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RESUMEN

Se muestra que la disipación de enerǵıa ĖS debida a la interacción por fuerzas
de marea puede haber sido la responsable de la disminución en el peŕıodo orbital ob-
servado en el sistema binario V1309, sistema en donde posiblemente han coalescido
sus dos componentes. ĖS aparece cuando la velocidad de rotación de las capas
externas de una estrella binaria se salen de sincrońıa con el movimiento orbital.
Mostramos que bajo este efecto, una estrella de 1M⊙ con una compañera de 0.8M⊙

puede aumentar su radio de 1.50R⊙ a 1.85R⊙ en un tiempo de ≃ 5 años. Mientras
tanto, el peŕıodo orbital disminuye al mismo ritmo que el observado en V1309 Sco.
La viscosidad cinemática ν que utilizamos se estima a partir de las perturbaciones
máximas de la componente horizontal de la velocidad y del radio estelar. Es decir,
ν es función de los parámetros estelares y orbitales del sistema.

ABSTRACT

We show that the observed decline in the orbital period of the merger can-
didate V1309 Sco could have been driven by tidal shear energy dissipation, ĖS .
This mechanism becomes relevant once the expanding layers of an evolving star
rotate asynchronously. For a 1M⊙ + 0.8M⊙ system with orbital period P=1.44 d,
we find that ĖS can power a growth in stellar radius from 1.50R⊙ to 1.85R⊙ in the
primary over the course of ≃ 5 years, during which the rate of period change goes
from ≃ 1000 yr to ≃ 170 yr, in agreement with the observations. The kinematical
viscosity used for these calculations is estimated from the maximum tidal flow speed
and from the extension of the the tidal bulge, and is thus a function of the stellar
and orbital parameters.

Key Words: binaries: close — stars: eclipsing — stars: individual — stars: novae

1. INTRODUCTION

V1309 Sco underwent a nova-like outburst in
2008 (Nakano 2008). Its characteristics were simi-
lar to those of the eruptions in V838 Mon in 2002
(Munari et al. 2002), V4332 Sgr in 1994 (Martini et
al. 1999) and several extragalactic objects (Mould et
al. 1990; Kulkarni et al. 2007; Berger et al. 2009).
Soker & Tylenda (2003) proposed that the energy
source of these events could be the merger of two
low-mass stars, an idea that is now strongly sup-
ported by the events leading up to the V1309 Sco
eruption and its subsequent observations.

The pre-outburst state of V1309 Sco was ob-
served fortuitously by the OGLE-III and OGLE-

1Instituto de Ciencias F́ısicas, Universidad Nacional
Autónoma de México, Cuernavaca, Morelos, México.

2Instituto de Astronomı́a, Universidad Nacional
Autónoma de México, México, D.F., México.

IV3 projects starting in 2001. These data, analized
by Tylenda et al. (2011), indicate the presence of
an eclipsing binary whose orbital period rapidly de-
cayed: during 2002–2004, P/Ṗ ≃1000 yr while dur-
ing 2006–2007, P/Ṗ ≃170 yr. The infrared colors
indicate Teff=4500 K, suggesting the presence of a
solar-type star in the system and the eclipse light
curve suggests that the shape of one or both of the
stars was tidally-distorted. This led Tylenda et al. to
conclude that the progenitor was a ≃1 M⊙ star near
the start of the red giant branch. The absence of pe-
riodic photometric variations after the nova event led
to the conclusion that the two objects had merged.
This conclusion has been further strengthened by re-
cent observations that show the presence of outflow-
ing molecular gas and dust surrounding the object
(Kamiński et al. 2015).

3Udalski 2003; http://ogle.astrouw.edu.pl

113



©
 C

o
p

y
ri

g
h

t 
2

0
1

6
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

114 KOENIGSBERGER & MORENO

The orbital evolution immediately prior to the
merger was modeled under the assumption of angu-
lar momentum loss through magnetized stellar winds
during two-thirds of the system’s lifetime, followed
by Roche lobe overflow (Stepień 2011). This model
implies that during the time of the OGLE observa-
tions, V1309 Sco was already a contact system with
the stars filling their Roche lobes.

In this paper we explore an alternative scenario
that does not require mass loss nor that the stars
be already filling the Roche lobe during the early
phase of the period decline. Instead, we make use
of the fact that, as a star expands during post-main
sequence evolutionary phases, the rotation rate of
its outer region becomes sub-synchronous, leading to
tidal shear energy dissipation. We thus explore the
possibility that the observed orbital decay in V1309
Sco was a consequence of this mechanism. We find
that the behavior of P/Ṗ over the timescale during
which this quantity was measured can indeed be re-
produced in a straightforward manner with the tidal
shear energy dissipation scenario. The method and
assumptions are described in § 2. The results are
presented in § 3 and discussed in § 4.

2. TIDAL SHEAR ENERGY DISSIPATION

The only basic facts known about V1309 Sco
prior to its outburst are: (a) Teff=4500 K, suggest-
ing the presence of a solar-type star in the system;
(b) a periodic light curve with two eclipses during
the observations of 2002–2006 and only one eclipse
at the end of the 2007 observing season; (c) a dis-
torted light curve indicating a tidally deformed stel-
lar shape; and (d) a systematically decreasing trend
in the period, with P/Ṗ ≃1000 years during 2002–
2004 and 170 years during 2006–2007.

Taken together, these facts indicate that we wit-
nessed the end stages of physical processes that initi-
ated slowly and accelerated over time. Consider the
process by which a binary star evolves when it leaves
the main sequence (MS): In general, as the core con-
tracts, the outer region expands and assuming con-
servation of specific angular momentum, the rotation
angular velocity of these layers decreases. Hence, a
star that had attained synchronous rotation during
its MS lifetime now becomes sub-synchronous (in its
outer region). If the rate of expansion is faster than
the synchronization timescales, then the star remains
sub-synchronous for the remainder of the expansion
phase.

As soon as the star becomes sub-synchronous,
tidal shear energy dissipation becomes active. The
amplitude of tidal perturbations and the energy dis-
sipation rate increase rapidly with increasing stel-
lar radius and/or decreasing orbital separation. In
an equilibrium state, the energy that is deposited
in the stellar layers as heat is transported outward
and eventually lost through radiation. However, if
the rate of shear energy dissipation is too large, the
star becomes bloated, an outcome that has been ana-
lyzed for a variety of objects, including white dwarfs
(Dall’Osso & Rossi, 2014) and planets (Bodenheimer
et al. 2001; Gu et al. 2004; Leconte et al. 2009).

The bloating contributes to keep the rotation
sub-synchronous and the tidal forces not only remain
active but become more intense with each radius in-
crease. Hence, the outcome of this process is most
likely a runaway phenomenon. This is the scenario
that we explore for V1309 Sco in the following sec-
tions.

2.1. Model and assumptions

The simplest model to assume is one in which
V1309 Sco consists of a 1 M⊙ primary star (m1) that
has recently left the main sequence. The companion
is chosen4 to be of 0.8 M⊙. As described above, the
expansion of the primary’s outer region has caused
its rotation rate to become subsynchronous with re-
spect to the orbital period, leading to tidal shear
energy dissipation, ĖS . This quantity, when added
to the the rate of change of the rotation energy, K̇,
and of the gravitational potential energy, Ẇ , must
be compensated by a the change in orbital energy:

−Ėorb = ĖS + K̇ + Ẇ . (1)

Using the expression for the orbital energy
Eorb = −Gm1m2/2a and assuming no mass loss we
have:

Ėorb =
Gm1me

2a2
ȧ , (2)

where a is the orbital major semi-axis and G
the gravitational constant. With Kepler’s relation,
a3 = (G/4π2)(m1 + m2)P 2, we can then write

Ėorb

Eorb

= −
2

3

Ṗ

P
. (3)

4(a)The two equal eclipses in the light curve indicate the
presence of two stars of initially similar characteristics. (b)
The assumption that the phenomenon is caused by a star
evolving off the MS implies that one of the objects is more
massive than the other. (c) Kochanek et al. (2014) find that
the rates are dominated by MS+MS mergers.
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Assuming that the three terms of the right of equa-
tion (1) are approximately equal to each other leads
to ĖS ≃ −Ėorb/3, and

ES

Eorb

≃
2

9

Ṗ

P
; (4)

and thus,

P

Ṗ
≃

−Gm1m2

9aES

. (5)

We compute ĖS in the surface layers of m1 as
they respond to the presence of m2 using the TIDES

code (Moreno & Koenigsberger 1999; Moreno et al.
2011). The assumption is made that the lower-
mass companion m2 has not yet reached the end of
its main sequence lifetime and thus it remains syn-
chronous throughout the process that we describe.

The TIDES code computes ĖS by solving the
equations of motion for a grid of volume elements
that constitute a shell S at radius r which encloses
the mass m1. The main body of m1 interior to S is
assumed to behave as a rigid body and the tidal de-
formation is assumed to occur only in S. The equa-
tions of motion include the gravitational forces of
m1 and m2, and Coriolis, centrifugal, gas pressure
and viscosity forces on m1. The stellar equator is
assumed to lie in the orbital plane and m2 is treated
as a point source.

Values of ĖS are obtained for a set of succes-
sively increasing stellar radii, as listed in Column 1
of Table 1 which, when substituted into equation (5)
provide values of P/Ṗ . Each radius is assumed to
correspond to a different point in time. In this man-
ner, the expansion of the star is taken into consid-
eration. However, the actual rate of expansion is a

priori not known. In order to estimate it, we use the
rate of change of the gravitational potential energy,
Ẇ , due to the expansion of the shell S whose mass
is ∆m, and, assuming no mass loss,

Ẇ =
Gmr∆m

r2

dr

dt
, (6)

where mr is the mass interior to the radius r of S.
Making use of the approximation Ẇ ≃ ĖS and tak-
ing mr ≃ m1, since the mass contained in S is neg-
ligible compared to the total mass below it, we can
write

ĖS ≃
Gm1∆m

r2

dr

dt
. (7)

TABLE 1

RESULTS: NOMINAL CASE

R(ti) ν h ∆vmax
ϕ ǫ∗ 10×νest

R⊙ cm2 s
−1

R⊙ km s−1 Notea cm2 s
−1

0.99 5.10e+13 0.0006 0.20 2.2 8.22e+12

1.20 5.10e+13 0.0014 0.53 11.5 5.12e+13

1.35 1.64e+14 0.0023 0.87 97.5 1.40e+14

1.38 1.59e+14 0.0025 0.97 114.1 1.68e+14

1.40 1.81e+14 0.0026 1.02 147.8 1.85e+14

1.44 2.27e+14 0.0030 1.13 236.1 2.35e+14

1.46 2.49e+14 0.0031 1.18 292.8 2.55e+14

1.48 2.72e+14 0.0033 1.24 359.4 2.83e+14

1.50 3.06e+14 0.0035 1.29 454.2 3.13e+14

1.55 3.91e+14 0.0040 1.41 773.9 3.93e+14

1.58 4.48e+14 0.0043 1.49 1052.7 4.47e+14

1.60 4.93e+14 0.0046 1.55 1300.4 4.96e+14

1.64 6.24e+14 0.0052 1.68 2058.4 6.07e+14

1.68 7.37e+14 0.0059 1.83 3009.5 7.51e+14

1.72 9.64e+14 0.0068 2.00 4751.5 9.46e+14

1.75 1.08e+15 0.0075 2.13 6074.0 1.11e+15

1.85 1.47e+15 0.0090 2.52 12633.8 1.58e+15

1.95 2.55e+15 0.0104 2.82 29381.3 2.04e+15

2.15 3.23e+15 0.0203 3.44 65725.8 4.86e+15

2.25 5.05e+15 0.0255 3.67 105290.0 6.51e+15

aǫ∗ is in units of 1035 ρ ergs/(s − g/cm3), where ρ is the
mass density.

Thus,

tif =

∫ tf

ti

dt ≃
Gm1∆m

< ĖS >

∫ rf

ri

dr

r2

(8)

≃
Gm1∆m

< ĖS >

(

1

ri

−
1

rf

)

,

which gives the time it takes the shell S to expand
from ri to rf , due to the energy input < ĖS >, the

latter being the average of the computed ĖS values
at ri and rf . The time that has elapsed since an
initial epoch t0 is then

t ≃ t0 +
n

∑

if=1

tif . (9)

2.2. Input parameters

The input parameters for the ĖS calculation are
the stellar masses (m1,m2), the radius ri of S, the
synchronicity parameter (β0 = ω/Ω0), the orbital
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period and eccentricity (P, e), the kinematical vis-
cosity (ν), the equation of state, the thickness of S
(c∆R ri), the grid size (Nϕ, Nθ), the tolerance for
the Runge-Kutta integration of the equations of mo-
tion (Tol), and the number of orbital cycles needed
to reach the stationary state (Ncycle).

For V1309 Sco, we adopt m1 = 1M⊙,
m2 = 0.8M⊙, P=1.44 d, e=0, β0 = 0.95,
c∆R = 0.02. The equation of state is assumed
to be polytropic, p = p0(ρ/ρ0)

γ′

, with γ′ = 1 + 1/n,
n the polytropic index and ρ the mass density. For
the present calculations we used n = 1.5, following
the suggestion of Press et al. (1975) who note that
the temperature gradient in asynchronous binaries
ought to be nearly adiabatic rather than that
given by radiative opacities, so that the turbulent
envelope should be roughtly an n = 3/2 polytrope.

All computations are performed with a grid size
(Nϕ, Nθ)=(500,20) which covers half a hemisphere
from the equator to a co-latitude of 85◦. The tol-
erance of the Runge-Kutta integration scheme was
chosen Tol=10−11–10−7, depending on the particu-
lar case, and Ncycle=37.

The largest uncertainty in the input parameters
involves the choice of ν, the kinematical viscosity.
The standard molecular viscosity is ≃1–105 cm2s−1,
orders of magnitude smaller than the values typically
used in models of astrophysical phenomena (Adame
et al. 2011; Alexander 1973; Sutantyo 1974; Hansen
2010; Penev et al. 2007) or derived from observa-
tional data (Pérez de Tejada 1999). The general
idea is that turbulence can enhance by many orders
of magnitude the value of ν. Although progress is
being made in understanding the turbulent viscos-
ity (c.f., Penev et al. 2007; 2009 for stars; Ogilvie
& Lesur 2012 for protoplanetary disks), the actual
value for the viscosity to be used in particular prob-
lems is still unconstrained.

A standard expression for the turbulent viscosity
involves the definition of a length scale, h, associated
with the size of the turbulent eddies, and a veloc-

ity scale, vturb, which is the typical velocity of these
eddies. For accretion disks, a simple parametriza-
tion of these two scales was proposed by Shakura &
Sunyaev (1973). For the length scale, they assumed
isotropy and characterized it by the typical size of the
largest turbulent eddies, which cannot exceed the lo-
cal pressure scale height, H. For the velocity scale
they reasoned that if the turbulent velocity were su-
personic, the associated shock waves would have the
effect of dissipating energy and thus reducing the

velocity to the sound speed, cs, or smaller. Hence,
vturb ≤ cs. From these considerations, they arrived
at the α-prescription for the viscosity: ν ≃ αHcs,
where α takes on values 0–1.

Guided by these ideas, we explored the use of the
following prescription for estimating ν:

νest ≃ αT h ∆vmax
ϕ , (10)

where h is the height of the major bulge in the equi-
librium tide approximation and ∆vmax

ϕ is the max-
imum azimuthal velocity perturbation. αT is a pa-
rameter that takes into account factors that are ad-
ditional to the tidal perturbation, such as magnetic
fields and convection, as well as the timescale for the
propagation of perturbations. Considering that the
latter is the sound speed, cs, an analogy with the
Shakura & Sunyaev (1973) prescription provides a
rough estimate αT ∆vmax

ϕ ≃ cs. Since ∆vmax
ϕ << cs,

we expect αT >> 1.

2.3. Method of computation

A set of stars with radii ri in the range
0.99 – 2.25 R⊙ was chosen for computation with
TIDES, using a shell thickness c∆Rri =0.02ri.

The computations were conducted in two steps.
In the first step, ν was chosen close to the small-
est value that allows TIDES to arrive at a station-
ary solution.5 This computation provided a first
set of values of h and ∆vmax

ϕ . Considering that
cs ≃ 20 − 30 km s−1 (Guenther et al. 1992; for a
shell located at 0.98R⊙ in a standard solar model)
and that ∆vmax

ϕ ≃ 2 − 3 km s−1 (see below), we
adopted αT =10 for ri >1 R⊙. This yielded the val-
ues of ν (Column 2 of Table 1) that were used in the
second step.

The values of h and ∆vmax
ϕ obtained in the sec-

ond step calculation are listed in Columns 3 and 4 of
Table 1, and Column 6 lists the corresponding val-
ues of νest. The differences between these new values
and the ones obtained in the previous step are mi-
nor. This is because h and ∆vmax

ϕ do not depend
strongly on the chosen value of viscosity.

The output of the TIDES calculation is the quan-
tity

ǫ∗ = ĖS/1035ρ, (11)

5When the tidal forcing is too strong compared to the
restoring forces, the perturbation amplitudes systematically
increase causing the surface elements to become detached from
the grid, or the center of mass of neighboring elements to in-
terchange positions, both of which cause the computation to
halt.
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where ĖS/1035 is the energy dissipation rate in units
of 1035 ergs s−1 and ρ is the average mass density
in shell S in units of g cm−3. The values of ǫ∗ that
were obtained are listed in Column 5 of Table 1.

Equations (6) and (9) require ∆m, the mass con-
tained in S, and its average density, ρ, for which a
stellar structure model is required. As will be seen
below, the timescale over which tidal shear energy
dissipation can cause a layer to expand is very short
compared to evolutionary timescales. Stellar evolu-
tion models for low-mass stars do not contemplate
such short timescales because changes in a single
star occur over much longer times. For example, it
takes the radius of a post-main sequence 1 M⊙ star
16.6 Myr to increase from 2.50 to 2.55 R⊙. Further-
more, it is not even clear whether a stellar structure
model for a single star is a valid approximation for
a tidally perturbed star. Hence, in what follows, we
first adopt the hypothesis that the outer layers of an
asynchronous binary star can be approximated with
a n=1.5 polytropic structure (Press et al. 1975),
which provides ρ and ∆m. In the second approach,
no assumption is made concerning the manner in
which the outer layers expand, thus allowing for an
arbitrary density structure. ĖS is obtained by ad-
justing the parameter N∆m, which is the total mass
involved in the energy dissipation and expansion pro-
cesses.

2.4. Polytropic structure

The stellar structure of 1 M⊙ n=1.5 polytrope
was computed for stars of radii Rpoly=1–2.3 R⊙.
These models provide ρ0, the central density and
(ρ/ρ0)shell, the relative density, as a function of shell
radius, Rshell. The nature of polytropes is such
that, given a stellar mass, ρ/ρ0 is constant for a
fixed value of Rshell/Rpoly, for all Rpoly. Further-
more, ρ0 = ρ1(Rpoly1/Rpoly)3, where ρ1 is a refer-
ence central density, here chosen to be that of the
Rpoly1 = 1R⊙ model, ρ1=8.453 g/cm

3
. Hence, for

each shell radius, the density is

ρ/(g/cm3) = ρ1

(ρ/ρ0)shell

(Rpoly/Rpoly1)3
. (12)

We list in Table 2 the value of (ρ/ρ0)shell for
the base of shells located at Rshell/Rpoly=0.94, 0.96,
0.97, 0.975 and 0.98. Also listed in this table is
∆m, which is constant for a shell located at a fixed
Rshell/Rpoly, of thickness c∆RRpoly for all Rpoly,
with a constant c∆R.

TABLE 2

PROPERTIES OF POLYTROPIC SHELLS

(Rshell/Rpoly)a (ρ/ρ0)
b ∆mc

M⊙

0.94 0.01017 0.00246

0.95 0.00771 0.00182

0.96 0.00540 0.00118

0.97 0.00344 0.00065

0.98 0.00184 0.00025

aThe depth listed corresponds to the base of the shell.
bDensity at the base of the shell in units of the central
density.
cMass contained in the shell.

2.5. Arbitrary density variation in expanding layers

It is possible to circumvent the use of ρ and ∆m
required by equations (5) and (9) by defining a layer
L that is larger than the shell S that we model, and
by assuming that the mass contained within L re-
mains constant as the star (and the layer) expands.
We assume that there is a number of such layers, N ,
and that the mass involved in both the tidal shear
energy dissipation process and in the expansion pro-
cess is N∆m. In the Appendix we provide the details
of the mathematical manipulations that allow us to
write P/Ṗ in terms of N∆m and which yield t which
is independent of the unknown ρ and ∆m values.

3. RESULTS

3.1. Polytropic structure

We explored the behavior of polytropic shells
at various depths by comparing the trend of P/Ṗ
vs. t from equations (5) and (9) with that which
is derived from a fit to the observations. Specifi-
cally, Tylenda et al. (2011) find that the observed
variations of P over the time span 2002 to 2007
are given by P/d = 1.4456 exp[15.29/(t − t0)], with
t0 = JD = 2455233.5 and t < t0. Thus,

−P/Ṗ =
(t − t0)

2

15.29
. (13)

The uncertainty δ(P/Ṗ ) in this relation can be
derived by propagating the uncertainties given for P
and t on Tylenda et al.’s Figure 2. We find that at
JD = 24452870 and JD = 24454250, δ(P/Ṗ ) ≃51
and 5 yr, respectively. The uncertainty δt ≃50 and
≃10 d is the same as given in this figure. The above-
stated times correspond to P/Ṗ=1000 and 170 yr,
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Fig. 1. Trend of P/Ṗ over time t for 1 M⊙ polytropic
stars of radii Rpoly, for shells located at 0.94Rpoly (tri-
angles), 0.95Rpoly (squares) and 0.96Rpoly (pentagons).
Also shown is the result for the approximation described
in the Appendix, with N∆m=0.0016 M⊙ (stars). The
solid curve corresponds to the observational constraints
(equation 13). The error bars located at JD = 24452870
and JD = 24454250 correspond to the propagated un-
certainty from the error bars in Figure 2 of Tylenda et al.
(2011). The dashed curves are indicative of the uncer-
tainty over the range of dates shown in the figure. Model
data were shifted along the time axis so as to coincide
with the curve around JD = 2454250, where the propa-
gated uncertainties on the observations are smallest.

respectively. The curve from equation (13) and the
associated uncertainty (dashed line) are plotted in
Figure 1 and compared to the results derived from
the tidal energy dissipation calculations.

The best agreement is obtained with a polytropic
shell whose base lies at 0.95 Rpoly. Shells that are
deeper or more superficial diverge significantly from
the observational curve. As listed in Table 1, this
shell contains ∆m=0.0018 M⊙. During the time-
frame in which the orbital period was observed to
decay, our results indicate that the stellar radius in-
creased from ≃1.6 R⊙ to 1.8 R⊙, as illustrated in
Figure 2.

Table 3 lists the values of the physical quan-
tites that were computed using the polytropic stel-
lar structure approximation for Rshell/Rpoly=0.95.
Columns 1 and 2 contain, respectively, the radii at
ti and tf ; Columns 3 and 4 contain ĖS for the respec-
tive radii; Columns 5 and 6 contain the correspond-

Fig. 2. P/Ṗ for 1 M⊙ polytropic stars for shells located
at 0.94Rpoly (triangles) and 0.95Rpoly (squares). Also
shown is the N∆m approximation (stars) described in
the Appendix. The dotted lines enclose the region cor-
reponding to the observations reported in Tylenda et al.
(2011), providing the range in Rpoly values that corre-
spond to the dates of observation. The inset shows the
same data on a linear scale for P/Ṗ <1600 yr.

ing P/Ṗ ; Column 7 lists the time required for the
shell to expand from R(ti) to R(tf ); and Column 8
lists t, the time that has elapsed since the star first
became asynchronous. We will refer to this case as
the nominal case.

3.2. Arbitrary density variation in expanding layers

Equations (18), (22) and (9) were used with the
data of Table 1 to obtain the trend in P/Ṗ vs. t for a
broad range in N∆m values. The best match to the
observations was attained with N∆m=0.0016 M⊙,
a value remarkably similar to that obtained in the
nominal case described above. These results are also
plotted in Figure 1 and listed in Table 4. During the
epoch for which observations are reported, the stellar
radius is found to have increased from ≃1.60 R⊙ to
1.85 R⊙, which is also consistent with the result of
the nominal case.

3.3. Dependence on m2, ν and polytropic index

Additional calculations were performed to ex-
plore the dependence on m2, ν and polytropic in-
dex, n. Each of these input parameters was changed,
one by one, keeping the others fixed.
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TABLE 3

PHYSICAL QUANTITIES 1: POLYTROPE, SHELL 0.95a

R(ti) R(tf ) ĖSi ĖSf (−P/Ṗ )i (−P/Ṗ )f tif t

R⊙ R⊙ ergs s−1 ergs s−1 ergs s−1 years years years

0.990 1.200 1.45e+34 4.34e+34 1.14e+05 3.80e+04 1336.39 1336.

1.200 1.350 4.34e+34 2.58e+35 3.80e+04 6.39e+03 134.32 1471.

1.350 1.380 2.58e+35 2.83e+35 6.39e+03 5.83e+03 13.02 1484.

1.380 1.400 2.83e+35 3.51e+35 5.83e+03 4.70e+03 7.15 1491.

1.400 1.440 3.51e+35 5.15e+35 4.70e+03 3.20e+03 10.02 1501.

1.440 1.460 5.15e+35 6.13e+35 3.20e+03 2.69e+03 3.69 1505.

1.460 1.480 6.13e+35 7.23e+35 2.69e+03 2.28e+03 3.03 1508.

1.480 1.500 7.23e+35 8.77e+35 2.28e+03 1.88e+03 2.46 1510.

1.500 1.550 8.77e+35 1.35e+36 1.88e+03 1.22e+03 4.22 1514.

1.550 1.580 1.35e+36 1.74e+36 1.22e+03 9.49e+02 1.73 1516.

1.580 1.600 1.74e+36 2.07e+36 9.49e+02 7.97e+02 0.91 1517.

1.600 1.640 2.07e+36 3.04e+36 7.97e+02 5.42e+02 1.31 1518.

1.640 1.680 3.04e+36 4.14e+36 5.42e+02 3.99e+02 0.89 1519.

1.680 1.720 4.14e+36 6.09e+36 3.99e+02 2.71e+02 0.59 1520.

1.720 1.750 6.09e+36 7.39e+36 2.71e+02 2.23e+02 0.32 1520.

1.750 1.850 7.39e+36 1.30e+37 2.23e+02 1.27e+02 0.66 1521.

1.850 1.950 1.30e+37 2.58e+37 1.27e+02 6.39e+01 0.31 1521.

1.950 2.150 2.58e+37 4.31e+37 6.39e+01 3.83e+01 0.30 1521.

2.150 2.250 4.31e+37 6.02e+37 3.83e+01 2.74e+01 0.09 1521.
aThe shell has a thickness of 0.02 Rpoly; its base lies at 0.95Rpoly.

Fig. 3. Dependence of the azimuthal velocity, ∆vϕ (left) and energy dissipation rate per unit density (right), as a
function of radius and value of m2 and ν. Square: 10×νest, as in Figures 1 and 2; Cross: νmin, approximately the
smallest value for which the code runs for that particular radius; Triangle: ν ≃9×νmin; Star: m2=0.4 M⊙.



©
 C

o
p

y
ri

g
h

t 
2

0
1

6
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

120 KOENIGSBERGER & MORENO

TABLE 4

PHYSICAL QUANTITIES 2: ARBITRARY EXPANSION STRUCTURE,
N∆M=0.0016 M⊙

R(ti) R(tf ) < ǫ∗ >a < ES > < −P/Ṗif > tif t

R⊙ R⊙ ergs s−1 years years years

0.99 1.20 6.8 1.67e+34 1.31e+05 1718.37 1718.

1.20 1.35 54.5 8.70e+34 3.85e+04 179.11 1897.

1.35 1.38 105.8 1.56e+35 1.06e+04 19.75 1917.

1.38 1.40 130.9 1.83e+35 9.12e+03 10.84 1928.

1.40 1.44 191.9 2.50e+35 6.84e+03 15.10 1943.

1.44 1.46 264.5 3.26e+35 5.10e+03 5.60 1949.

1.46 1.48 326.1 3.85e+35 4.31e+03 4.60 1953.

1.48 1.50 406.8 4.61e+35 3.61e+03 3.74 1957.

1.50 1.55 614.0 6.44e+35 2.68e+03 6.34 1963.

1.55 1.58 913.3 8.92e+35 1.88e+03 2.62 1966.

1.58 1.60 1176.6 1.10e+36 1.51e+03 1.38 1967.

1.60 1.64 1679.4 1.47e+36 1.16e+03 1.97 1969.

1.64 1.68 2533.9 2.07e+36 8.15e+02 1.34 1971.

1.68 1.72 3880.5 2.95e+36 5.80e+02 0.89 1972.

1.72 1.75 5412.8 3.89e+36 4.28e+02 0.49 1972.

1.75 1.85 9353.9 5.88e+36 3.03e+02 0.98 1973.

1.85 1.95 21007.6 1.12e+37 1.65e+02 0.46 1974.

1.95 2.15 47553.6 1.99e+37 8.85e+01 0.44 1974.

2.15 2.25 85507.9 2.98e+37 5.69e+01 0.13 1974.

aǫ∗ is in units of 1035 ρ ergs/(s − g/cm3), where ρ is the mass density.

The results obtained from the grid of calculations
for n = 3 yielded values of ǫ∗ that differed from those
of the nominal case by <4 % for R <2R⊙. For the
cases run with R >2R⊙ the differences increased up
to 13%, with the n = 3 cases resulting in larger val-
ues of ǫ∗; this, however does not significantly modify
the results obtained with the nominal case.

The results obtained from a grid of calculations
with m2=0.4 M⊙ show that the energy dissipation
rate decreases by a factor of ≃2 for R <2 R⊙, i.e.,
proportional to the decrease of m2. As a conse-
quence, for a given radius of m1, the azimuthal ve-
locity perturbations and the energy dissipation rates
are significantly smaller than those of the nominal

case, as shown in Figure 3.

Computations were performed using a range of ν
values, starting with the smallest value that allows
the code to run. The results of these computations
are listed in Table 5 and show that for R <1.7 R⊙, ǫ∗

is directly proportional to the value of ν. For larger
radii an increase in ν leads to a smaller increase in

the value of ǫ∗. This is because very large viscosities
reduce the amplitude of horizontal motions which,
in turn, lead to smaller energy dissipation rates.

Using the approximate linear proportionality for
R <1.7 R⊙, we scaled the ǫ∗ obtained in the nominal
calculation by factors of 0.1 and 5, to obtain approx-
imate results for viscosities ν=νest and ν=50νest,
respectively.6 The derived trend in P/Ṗ vs. t in
the polytropic approximation is plotted in Figure 4,
which shows that the viscosity used in the nominal
case does indeed provide the best coincidence with
the observations.

The results of these tests are summarized in Ta-
ble 6. Case 1 is the nominal case, which comes
closest to reproducing the observations, and yields
P/Ṗ values that go from −1000 yr to −170 yr over
a ≃5 year timescale. Case 3 has a viscosity larger by
a factor of 5 and the timeframe for the period decay
for R >1.40 is consistent with the observations, but
there is a significant discrepancy for smaller radii.

6The nominal case is computed with ν=10νest.
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TABLE 5

VISCOSITY DEPENDENCE

R(ti) ν h ∆vmax
ϕ ǫ*a νest

R⊙ cm2 s−1 R⊙ km s−1 cm2 s−1

0.99 5.04e+13 0.0006 0.20 2.2 8.22e+11

0.99 5.60e+13 0.0006 0.20 2.4 8.35e+11

1.20 5.04e+13 0.0014 0.53 11.5 5.12e+12

1.20 1.12e+14 0.0014 0.50 24.6 4.87e+12

1.35 5.60e+13 0.0023 1.01 36.8 1.62e+13

1.35 1.62e+14 0.0023 0.87 97.5 1.40e+13

1.40 1.79e+14 0.0026 1.02 147.8 1.85e+13

1.40 5.60e+14 0.0027 0.97 459.9 1.82e+13

1.44 2.24e+14 0.0030 1.13 236.1 2.36e+13

1.44 5.60e+14 0.0030 1.09 588.5 2.27e+13

1.44 5.04e+15 0.0027 0.94 4150.0 1.77e+13

1.50 3.02e+14 0.0035 1.29 454.2 3.14e+13

1.50 5.60e+14 0.0035 1.26 840.8 3.07e+13

1.50 5.04e+15 0.0032 1.10 5812.0 2.45e+13

1.60 4.87e+14 0.0046 1.55 1300.4 4.96e+13

1.60 5.60e+14 0.0046 1.55 1493.2 4.96e+13

1.60 5.04e+15 0.0041 1.39 9859.0 3.96e+13

1.64 5.60e+14 0.0052 1.68 1875.8 6.08e+13

1.64 6.16e+14 0.0052 1.68 2058.4 6.08e+13

1.64 5.04e+15 0.0046 1.52 12027.0 4.86e+13

1.68 5.60e+14 0.0059 1.83 2340.5 7.51e+13

1.68 7.28e+14 0.0059 1.83 3009.5 7.51e+13

1.68 5.04e+15 0.0051 1.65 14557.0 5.85e+13

1.72 5.60e+14 0.0068 2.01 2862.8 9.51e+13

1.72 9.52e+14 0.0068 2.00 4751.5 9.46e+13

1.72 5.04e+15 0.0057 1.79 17473.0 7.10e+13

1.72 5.04e+15 0.0057 1.79 17473.0 7.10e+13

1.85 5.60e+14 0.0084 2.54 5113.0 1.48e+14

1.85 1.46e+15 0.0090 2.52 12633.8 1.58e+14

1.85 5.04e+15 0.0087 2.26 29871.2 1.37e+14

1.95 5.60e+14 0.0125 2.91 8257.8 2.53e+14

1.95 2.52e+15 0.0104 2.82 29381.3 2.04e+14

1.95 5.04e+15 0.0117 2.63 43157.4 2.14e+14

*Results obtained from computations using different val-
ues of ν while holding all other input parameters con-
stant.
aǫ∗ is in units of 1035 ρ ergs/(s − g/cm3), where ρ is the
mass density.

Case 2 has a viscosity smaller by a factor of 10 with
respect to the nominal case, and the time required
for P/Ṗ to cover the observed range is > 7 yr, sig-
nificantly longer than in the other two cases. Case 4,
which was run with m2=0.4 M⊙ and the viscos-
ity of the nominal case also has significantly longer

Fig. 4. Comparison of results from runs with values of ν
and m2 different from the nominal case (open squares).
The curves are the same as shown in Figure 2. The other
symbols correspond to: ν = 50νest (filled rectangles),
ν = νest (triangles), and m2 = 0.4 M⊙ (stars).

timescales than observed. This does not, however,
eliminate the possibility of a smaller m2, but a grid
of models for m2 ≃0.4 (and other values) needs to
be constructed using a range of values of ν in order
to estimate constraints for the secondary mass.

4. DISCUSSION

We propose that the orbital period decline ob-
served in V1309 Sco was powered by tidal shear
energy dissipation, ĖS . This mechanism first be-
comes active when the radius of the initially syn-
chronously rotating star increases as it leaves the
main sequence causing outer stellar layers to become
subsynchronous. Initially, ĖS is very small and P/Ṗ
is very large, but as the radius increases, the rate
of period decline accelerates. The heat deposited in
the stellar layers due to ĖS contributes to the rate
of increase of the radius, thus eventually producing
a runaway process where each radius increase results
in an increase in ĖS which, in turn, powers an addi-
tional radius increase.

V1309 Sco is assumed to consist of a 1+0.8 M⊙

binary, the more massive component having left the
main sequence and having a subsynchronous rotation
rate. Our calculations of ĖS produce the same trend
in P/Ṗ as that observed over the 2002–2007 time-
frame and indicate that the radius increased from
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TABLE 6

DEPENDENCE ON ν AND M2

Case R(ti) R(tf ) < −P/Ṗif > t Comment

R⊙ R⊙ years years

1 1.55 1.58 1080 1516.0 nominal case

1.75 1.85 175 1520.7 ν = 10 × νest

2 1.85 1.95 954 15208.5 “smaller” ν

2.25 2.50 230 15215.6 ν = νest

3 1.38 1.40 1050 298.2 “larger” ν

1.60 1.64 175 303.4 ν = 50 × νest

4 1.58 1.60 1090 3770.0 m2=0.4M⊙

1.75 1.85 211 3778.8

Cases: 1 is the nominal case (i.e., computed with ν = 10νest); Cases 2 and 3
are obtained by assuming that ĖS is directly proportional to ν and using data
from Table 1; Case 4 is computed with the nominal input parameters except
for m2 = 0.4M⊙.

≃1.55 to 1.8 R⊙ during the 5 years in which eclipses
were evident. The subsequent evolution would have
involved an ever more rapid radius increase until
Roche lobe dimensions were attained. Note that
such rapid radius growth is impossible from evolu-
tionary considerations. For example, grids given by
Marques et al. (2008)7 show that the time it takes
the radius of a 1 M⊙ star in its latest post-main se-
quence phases to increase from 2.50 to 2.55 R⊙ is
16.6 Myr.

It is interesting to note that, within the assump-
tions of the processes and the approximations in the
calculation, the mass involved in producing the ob-
served P/Ṗ rate is only ≃0.0016 M⊙, i.e., approxi-
mately 10% of the mass in the outer convective re-
gion. One may speculate that this amount of mass
should increase as the orbital separation shrinks be-
yond that which we have computed, thus accelerat-
ing the process by which the Roche lobe dimensions
are attained.

The method we employ for the computation of
the tidal shear energy dissipation, ĖS , is limited pri-
marily by the fact that it neglects the presence of
shells above the one being modeled, and that it ne-
glects the perturbations of the layers below it. The
absence of a shearing layer above implies that ĖS

is underestimated, particularly since the amplitude

7http://www.astro.up.pt/corot/models/cesam/A/

of perturbations increases with increasing stellar ra-
dius. This, however, may be partly compensated
by the overestimate of ĖS produced by the assump-
tion of a rigidly rotating region below.8 A multi-
layer calculation would extend the energy dissipa-
tion and heating of the stellar material to deeper
regions of the star and thus involve a larger fraction
of the convective zone in the dissipation/expansion
process. The ideal solution is a full 3D computation
of the tidal perturbations combined with the evolu-
tion of orbital parameters and stellar rotation, which
however, is currently not tractable.

It is also interesting to note that the timescale
from the start of subsynchronous rotation to the
phase of runaway radius increase leading up to the
Roche lobe overflow dimensions is extremely short,
a few thousand years. This suggests that objects
such as V1309 Sco might be relatively common, as
recently concluded by Kochenek et al. (2014), al-
though the probability of observing them during this
phase is likely to be very small due to its short du-
ration. Clearly, the actual rates will depend on the
distribution of orbital separation, on the component
masses and, not least, on the opacity and viscos-
ity of the surface layers. For example, we estimate

8In a multi-layer calculation, the velocity gradients due
to the perturbations are expected to be smaller than those
occuring when only one layer is allowed to respond to the
external perturbation.
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that if ν is a factor of 10 smaller than that used in
the nominal case, the timescale between the start of
asynchronous rotation and the observed orbital pe-
riod decay becomes a factor of ≃10 larger.

We find a convenient scaling for the viscosity
ν = αT h ∆vmax

ϕ , where h is the height of the major
bulge in the equilibrium tide approximation, ∆vmax

ϕ

is the maximum azimuthal speed of the tidal flow
and αT is a parameter that takes into account fac-
tors other than the tidal perturbations, such as mag-
netic fields and convection. Accordingly, since h and
∆vmax

ϕ depend on the stellar and orbital parameters,
the value of ν also depends on these quantities, an
idea first suggested by Press et al. (1975). To achieve
the agreement between our calculations and the ob-
servational constraint shown in Figure 1, we used
αT =10, resulting in ν = ν(r) = 1013 − 1015 cm2/s,
with the larger values corresponding to larger radii.

The nature of tidal perturbations is such that
their amplitude is largest in the equatorial plane,
declining towards the polar ragions.9 Hence, an in-
teresting problem concerns the manner in which the
energy that is deposited near the equatorial region
due to tidal shear may affect the stellar structure.
Relevant to the V1309 Sco event is the question of
whether the increasing tidal shear energy dissipa-
tion rates have an impact on mass loss. Dynamical
models (e.g., D’Souza et al. 2006) predict significant
mass-loss associated with a merger. However, there
might have been circumstellar matter present in the
V1309 Sco system well before the outburst (McCol-
lum et al. 2014). One may speculate that, in ad-
dition to triggering the initial orbital period decay,
the tidal instabilities may provide sufficient energy
for mass loss along the equatorial plane, well before
the merger occurs.

We thank Frédéric Masset for a critical reading of
the manuscript and very helpful suggestions, and we
thank Matthew Bate and Norbert Langer for enlight-
ening discussions. Computing support from Ulises
Amaya, Alfredo Dı́az, and Francisco Ruiz and finan-
cial support from UNAM/DGAPA/PAPIIT Project
IN 105313 and CONACYT Project 129343 are grate-
fully acknowledged.

APPENDIX A. ARBITRARY DENSITY
VARIATION IN EXPANDIG LAYERS

We assume that the outer region of the star is
divided into N layers and we choose a layer, L, whose
energy dissipation rate, ĖL, can be considered to be

9Our model is curently designed only for cases in which the
stellar rotation axis is parallel to the axis of orbital motion.

representative of this region. The layer has a mass
∆m and at some initial time ti, its thickness is ∆i.
Its mid-point lies at an equilibrium radius ri. We
impose the condition that the mass of the layer, ∆m,
remains constant. Hence, after a time tif , when L
has expanded to a new equilibrium radius rf with a
new thickness ∆f , its mass remains the same.

We now choose a shell S within L, also centered
on ri, and whose thickness is ∆∗

i . The tidal shear en-
ergy dissipation rate in L and in S are, respectively,
ĖL = 1035 < ρi > ǫi and ĖS = 1035ρiǫ

∗
i , where

< ρ >i is the average density in the layer, and ǫi

is its energy dissipation rate per unit density. The
TIDES computation yields ǫ∗i , and we assume that

ǫi ≃ ǫ∗i
∆i

∆∗
i

. (A.1)

Thus the energy dissipation rate for the N -layers in
the outer region is,

ĖNL ≃ NĖL = NĖS

∆i

∆∗
i

= N1035ρiǫ
∗

i

∆i

∆∗
i

. (A.2)

The mass, radius, thickness and density of a spheri-
cal shell are related by

ρi∆i =
∆m

4πr2
i

. (A.3)

Hence, we can write,

ĖNL ≃
1035N∆m

4πc∆R

ǫ∗i
r3
i

. (A.4)

Substituting the above in equation (5), but using
ĖNL instead of ĖS

P

Ṗ
≃

−4πGm1m2r
3
i

9 × 1035aN∆m

c∆R

ǫ∗i
, (A.5)

where we have used ∆∗
i = c∆Rri.

For the time calculation we procede as in § 2.1,
but now re-state equation (1) as

−Ėorb = ĖNL + K̇ + Ẇ , (A.6)

and ĖNL ≃ Ẇ .
The change in gravitational potential energy of a

surface layer of mass ∆m at radius ri with interior
mass mr is given by

ẆL =
Gmr∆m

r2
i

dr

dt
. (A.7)

Because L is chosen to have a tidal shear energy
dissipation rate that is representative of the entire
region, we write
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Ẇ ≃ NẆL ≃ ĖNL . (A.8)

Combining equations (A.6), (A.7) and (A.8), and
considering that the mass interior to the convective
zone of a solar-type star is ≃0.98 M⊙ (c.f. Guenther
et al. 1992) and that the region most strongly af-
fected by the tidal shear is likely to lie very close to
the stellar surface, so we can approximate mr ≃ m1,

∫ tf

ti

dt ≃
4πGc∆Rm1

1035< ǫ∗i,f >

∫ rf

ri

ridr

(A.9)

tif = tf − ti ≃
2πGc∆Rm1

1035< ǫ∗i,f >
(r2

f − r2

i )

where < ǫ∗i,f > is the average of the rates computed
by TIDES for the shell S at two successive radii val-
ues, and ti and tf are the times corresponding to the
shell radii ri and rf .

This equation gives the time it takes the N lay-
ers L to expand from an initial average radius ri to
a final average radius rf , due to the energy input
< ǫ∗i,f >, the latter being the average of the com-
puted ǫ∗i values at each of the two above-mentioned
radii.

Finally, substituting tif into equation (9) yields
the time that has transpired since the start of asyn-
chronous rotation.
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