical structure as the density perturbation
used by Boss et al. (2000), to enforce the formation
of two antipode embryonic binary mass seeds dur-
ing the early core collapse. This system evolved to
a pair of well-defined mass condensations connected
by a dense filament.

In this intermediate evolution stage of the core
collapse, two events may take place according to the
assembled mass of these mass condensations. If the
assembled mass is small enough for the centrifugal
force (due to core rotation) to overcome the gravi-
tational attraction of the mass condensations, then
they approach each other, achieve rotational speed,
swing past each other and finally separate to form
the desired fragments, which will become the binary
system, in which the fragments orbit around one
another. When the condensed masses are massive
enough, then they approach each other, make con-
tact and merge to form a single central proto-stellar
mass condensation.

When the total mass of the parent core M0 is in-
creased, the merging event is thus favored while the
binary formation process is hindered. The formed
single central mass condensation is surrounded by a
disk out of which two additional small mass conden-
sations may be formed by disk fragmentation, so that
this kind of simulation ends with a multiple system,
dominated by a primary mass. Configurations of this
kind were obtained by Hennebelle et al. (2004) by
increasing the external pressure on a rotating core.
To prevent the occurrence of merging, we increased
the ratio of rotational energy to gravitational en-
ergy, β, supplied initially to the parent core, while
keeping the ratio of thermal energy to potential en-
ergy, α, fixed for our all simulations. Matsumoto
& Hanawa (2003) and Tsuribe (2002) studied the ef-
fects of different rotation speeds and rotation laws on
the fragmentation of a rotating core. These authors
introduced six types of fragmentation seen as the
possible outcomes of a collapsing core. The configu-
ration that interests us in this paper corresponds to
their disk-bar type fragmentation. They also showed
a configuration diagram whose axes were given by
products of the free fall time tff measured from the
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central density, multiplied by the initial central an-
gular velocity Ω0, and the amplitude of the velocity
perturbation of the m = 2 mode Ω2, respectively.

To start our study, we arbitrarily chose two ini-
tial β ratios: the lower value given by β = 0.045 and
the higher value given by β = 0.14, while we fixed
α = 0.24. The number of Jeans masses contained in
a uniform spherical core is given by 1/α. Thus the
number of fragments that we expect to form is 2.
We thus constructed a schematic diagram the axes
of which were M0 and the measured β, where we
showed the kind of configuration obtained: either a
primary or the desired binary. It is important to note
that recent observations made by Tokovinin (2000)
seem to confirm the existence of dwarf binaries with
mass ratios q = M2/M1 from 0.95 to 1, as first de-
scribed by Lucy & Ricco (1979); some examples of
this kind of system are MM Her and EZ Peg, with q
given by 0.98 and 0.99, respectively. The particular
mechanism of fragmentation considered in this paper
can be potentially useful as a template for studying
binary systems with q close to 1.

Furthermore, as the parameter space relevant to
the core collapse is so large, it is not easy to an-
ticipate the outcome of a given collapse simulation.
A first effort for establishing a criterion of the type
α β < 0.2, for predicting the occurrence of fragmen-
tation of a rotating isothermal core was obtained
by means of numerical simulations by Miyama et
al. (1984), Hachisu & Heriguchi (1984) and Hachisu
& Heriguchi (1985). Furthermore, Tsuribe et al.
(1999) in a semi-analytical study constructed a con-
figuration space whose axes were the dimensionless
quantities α and β. Tsuribe (2000) introduced an-
other fragmentation criterion based on the flatness
of the core, such that the configuration diagrams
α versus β were improved. It must be emphasized
that numerical simulations seem to prove that these
fragmentation criteria can only provide a clue re-
garding the fate of a specific initial core configura-
tion but cannot predict its exact outcome nor the
number of fragments that may be produced during
its gravitational collapse. To study the initial forma-
tion stages of low-mass protostellar binary systems,
Riaz et. al. (2014) have followed a similar strat-
egy, in which the value of α changes whereas the
value of β is kept fixed.

According to these fragmentation criteria, the
values for α and β that we use in this paper fa-
vor the collapse of the core and the formation of
the embryonic binary system according to Tsuribe
et al. (1999), but it is still not clear what the next
events will be, since they depend on the assembled

mass, as we mentioned previously. So, we performed
numerical simulations in order to determine exactly
the main simulation outcome beyond the formation
of the mass condensations.

In the early simulations on the collapse of rotat-
ing cores, the ideal equation of state was used as a
first approximation. However, once gravity produces
a substantial contraction of the core, the gas begins
to heat. In order to take this heating into account, in
our simulations we implemented a barotropic equa-
tion of state beos, as was proposed by Boss et al.
(2000). The beos depends on a single free param-
eter, the critical density ρcrit. Arreaga-Garćıa et
al. (2008) reported a study of the effects of the
change in the thermodynamic regime on the out-
come of a particle-based simulation, where several
values of the critical density were considered. The
simulations that we present here increased the peak
density up to three orders of magnitude within this
adiabatic regime. Therefore, the scaling relations ob-
tained under the assumption of isothermality are no
longer valid for this final evolutionary stage of our
simulations.

The outline of this paper is as follows: the ba-
sic physics of the core and the particle distribution
that represents the initial core are described in § 2.
The most important features of the time evolution of
these simulations are presented by means of 2D iso-
density plots in § 3. The relevance of these results in
view of those reported in previous works is discussed
in § 4. Further, we show the velocity distribution ob-
tained for the binaries by means of iso-velocity 3D
plots in § 4.3. Finally, some concluding remarks are
given in § 5.

2. THE CORE

We consider a spherical core with radius
R0 = 4.99 × 1016 cm ≡ 3335 AU, which is rigidly
rotating around the z axis with an angular veloc-
ity Ω, so that the initial velocity of the i − th SPH
particle is given by ~vi = ~Ω × ~ri ≡ (−Ω yi,Ωxi, 0).

In § 3 we will present the results of several simu-
lation models in which the total core mass is system-
atically increased up to 5 M⊙. We emphasize that
we left the initial core radius unchanged, so that the
average density increased instead. However, these
models still correspond to a core, as defined statisti-
cally by Bergin & Tafalla (2007).

The time needed for a test particle to reach the
center of the core when gravity is the only force act-
ing on it, is defined as the free fall time tff by means
of

tff =

√

3π

32Gρ0
, (1)
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Fig. 1. Iso-density plot to show the early evolution of all
the models. The color figure can be viewed online.

where ρ0 = 3.8×10−18 g cm−3 is the average density
of a 1M⊙ core with radius R0. These values of tff

and ρ0 are used as normalizing factors for the plots
presented below.

2.1. The radial mesh for core particles

We used an initial grid with spherical geometry,
so that a set of concentric shells was created and
populated with SPH particles in the following sense.
We divided the total volume V of the sphere of ra-
dius R0 into a given number of bins, Nbin, such that
∆V = V/Nbin was the volume of a spherical shell.
Each shell can be characterized by a radial interval
(rl, rf ), such that its initial and final radius are rl

and rf , respectively. The radius rf was determined
by the condition that ∆V be constant. Hence, we
have

rf =

(

rl +
∆V

4π/3

)1/3

. (2)

Thus, the first shell was determined by the radial
interval (0, r1), while the second shell was delimited
by (r1, r2), and so on. Let us now define the average
radius rs and the radial width of a given shell as
rs = (rl + rf )/2 and δs = (rf − rl), respectively.

Then, by means of a Monte Carlo scheme, we
populated each concentric shell with a given number
of equal mass particles, Npar, so that the particles
were located randomly in all the available surfaces
of the spherical shells. The spherical coordinates of

the particles of a given shell (rs, θ, φ) are related to
uniform random variables u and v (taking real values
within the interval [0, 1]) by the following equations:

u = 1−cos(θ)
2 = 1

2

∫ θ

0
sin(θ′) dθ′ ,

v = φ
2π = 1

2 π

∫ φ

0
dφ′ .

(3)

We thus had a total of Nbin × Npar particles dis-
tributed in the spherical volume of the core, such
that the total mass in each shell was constant and
given by Npar m0, where m0 is the particle mass,
so that the global density of the core was also con-
stant. To achieve a constant density distribution in
a local sense, we further applied a radial perturba-
tion to all the particles of a given shell such that any
particle could be randomly displaced radially out-
ward or inward, but preventing a perturbed particle
from reaching another shell. The radial perturba-
tions ǫr applied to each SPH particle, regardless of
the model, were at the order of ǫr = δs/10.

In the first panel of Figure 1, one can appreci-
ate the spherical nature of the initial mesh, as only
the innermost radial shell is visible due to the huge
contrast in density between this and the outer shells.

In all the simulations of this paper, we used a
total of two million SPH particles, which according
to the convergence study done by Arreaga-Garćıa et
al. (2007), is large enough to fulfill the resolution
requirements described by Truelove et al. (1997).

2.2. Mass perturbation

We ensured that a binary system would be
formed in the simulation by implementing a mass
perturbation such that, if m0 was the particle
mass, the perturbed mass mi of particle i was
mi = m0 + m0 ∗ a cos (mφi), where the perturba-
tion amplitude was set to a = 0.1 and the mode
was fixed at m = 2; φ is the azimuthal spherical
coordinate.

There are other methods for the implementa-
tion of density perturbations, such as the Monte
Carlo scheme, in which the particle mass remains un-
changed. Nevertheless, the mass perturbation we im-
plemented here was successfully applied in our previ-
ous papers on collapse (Arreaga-Garćıa et al. 2007;
Arreaga-Garćıa et al. 2008), and remarkably also by
other authors, such as Springel (2005). With parti-
cle mass variations within ten percent of the initial
particle mass, as is the case of our simulations, there
were no border or particle deficiency effects to worry
about.
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2.3. The barotropic equation of state

To take into account the heating of the gas due
to both core contraction and energy dissipation from
artificial viscosity, we used the barotropic equation
of state proposed by Boss (2000):

p = c2
0ρ

[

1 +

(

ρ

ρcrit

)γ−1
]

, (4)

where γ = 5/3 and c0 is the sound speed so that
the corresponding temperature associated with the
gas core is T ≈ 10K. The critical density ρcrit de-
termines the change in the thermodynamic regime
from isothermal to adiabatic. For the early phases
of the collapse, when the peak density is much lower
than the critical density, ρmax << ρcrit, the beos be-
comes an ideal equation of state; for the late phases
of the collapse, when ρmax >> ρcrit, there is an in-
crease in pressure according to p ≈ ρ3/2, then the
beos becomes an adiabatic relation.

We used only one value given by
ρcrit = 5.0 × 10−14 g cm−3. As we will show
in the following sections, in the simulations consid-
ered in this paper, the average peak density reached
ranges around ρ = 2.5 × 10−11 such that the core
density increased by up to 3 orders of magnitude
within the adiabatic regime.

3. RESULTS

Simulations performed worldwide in order to fol-
low the collapse of a uniform density core have
proven that an isolated rotating core contracts to
an almost flat configuration approximately within a
free-fall time of dynamical evolution; see for instance
Bodenheimer et al. (2000), Sigalotti & Klapp (2001)
and references therein. Therefore, in order to illus-
trate our results, we used 2D iso-density plots for a
slice of particles around the equatorial plane of the
core.

Let us now emphasize some important features
of the early evolution of the collapsing core, where
the mass perturbation mentioned in § 2.2 plays a
fundamental role. When the peak density reaches
a value around 1.0 × 10−16 g cm−3, the mass per-
turbation generates two well-defined mass condensa-
tions, which are clearly visible in the second panel
of Figure 1. These mass condensations act as mass
attraction centers. As more mass is being accreted
by these centers, the peak density monotonically in-
creases in them and in their surroundings as well, as
can be noted by the color scale present in the central

region of the core in the third and fourth panels of
Figure 1. Thus, all the models considered here finish
this first evolution stage with an embryonic binary
system composed by two well-defined mass conden-
sations connected by a filament.

As can be seen in Figure 2, our simulations eas-
ily satisfy some basic expectations, some of which
are: (i) all the models collapse by the end of the
simulation; (ii) the larger the value of β given ini-
tially to the core, the slower the core collapses; (iii)
the more massive the initial core, the faster it col-
lapses; (iv) there must be a maximum β value, so
that for β > βmax, the core simply expands without
contracting.

There are two competing forces that determine
the next events to occur in the central core: on one
hand, the gravitational force, so that each mass con-
densation pulls on the other, favoring their approach;
on the other hand, the centrifugal force acting on
each mass condensation, favoring their separation.

Now we shall separately illustrate the results of
each model by means of colored iso-density figures.
In Table 1 we summarize the considered models and
their main results, according to the following entries:
Column 1 gives the label and Column 2 shows the to-
tal mass of the parent core; in Column 3 we give the
β initially provided to the core, while the maximum
evolution time and peak density of the simulation are
listed in the fourth and fifth columns, respectively;
finally, the last column shows the configuration ob-
tained, either binary or primary, as explained below.

3.1. Models with parent core mass up to M0 = 1M⊙

The models considered in this section are those
labeled with m075 and m1 in Table 1. For all
these models, the gravitational attraction between
the formed mass condensations is very easily over-
come by the centrifugal repulsion; then the mass
condensations avoid contact between them and fly
apart to become true fragments which enter in or-
bit around one another. Thus, so we obtained the
desired binary configurations.

The iso-density plots for the low and high β mod-
els with M0 = 0.75M⊙ can be seen in Figure 4 and
Figure 5, respectively. The binary separations are
around 111 AU and 402 AU, respectively. A clear
mass asymmetry can be seen between the fragments
in the model m075b0045, as the masses are 0.12M⊙

and 0.03M⊙, respectively. Meanwhile, for model
m075b014 the masses of the fragments are almost
the same, around 0.07M⊙.
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TABLE 1

THE MODELS AND THEIR MAIN RESULTS

Model M/M⊙ β tmax/tff log10 (ρmax/ρ0) Configuration

m075b0045 0.75 0.045 1.29 7.50 Binary

m075b014 0.75 0.14 1.57 6.78 Binary

m1b0045 1.0 0.045 1.11 7.28 Binary

m1b014 1.0 0.14 1.38 6.79 Binary

m1p5b0045 1.5 0.045 0.937 6.99 Primary

m1p5b011 1.5 0.11 1.08 6.94 Binary

m1p5b014 1.5 0.14 1.10 6.70 Binary

m2p5b0045 2.5 0.045 0.76 7.02 Primary

m2p5b013 2.5 0.13 0.87 6.83 Binary

m2p5b014 2.5 0.14 0.83 6.62 Binary

m5b0045 5.0 0.045 0.53 6.58 Primary

m5b014 5.0 0.14 0.71 7.73 Primary

m5b021 5.0 0.21 0.71 6.47 Binary

Next, let us consider the results for the low and
high β models with M = 1M⊙, which are shown in
Figure 3 and Figure 6, respectively. The correspond-
ing binary separations have now increased to 326
and 667 AU, respectively. The masses of the frag-
ments for model m1b0045 are 0.16M⊙ and 0.09M⊙,
while for model m1b014 both masses are very simi-
lar, around 0.11M⊙.

Thus, we see that a small change in the total mass
of the parent core produces a very large change in the
resulting binary separation and mass. As expected,
for the low β models the separation reached by the
mass condensations is smaller than for the high β
models.

3.2. Models with parent core mass M0 = 1.5M⊙

In the low β model m1p5b0045 we saw for the
first time that it did not produce a binary via the
separation of its embryonic mass condensations, but
instead we saw their merging. So, only a primary
mass condensation was formed in the central core
region, which was surrounded by small spiral arms,
as can be seen in Figure 7. Soon thereafter, these
spiral arms broke and separated from the primary,
so the simulation ended with a primary mass accom-
panied by two smaller mass condensations.

Following to our strategy, we then increased the
angular velocity of this model up to the value where
we obtained β = 0.11, so that we had now the model
m1p5b011, in which we again obtained the appear-
ance of a binary system via the separation of the

embryonic mass condensations; see Figure 8. The
binary separation in this case, 527 AU, was similar
to that already seen in § 3.1 for the low β model
m1b014. The masses of the fragments for this new
model were 0.16M⊙ and 0.17M⊙.

The existence of model m1p5b011 tells us in ad-
vance that the high β model will form the desired
binary, as can be seen in Figure 9, where we show
the results for model m1p5b014. As was previously
observed, the additional rotational energy produced
a small increase in the binary separation, as we now
obtained 585 AU, while the masses of the fragments
were almost identical: 0.16M⊙.

3.3. Models with parent core mass M0 = 2.5M⊙

As was the case in § 3.2, here the low β model
m2p5b0045 produced a primary configuration, which
is shown in Figure 10. However, the high β model
m2p5b014 produced the desired binary configura-
tion. For this reason, we expected to find a new β
value, such that the model m2p5b0045 would become
a binary system. So, by systematically increasing its
β, we reached the value β = 0.13, where we found
the desired configuration shown in Figure 11. The
results for model m2p5b014 are shown in Figure 12.

One would expect to find very similar physical
properties for this pair of models, m2p5b013 and
m2p5b014, as their initial β values are very simi-
lar. The binary separations are indeed very similar,
around 259 and 262 AU, respectively. However, the
masses of their fragments are different. This mass
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Fig. 2. Time evolution of the peak density.
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Fig. 3. Iso-density plot for model m1b0045. The color
figure can be viewed online.
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Fig. 4. Iso-density plot for model m0p75b0045. The color
figure can be viewed online.

difference can be explained by closely looking at Fig-
ure 11, where one can notice that there is an impor-
tant mass exchange between the mass condensations,
since the additional rotational energy supplied is per-
haps barely enough to separate them; so they do not
become true fragments.

3.4. Models with parent core mass M0 = 5M⊙

In this case we observed for the first time that
even the high β model does not produce the de-
sired binary configuration. But we can still com-
pare models m5b0045 and m5b014, as they form
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Fig. 5. Iso-density plot for model m0p75b014. The color
figure can be viewed online.
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Fig. 6. Iso-density plot for model m1b014. The color
figure can be viewed online.

two slightly different primary dominated configura-
tions. In model m5b0045, an elongated central bar
is formed with two additional mass condensations
formed at the ends of the spiral arms, as illustrated
in Figure 13. In model m5b014 we see again the for-
mation of a central mass condensation, but in this
case, it is surrounded by very long spiral arms, which
break soon thereafter and separate from this central
mass; see Figure 14.

As usual, we then increased the level of the ini-
tial rotational energy, until the value of β = 0.21
was reached, for which we obtained the desired bi-
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Fig. 7. Iso-density plot for model m1p5b0045. The color
figure can be viewed online.
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Fig. 8. Iso-density plot for model m1p5b011. The color
figure can be viewed online.

nary configuration, labeled now model m5b021; see
Figure 15. The binary separation was 427 AU while
the masses of the fragments were 0.6M⊙ and 0.4M⊙.

4. DISCUSSION

The main results of this paper are already con-
tained in Tables 1, 2 and 3. However, it is more
illustrative to present them visually. In Figures 16,
17, 18 and 19, we show: (i) the schematic diagram
where the desired binary configurations are located;
(ii) the obtained binary mass Mf as a function of the
total mass of the core M0; (iii) the obtained binary
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TABLE 2

PHYSICAL PROPERTIES OF FRAGMENTS

Model rmax/R0 Mf/M⊙ αf βf

m075b0045 0.0125 1.2286294e-01 0.266161 0.181729

m075b0045 0.0125 3.2744151e-02 0.207690 0.261402

m075b014 0.0125 7.3241010e-02 0.202020 0.244268

m075b014 0.0125 7.0384055e-02 0.204878 0.237756

m1b0045 0.0164 1.6832440e-01 0.233851 0.265091

m1b0045 0.0164 9.3557134e-02 0.276662 0.213533

m1b014 0.0188 1.1661998e-01 0.207951 0.225678

m1b014 0.0188 1.1168584e-01 0.207141 0.243163

m1p5b011 0.028 1.6871537e-01 0.255228 0.171645

m1p5b011 0.028 1.7556763e-01 0.244072 0.195569

m1p5b014 0.028 1.6674188e-01 0.234014 0.243616

m1p5b014 0.028 1.6345865e-01 0.221192 0.234322

m2p5b013 0.0188 3.7504950e-01 0.239499 0.196338

m2p5b013 0.0188 1.0161296e-01 0.256503 0.124867

m2p5b014 0.0188 2.7242526e-01 0.246773 0.222628

m2p5b014 0.0188 2.6820856e-01 0.242448 0.205314

m5b021 0.0329 6.3345021e-01 0.249588 0.174287

m5b021 0.0329 4.0061280e-01 0.262765 0.159544

TABLE 3

BINARY SEPARATION AND THE SOUND
SPEED

Model rsep[AU ] c0 [cm/s]

m075b0045 111.43 13760.78

m075b014 402.98 13799.62

m1b0045 326.7 16647.83

m1b014 666.79 16647.83

m1p5b011 527.92 20000.0

m1p5b014 585.93 19711.58

m2p5b013 259 25410.62

m2p5b014 262.2 25410.62

m5b021 427.97 35820.06

separations and (iv) the distribution of the velocity
field. Let us now comment upon the creation of each
figure and the main results.

4.1. The schematic diagram of binary configurations

The calculated schematic diagram of desired bi-
nary configurations is illustrated in Figure 16. We
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Fig. 9. Iso-density plot for model m1p5b014. The color
figure can be viewed online.

first notice that there must exist a critical mass Mcrit

that corresponds to a βcrit, such that they separate
two regimes: one where M0 > Mcrit, in which the
needed β to obtain the desired binary configuration
must be higher than the βcrit, but smaller than the
maximum βmax that allows the core to remain in a
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Fig. 10. Iso-density plot for model m2p5b045. The color
figure can be viewed online.

Fig. 11. Iso-density plot for model m2p5b013. The color
figure can be viewed online.

bounded configuration, that is, β would lie within
the interval β ∈ (βcrit, βmax).

Another regime, is that with M0 < Mcrit, in
which the needed β can take values in the interval
0 < β < βcrit, where one can definitely obtain the
desired binary configuration. However, there is still
the possibility of having a binary configuration with
even higher values of β ∈ (βcrit, βmax), since the
high value β = 0.14 was set arbitrarily.

The cores were observed to have low rotational
velocities, so if we had a collapsing core with
M0 < Mcrit, then according to Figure 16 it would be
more likely for a binary configuration to result from
its collapse. On the contrary, if we had a collapsing
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Fig. 12. Iso-density plot for model m2p5b014. The color
figure can be viewed online.
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Fig. 13. Iso-density plot for modelm5b045. The color
figure can be viewed online.

core with M0 > Mcrit, then it would be more likely
for a primary system to result from its collapse.

4.2. The physical properties of binaries

Let us now consider Figure 17, recalling first that,
as an approximation strategy to construct our sim-
ulation models, we increased in this paper the core
mass M0 without changing the core radius R0, so the
core density was increased and therefore the free fall
time was decreased; see equation 1.

The accreting mass rate can be approximately es-
timated by means of Ṁ = M0/tff ; that is, supposing
the entire core mass had collapsed in a free fall time.
The combinations of changes mentioned above, that
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Fig. 14. Iso-density plot for model m5b014. The color
figure can be viewed online.
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Fig. 15. Iso-density plot for model m5b021. The color
figure can be viewed online.

is, an increasing M0 with decreasing tff , gives us an

increasing Ṁ for all the models under consideration.

A better estimate for the accreting mass rate was
obtained by a semi-analytical approach to the col-
lapse of an isothermal core (Shu et al. 1987), which
is given now by Ṁ = c3

0/G, where c0 is the sound
speed and G is Newton’s gravitational constant. In
order to keep fixed in all models the ratio of thermal
energy to gravitational energy, denoted by α, we in-
creased the sound speed, so that the Ṁ increased
when the mass of the core increased, at least for the
first stage of evolution where the isothermal approx-
imation is valid.
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Fig. 16. Schematic diagram to show the location of the
binary systems. The mass M0 is given in terms of M⊙.

So, the increase of the mass of the binary frag-
ment with increasing mass of the parent core was
expected, as the mass accretion rate also increases
with the mass of the parent core. In this paper we
confirmed this expectation and we measured the bi-
nary mass Mf obtained from a given initial M0. It
should be noted that this fragment mass Mf was
determined in the following way: first we took the
highest density particle in the region where the frag-
ment was located. This particle is considered to
be the center of the fragment. We then found all
the SPH particles whose density was greater than or
equal to some minimum density value given in ad-
vance by log10 (ρmin/ρ0) = 5.0 and that were within
a given maximum radius rmax from the fragment
center; see the second column of Table 2. These
parameters correspond to a minimum density of
3.82 × 10−13 g cm−3 and a maximum radius in the
range of rmax = 41-100 AU.

This set of particles defined the fragment and al-
lowed us to calculate its integral properties; for in-
stance, its mass Mf , and the ratios αf and βf . These
calculated integral properties are shown in Columns
3, 4 and 5 of Table 2, respectively. The number of
selected particles lies in the range of 150 to 300 thou-
sand, approximately.

In § 3, we mentioned the calculated mass of the
binary configurations. It is still necessary to com-
ment on the calculated energy ratios αf and βf . It
was demonstrated by Arreaga-Garćıa et al. (2012)
that in general the fragments obtained by the frag-
mentation of a rotating core tend to virialize. We
observed that for the last snapshot available in each
simulation the sum of αf and βf was always less than
0.5, so the fragments were still collapsing.
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Fig. 17. Binary mass given in terms of M⊙.

Finally, in order to determine the binary separa-
tions illustrated in Figure 18, we simply calculated
the distance between the centers associated with
each fragment, as defined according to the procedure
outlined in the previous paragraph. It is important
to mention that the largest binary separations were
obtained for the intermediate mass models: m1b014
and m1p5b011; see Table 3.

4.3. The velocity distribution of binaries

Now we shall discuss the velocity scale of the
particles forming the fragments; see Figure 19.
These plots are 3D representations formed by all
the particles satisfying the following selection cri-
teria: (i) they are located within the central re-
gion of the core, such that their projected radius
r2d =

√

x2 + y2 is r2d < r2dmax ≡ 0.2R0, irre-
spective of their z coordinate; (ii) they have a den-
sity higher than or equal to the minimum density
value given in advance by log10 (ρ2dmin/ρ0) = 4.0.
These parameters correspond to a minimum density
ρ2dmin = 3.82 × 10−14 g cm−3 and a maximum ra-
dius r2dmax = 668 AU. This selection procedure is
similar to the one we used earlier to define a frag-
ment. In this section, more particles were considered
to make the 3D plots: in the range of 500-800 thou-
sand, approximately.

We wish to point out that the models have differ-
ent sound speeds, c0, which are shown in Column 3
of Table 3. In Figure 19 we plot the magnitude of the
velocity vector, normalized with the sound speed, so
that we will now use a Mach ≡ v/c0, as the unit of
velocity to describe our results.

In all the models, we observed that: (i) only very
few particles reach very high velocities, marked with
red color in the plots; these ultra-fast particles are
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Fig. 18. Binary separation given in AU.

located very close to the central region of the frag-
ment and are velocity-isolated, as no other neigh-
boring particles have similar velocities; (ii) particles
located exactly in the center of the fragment have the
smallest velocity, which can even range from 0.01 to
0.1 Mach, marked with blue color in the plots; (iii)
spiral arms are connected to their fragments by par-
ticles with small velocities, marked with soft blue or
aqua color in the plots; not all of them are visible in
these 3D plots, because their density is probably not
large enough to satisfy our density selection criteria;
(iv) the particles surrounding the innermost region of
the fragments have intermediate velocities, marked
with green color in the plots. These are the infalling
particles from the spiral arms on the fragment. The
particles that are still infalling reach the fragment
through contact regions between the spiral arms and
the fragment. The region where the infalling parti-
cles have radial speeds is marked with yellow color
in the plots; (v) the co-existence of different color
scales in a fragment indicates that a strong velocity
gradient is present.

5. CONCLUDING REMARKS

In this paper we have considered the gravitational
collapse of a rotating core using a spherical shell pop-
ulated with SPH particles in order to represent the
core at the initial simulation time.

First, we observed that this mesh geometry ap-
propriately represents the relevant initial physics of
the core, including the uniform density distribution
and the rigid body rotation. There is an excess of
density at early simulation times, as can be seen in
Figure 2, which is likely to be a consequence of the
huge surface density of the innermost radial shell.
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Fig. 19. Iso-velocity 3D plot; each model is normalized with its corresponding sound speed, ordered from top to bottom
according to the mass of the parent core: m5b021 (first line right); m2p5b013 (second line left), m2p5b014 (second line
right); m1p5b011 (third line left), m1p5b014 (third line right); m1b045 (fourth line left), m1b014 (fourth line right) and
m0p75b045 (fifth line left), m075b014 (fifth line right). The color figure can be viewed online.
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Fortunately, the particles quickly adjust themselves
and thus the core truly begins its collapse some time
later.

Second, the approximation strategy followed in
this paper, that of changing the core mass while
keeping the core radius unchanged, can be replaced
by another, equally valid strategy, for instance, one
in which both the core mass and the radius are
changed while the average core density is unchanged.
Hence, in this paper we can discuss certain re-
sults obtained for a family of similar size cores with
slightly increasing total mass, while for the latter
case one could discuss a family of similar density
cores with slight mass and size variations.

Third, we observed that the more massive the
initial core, the lower its tendency to result in the
desired binary system formed via the separation of
the embryonic mass condensations. We prevented
their merging by providing more initial rotational
energy to the core. From the schematic configuration
space reported in Figure 16, we conclude that it is
more likely to have a binary system formed out of a
small mass parent core and therefore the masses of
the binaries are expected to be small as well.

Fourth, in order to calculate the integral prop-
erties and the velocity distributions of the obtained
fragments, we chose particles by applying selection
criteria based on two parameters lrhomin and rmax
whose values were fixed in advance. The selected
particles were those that had a density greater than
or equal to ρ0 × 10lrhomin and a position radius
r < rmax. Thus, one would expect slight differ-
ences in the reported results as they are definition-
dependent.

Nevertheless, we find that there is a clear correla-
tion between the mass of the obtained fragments and
the mass of the initial collapsing core. In fact, the
masses of the fragments are within the observational
range reported by (Tobin at al. 2013).

GA. would like to thank ACARUS-UNISON for
the use of their computing facilities in the develop-
ment of this manuscript.
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Arreaga-Garćıa, G., Saucedo, J., Duarte, R., & Carmona,
J. 2008, RMxAA, 44, 259
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