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RESUMEN

En este trabajo analizamos algunos ĺımites cosmológicos dados por una
solución FLRW para la gravedad masiva. Encontramos los ĺımites para datos obser-
vacionales recientes de H(z) y mostramos que los mejores ajustes para los valores
de los parámetros cosmológicos concuerdan con el modelo ΛCDM e indican una
curvatura espacial aproximadamente abierta, como se espera. También se analiza
la variación de la masa del gravitón con las constantes α3 y α4, relacionadas con los
términos lagrangianos adicionales del modelo, y se obtiene una fuerte dependencia
de tales parámetros. Sin embargo, la condición mg ≃ H−1

0 parece dominar en un
intervalo amplio de los parámetros α3 y α4.

ABSTRACT

In this work we analysed some cosmological bounds concerning an open FLRW
solution of massive gravity. The constraints from recent observational H(z) data are
found and the best fit values for the cosmological parameters are in agreement with
the ΛCDM model, and also point to a nearly open spatial curvature, as expected
from the model. The graviton mass dependence with the constant parameters α3

and α4, related to the additional lagrangians terms of the model, are also analysed,
and we obtain a strong dependence on such parameters, although the condition
mg ≃ H−1

0 seems dominant for a large range of the parameters α3 and α4.

Key Words: cosmology: theory — dark energy — dark matter

1. INTRODUCTION

Current observations of supernovae of type Ia
(SNIa) (Riess et al. 1998; Perlmutter et al. 1999;
Astier et al. 2006; Riess et al. 2007; Amanul-
lah et al. 2010), cosmic microwave background ra-
diation (CMB) (Komatsu et al. 2011; Larson et
al. 2011; Ade et al. 2014) and Hubble parameter
data (Farooq & Ratra 2013; Sharov & Vorontsova
2014) indicate an accelerated expansion of the uni-
verse; the ΛCDM model is the best model to fit
the observational data. The Λ term corresponds to
a cosmological constant (energy density) which is
plagued with several fundamental issues (Padman-
abhan 2003; Weinberg 1989), which motivated the
search for alternatives models of gravity that could
explain the observations.

Massive gravity theories (Fierz & Pauli 1939;
Boulware 1972; Hassan & Rosen 2012a,b, 2011;

1UNESP - Faculdade de Engenharia de Guaratinguetá,
Guaratinguetá, Brazil.

2UNESP - Câmpus Experimental de Itapeva, Itapeva,
Brazil.

Hassan et al. 2012a,b; de Rham & Gabadadze 2010;
de Rham et al. 2011a,b, 2012; Hinterbichler 2012;
Arkani et al. 2003; Hinterbichler & Rosen 2012;
Volkov 2012; Chamseddine & Volkov 2011; Volkov
2014; Kobayashi et al. 2014; Gümrükçüoǧlu et al.
2012; de Felice et al. 2012; Gümrükçüoǧlu et al.
2011; de Felice et al. 2013a,b; de Rham et al. 2014)
are old candidates to explain the accelerated expan-
sion of the universe, since the graviton mass could
perfectly induce and mimic a cosmological constant
term. However, such kinds of theories were consid-
ered for long time unsuitable, due to the appeareance
of Boulware-Deser (BD) ghosts (Boulware 1972).
Recently a nonlinear massive gravity theory was pro-
posed and shown to be BD ghost free (Hassan &
Rosen 2012a,b, 2011; Hassan et al. 2012a), also in
the Stuckelberg formulation (Hassan et al. 2012b).
A similar theory was also developed (de Rham et
al.(de Rham & Gabadadze 2010; de Rham et al.
2011a,b, 2012), sometimes called the dRGT model
(after de Rham-Gabadadze-Tolley, see Hinterbichler
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126 PEREIRA ET AL.

2012 for a review), again arising cosmological interest
in such theories (Arkani et al. 2003; Hinterbichler &
Rosen 2012; Mirbabayi 2012). Self-accelerating cos-
mologies with ghost-free massive gravitons were later
studied (Volkov 2012; Chamseddine & Volkov 2011;
Volkov 2014; Kobayashi et al. 2014; Gümrükçüoǧlu
et al. 2012; de Felice et al. 2012; Gümrükçüoǧlu
et al. 2011; de Felice et al. 2013a,b; de Rham
et al. 2014). Nowadays, there is general agree-
ment that in dRGT models, which are defined with a
flat reference metric, isotropic flat and closed FLRW
cosmologies do not exist, even at the background
level. Nevertheless isotropic open cosmologies exist
as classical solutions, but have unstable perturba-
tions. In the case of a non-flat reference metric a
ghost free theory exists for all types of background
cosmologies (Hassan & Rosen 2011; Hassan et al.
2012a), though the perturbations are still unstable
in isotropic cases (Gümrükçüoǧlu et al. 2011; de
Felice et al. 2013a,b).

Although the theoretical aspects of massive grav-
ity have been studied in the last years, the cosmo-
logical constraints on observational data have not.
Gannouji et al. (2013) investigated the cosmologi-
cal behavior in the quasi-dilaton nonlinear massive
gravity, and constrained the parameters of the theory
with observational data from SNIa, baryon acoustic
oscillations (BAO) and CMB.

In order to study some cosmological bounds con-
cerning the free parameters of the theory, we must
have a massive gravity theory with a well-established
FLRW limit for the reference metric. As shown in
Gümrükçüoǧlu et al. (2011) and De Felice et al.
(2013a,b) the perturbations in anisotropic FLRW are
stable. Thus, if we suppose that the anisotropies that
cure the instability of the model do not greatly affect
the cosmic evolution, we can use the results involv-
ing isotropic solutions as a first approximation to
the stable anisotropic case. For this case the results
of Gümrükçüoǧlu et al. (2011) and De Felice et al.
(2013a,b) are a good starting point to study some
bounds in the massive gravity theory as compared
to recent observational data. In § 2 we present the
general massive gravity theory and in § 3 the cosmo-
logical equations. In § 4 we present the constraints
from H(z) data and in § 5 some bounds on the gravi-
ton mass. We state our conclusions in § 6.

2. MASSIVE GRAVITY THEORY

Our starting point for the cosmological analy-
sis is the massive theory for gravity proposed in de
Rham & Gabadadze (2010), and de Rham et al.

(2011a,b, 2012). The nonlinear action includes, be-
sides a functional of the physical metric gµν(x), four
spurious scalar fields φa(x) with a = 0, 1, 2, 3, called
the Stückelberg fields. They are introduced in order
to make the action manifestly invariant under diffeo-
morphism, (see for example Dubovsky 2004). Let us
start by observing that these scalar fields are related
to the physical metric and enter into the action as
follows:

gµν = fµν + Hµν , (1)

where the fiducial metric fµν is defined, which is
written in terms of the Stückelberg fields:

fµν ≡ f̃ab(φ
c)∂µφa∂νφb. (2)

Usually f̃ab is called the reference metric and
for the purpose of this paper, one can use
f̃ab = ηab = (−,+,+,+) when the scheme proposed
by dRGT respects Poincaré symmetry. Hence the
fiducial metric in (1) is nothing but the Minkowski
metric in the coordinate system defined by the Stück-
elberg fields. So we have automatically defined the
covariant tensor Hµν which propagates in Minkowski
space, and the action is then a functional of the fidu-
cial metric and the physical metric gµν .

The covariant action for massive general relativ-
ity can be written as:

S = M2
Pl

∫

d4x
√
−g

[

R

2
+ m2U(g,H)

]

, (3)

where U is a potential without derivatives in the in-
teraction terms between Hµν and gµν , which gives
mass to the spin-2 mode described by the Einstein-
Hilbert term. As observed in de Rham & Gabadadze
(2010), and de Rham et al. (2011a,b, 2012) a nec-
essary condition for the theory (3) to be free of the
Bouware-Deser ghost in the decoupling limit is that√−g U(g,H) be a total derivative. The most general
covariant mass term which respects this condition is
given by3:

∫

d4x
√
−g U(g,H) =

∫

d4x
√
−g (α2L2 +

+α3L3 + α4L4) , (4)

3In de Rham et al. 2014 a more general formulation is pre-
sented, where the parameters αi are assumed to be dependent
on the Stückelberg fields.
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where αi are constants and the three lagrangians in
(4) are written as:

L2 =
1

2
([K]2 − [K2]) , (5)

L3 =
1

6
([K]3 − 3[K][K2] + 2[K3]) , (6)

L4 =
1

24
([K]4 − 6[K]2[K2] + 3[K2]2 +

+8[K][K3] − 6[K4]), (7)

where one has defined the tensor
Kµ

ν = δµ
ν −

√

∂µφa∂νφbηab. In general there
are other polynomial terms in K and the proce-
dure to generate them can be found in Hassan &
Rosen (2011), Hassan et al. (2012a), de Rham &
Gabadadze (2010), and de Rham et al. (2011a,b,
2012). However, it has been shown that all terms
after the quartic order vanish (see also de Rham et
al. 2014; Creminelli et al. 2005). Notice also that
we have maintained the constant term α2 in order
to see its consequences on the evolution equations.
The case α2 = 0 is pathological, since in this case
the linearised theory and the non-linear one have a
different number of propagating modes.

3. COSMOLOGY OF MASSIVE GRAVITY

Let us consider an open (K < 0), homogeneous
and isotropic FRW universe for the physical metric:

gµνdxµdxν = −N(t)2dt2 +

+a(t)2
[

dxidxi +
K(xidxi)2

1 − Kxixi

]

, (8)

where, µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3, with x0 = t,
x1 = x, x2 = y, x3 = z. Adopting the same ansatz

for the Stückelberg fields used in Gümrükçüoǧlu et
al. (2011), De Felice et al. (2013a,b), i.e:

φ0 = f(t)
√

1 − Kxixi ; φi =
√
−Kf(t)xi, (9)

after plugging back (8) and (9) in (3), one obtains the
following Lagrangian (Gümrükçüoǧlu et al. 2011, de
Felice et al. 2013a,b) for a(t) and f(t), where the
overdot denotes the time derivative:

Lg =
1

8πG

[

3KN(t)a(t) − 3ȧ(t)2a(t)

N(t)
+

+m2
g(α2L2 + α3L3 + α4L4)

]

, (10)

where

L2 = [3a(t)2 − 3a(t)
√
−Kf(t)] ×

×[2N(t)a(t) − ḟ(t)a(t) − N(t)
√
−Kf(t)] ,

L3 = [a(t) −
√
−Kf(t)]2 ×

×[4N(t)a(t) − 3ḟ(t)a(t) − N
√
−Kf(t)] ,

L4 = [a(t) −
√
−Kf(t)]3 × [N(t) − ḟ(t)] . (11)

Assuming the matter content (energy-
momentum tensor) to be of the form
Tµ

ν = diag[−ρm(t), pm(t), pm(t), pm(t)] and
taking the equations of motion from Lg with respect
to f we have:

[ȧ(t) −
√
−KN(t)] ×

×[α2(3 − 2C) + α3(3 − 4C + C2) +

+α4(1 − 2C + C2)] = 0 , (12)

where C = f(t)
√
−K/a(t). The two interesting so-

lutions are given by4:

C± =

(

α2 + 2α3 + α4 ±
√

∆

)

(α3 + α4)
, (13)

where ∆ = α2(α2 +α3 −α4)+α2
3. Moreover, taking

the equations of motion from (10) with respect to N
and using (13) one obtains the Friedmann equation:

ȧ(t)2

N(t)2a(t)2
+

K

a(t)2
=

8πG

3
ρm +

Λ±

3
, (14)

where Λ± = m2
gβ± , with

β± = − 1

(α3 + α4)2

[

2α3
2 +

+3α2
2(α3 − α4 ±

√
∆) +

+3α2(α3 − α4)(α3 ±
√

∆) +

−(α3 ±
√

∆)2(−2α3 ±
√

∆)

]

(15)

a dimensionless parameter depending only on the
constants α2, α3 and α4. In (14) one can recognize
Λ± as the energy density of massive gravity ρg. Be-
sides, one expects to obtain the pressure term pg, in
the second Friedmann equation, which can be done

4The case ȧ(t) =
√
−KN(t) just reproduces a constant

scale factor when we take N → 1 in order to recover the
FLRW metric.



©
 C

o
p

y
ri

g
h

t 
2

0
1

6
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

128 PEREIRA ET AL.

by combining (14) with the variation of (10) with
respect to a(t), which results in:

−2Ḣ(t)

N(t)
+

2K

a(t)2
=

8πG

3
(ρm + pm) , (16)

where H = ȧ(t)/N(t)a(t). Notice that the right
hand side of (16) contains only the contribution from
the matter part, which indicates that the graviton
mass contribution satisfies an equation of state of
the form pg = −ρg, exactly as a vacuum behavior.
This same result is also observed in Gümrükçüoǧlu
et al. (2011) and De Felice et al. (2013a,b).

Another combination is possible in order to get a
direct relation among ä(t), pressure and energy den-
sity (matter and graviton). This time, we eliminate
H2 from the equation of motion for a(t). Thus, it is
possible to obtain:

ä(t)

N(t)a(t)
= −4πG

3
(ρm + 3pm) +

Λ±

3
. (17)

From (17) it is straightforward to conclude
that an accelerated expansion occurs when
Λ± > 4πG(ρm + 3pm).

It is also easy to see that Λ± acts exactly like
an effective cosmological constant in (14). In both
Friedmann equations, (14), (16) and also (17), we
will set N = 1 in order to reproduce a cosmolog-
ical scenario. For a positive cosmological constant
(which leads to an accelerating universe), we must
have Λ± > 0, which implies β± > 0.

From now on we will assume α2 = 1 according to
the original dRGT theory (de Rham & Gabadadze
2010; de Rham et al. 2011a,b, 2012). The Fried-
mann equation (14) can be rewritten in terms of the
present critical energy density ρc = 3H2

0/8πG,

H(t)2 = H2
0

(

ρm

ρc

)

+ m2
gβ± − K

a2
, (18)

where H(t) = ȧ/a is the Hubble parameter and
H0 ≃ 70 km Mpc/s is its present day value. Writ-
ing ρm = ρm0(a/a0)

−3, where ρm0 is the present day
value for the matter energy density, and introducing
the density parameters

Ωm ≡ ρm0

ρc

, Ωg ≡ β±

m2
g

H2
0

, ΩK ≡ − K

a2
0H

2
0

, (19)

the Friedmann equation (18) can be expressed as

H(t)2 = H2
0

[

Ωm

(

a0

a

)3

+ ΩK

(

a0

a

)2

+ Ωg

]

, (20)

or, in terms of the redshift parameter defined by
1 + z ≡ a0/a,

H(z)2 =H2
0

[

Ωm(1+z)3+(1−Ωm−Ωg)(1+z)2+Ωg

]

,

(21)
where we have used the Friedmann constraint

1 = Ωm + ΩK + Ωg , (22)

which follows from (18) and (19). Observational data
can be used to constrain the values of such parame-
ters and this will be done in the next section.

4. CONSTRAINTS FROM OBSERVATIONAL
H(Z) DATA

Observational H(z) data provide one of the most
straightforward and model-independent tests of cos-
mological models, as the H(z) data estimation re-
lies on astrophysical rather than cosmological as-
sumptions. In this work, we use the data compi-
lation of H(z) from Sharov and Vorontsova (Sharov
& Vorontsova 2014), which is, currently, the most
complete compilation, with 34 measurements.

Using these data, we perform a χ2-statistics, gen-
erating the χ2

H function of free parameters:

χ2
H =

34
∑

i=1

[

H0E(zi,Ωm,Ωg) − Hi

σHi

]2

, (23)

where E(z) ≡ H(z)
H0

and H(z) is obtained by equa-
tion (21).

Since the function to be fitted, H(z) = H0E(z),
is linear in the Hubble constant, H0, we may analyt-
ically project over H0, yielding χ̃2

H :

χ̃2
H = C − B2

A
(24)

where A ≡
∑n

i=1
E2

i

σ2

Hi

, B ≡
∑n

i=1
EiHi

σ2

Hi

,

C ≡
∑n

i=1
H2

i

σ2

Hi

and Ei ≡ H(zi)
H0

.

The result of this analysis is shown in Figure 1.
As can be seen, the results from H(z) data alone
yield nice constraints on the plane Ωm × Ωg. The
flatness limit, which corresponds to Ωm + Ωg = 1, is
shown as an straight line on this plane (dashed line
in Figure 1). Points on and above this line were
not considered, since they correspond to non-open
models. One may see that the best fit lies right below
this line, indicating that the H(z) data alone favor
a slightly open universe.
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Ω
g

Ωm

H(z) from Sharov and Vorontsova (2014)
Ωm + Ωg = 1

Best fit

Fig. 1. Solid lines: statistical confidence contours of mas-
sive gravity from H(z) data. The regions correspond to
68.3%, 95.4% and 99.7% c.l. Dashed line: flatness limit,
where Ωm + Ωg = 1. Points above this line are not con-
sidered in the statistical analysis. Star point: best fit,
corresponding to (Ωm, Ωg) = (0.242, 0.703), which leads
to ΩK = 0.055. More details in the text.

Furthermore, we considered the prior Ωm ≥ Ωb,
with the baryon density parameter, Ωb, estimated by
Planck and WMAP: Ωb = 0.049 (Ade et al. 2014),
a value which agrees with big bang nucleosynthesis
(BBN), as shown in Olive et al. (2014). As a result
of this prior, only the 3σ c.l. contour was cut for
a low matter density parameter, as we may see in
Figure 1.

The minimum χ2 was χ2
min = 16.727, yielding

a χ2 per degree of freedom χ2
ν = 0.523. The best

fit parameters were Ωm = 0.242+0.041+0.065+0.090
−0.085−0.15 −0.19 ,

Ωg = 0.703+0.069+0.085+0.10
−0.34 −0.62 −0.96, for 68.3%, 95.4% and

99.7% c.l., respectively, in the joint analysis.
As expected, this result agrees with ΛCDM

constraints, since this model mimics the concor-
dance model. Moreover, the best fit values of
Ωm and Ωg lead to ΩK = 0.055, which corre-
sponds to a negative value of K, as expected for
this model. Sharov & Vorontsova (2014) found,
for ΛCDM: Ωm = 0.276+0.009

−0.008, ΩΛ = 0.769 ± 0.029,
ΩK = −0.040±0.032, for 1σ c.l., by combining H(z)
with SN Ia and BAO data. Given the uncertainties
of the massive gravity parameters, the results are in
good agreement, even considering the open universe
restriction for massive gravity, while ΛCDM has no
restriction on curvature.

5. BOUNDS FOR THE GRAVITON MASS

Having obtained the best fit values for the param-
eters, we show in Figure 2 the plot of massive gravity
theory (red line) with a ±1σ limit (red dotted line).

Fig. 2. Plot of H(z) × z for the best fit values of mas-
sive gravity theory (red line, from this paper, H(z) data
only) with ±1σ (red dotted line). The ΛCDM model
is also represented (black line, best fit from Sharov &
Vorontsova (2014), H(z)+BAO+SNs). The points with
error bars are the Sharov and Vorontsova (2014) obser-
vational data. The color figure can be viewed online.

The ΛCDM according to best fit data of Sharov &
Vorontsova (2014) is also represented (black line).

This model also provides an expression for the
graviton mass depending on the α3 and α4 parame-
ters through β±, namely:

m2
g =

Ωg

β±

H2
0 . (25)

If we fix some of the parameters we can see how
the mass depends on the others. In Figure 3 we
show a typical mass dependence with α4 when we
set α3 as a constant and choose to work with β−.
Such behavior is also observed for other positive and
negative values of α3. It is easy to see that the mass
increases and diverges for some specific value of α4,
corresponding to the limit β− → 0. In some cases the
mass can also abruptly decrease to zero, as shown in
the cases α3 = 6, α3 = 4 and α3 = 2. This shows
that the graviton mass is strongly dependent on the
α parameters, although in the limit of very negative
α4 values the graviton mass approaches mg ≃ H−1

0 .

6. FINAL DISCUSSIONS

In this work we analysed an open FLRW solu-
tion of massive gravity which admits an accelerated
expansion of the universe, in full accord to observa-
tions.

Although massive gravity theories perfectly
mimic the ΛCDM model, some important features
are very different. The net effect of a finite mass for
the graviton is to introduce a constant term propor-
tional to m2

g in the action (3) (something similar to
a potential), which will contribute with a constant
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Fig. 3. Typical mass dependencies on α4 for some specific
values of α3.

term in the motion equations, or Friedmann equa-
tions (last terms of (14) and (17)). From a cosmo-
logical point of view such a term is very similar to
a cosmological constant term, but it also has some
important differences. In the ΛCDM model the Λ
term comes from the zero point energy of the quan-
tum vacuum (although there are important funda-
mental issues about its magnitude), while in mas-
sive gravity theories the corresponding term presents
a much richer structure. It is composed of constant
terms, α2, α3 and α4 [see (15)] that are the contribu-
tions from the corresponding terms coming from the
lagrangians needed to eliminate the Bouware-Deser
ghosts present in the theory. From a classical point
of view, the α constants are yet unknown. Their
values may come from a perturbative quantum con-
struction of the theory. A theoretical approach in
order to obtain the values of such constants would
certainly represent a great advance in the field.

The constraints from recent observational H(z)
data were found, and the best fit values ob-
tained for the cosmological parameters were
(Ωm, Ωg, ΩK) = (0.242, 0.703, 0.055). The values
obtained for Ωm and Ωg at 1σ were in good accord
to the best fit values found by Sharov & Vorontsova
(2014) for the ΛCDM model (see the end of § 4), al-
though the ΛCDM model points to a slightly closed
universe (ΩK = −0.040) and our best fit indicates
an open universe (ΩK = 0.055). This is an impor-
tant difference between the models, but it is also
important to note that the massive gravity theory
is valid only for an open universe (Gümrükçüoǧlu et
al. 2011, de Felice et al. 2013a,b), while ΛCDM has
no restriction on curvature. As ΛCDM and massive
gravity theories have the same background behav-
ior, at least for an open universe, we do not expect
to find differences between both models if we use as
constraints the CMB shift parameter or the BAO

scale. However, a full density perturbation analysis
of the massive gravity model could lead to differences
with respect to ΛCDM, which could be evidenced by
the full CMB spectrum or by the matter power spec-
trum. This analysis will be presented in the future.

It is also important to analise the graviton mass
dependence on the parameters α3 and α4 of the
model (α2 can be normalized to 1). We verified that
a strong dependence on such parameters is evident.
The mass of the graviton is present in Ωg [see (19)],
and we can see that the observational constraints are
not enough to furnish the graviton mass. According
to (25), just by setting specific values for the α’s
(or for β) we can estimate the graviton mass with
the best fit of Ωg. In view of such restrictions, even
considering other observational data such as BAO or
CMB, we will only obtain best fit values for Ωg, with
no new information about the graviton mass.

An interesting relation between the graviton
mass and the α parameters is shown in Figure 3. For
some integer values of α3 and α4, the β parameter
approaches infinity (specifically α3 = −α4), and for
others it approaches zero, allowing very small and
very huge values for the graviton mass near such
points. Only by theoretically obtaining such param-
eters could the graviton mass be better estimated.
We have also verified that for several values of pos-
itive α3 and negative α4, the ratio mg/H0 ≃ 1, in-
dicating that for such values the graviton mass is
mg ≃ H−1

0 ∼ 10−33eV. Such a value is much closer
to the mass of quintessence models, where a scalar
field is introduced by hand in order to interpret the
dark energy as a scalar field fluid. To attribute a
mass to the graviton is certainly a more appealing
theory than the introduction of new kinds of fields.
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de Felice, A., Gümrükçüoǧlu, A. E., Lin, C. & Muko-
hyma, S. 2013, CQGra, 30, 184004
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