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RESUMEN

Presentamos un modelo de un jet estacionario, isotérmico, que incorpora ma-
terial, dentro de un medio ambiente estratificado. Este modelo es apropiado para
describir jets Herbig-Haro (HH) en las fronteras de nubes moleculares. El modelo
tiene una solución anaĺıtica directa, la cual permite evaluar el frenado del flujo
debido a la incorporación de material ambiental. La solución indica que el lóbulo
del flujo que viaja hacia regiones de menor presión podŕıa o no ser frenado (depen-
diendo de los parámetros del flujo) antes de salir de la nube molecular. Por otro
lado, el lóbulo que viaja a regiones de mayor presión ambiental será generalmente
frenado apreciablemente para cualquier combinación de parámetros del flujo. El
modelo anaĺıtico presentado da recetas simples para calcular el frenado de los dos
lóbulos del flujo.

ABSTRACT

We present a model of a steady, entraining, isothermal jet embedded in a
stratified environment. This model is appropriate for describing Herbig-Haro (HH)
jets in the outer boundaries of molecular clouds. The model has a straightfoward
analytic solution which permits an evaluation of the slowing down of the outflow
due to the entrainment of environmental material. The solution indicates that
the outflow lobe travelling into regions of lower pressure might or might not be
slowed down (depending on the parameters of the flow) before leaving the molecular
cloud. On the other hand, the outflow lobe travelling into regions of increasing
environmental pressure is likely to be slowed down quite drastically regardless of
the flow parameters. The analytic model presented in this paper gives simple recipes
for calculating the slowing down of the two outflow lobes.

Key Words: stars: winds, outflows — Herbig-Haro objects — ISM: jets and outflows
— ISM: kinematics and dynamics

1. INTRODUCTION

Turbulent, collimated flows (plumes and jets) in
stratified environments can be modeled in terms of
radially averaged conservation equations, which are
solved to obtain the flow properties as a function
of position along the outflow axis. In their classical
paper, Morton et al. (1956) derived the equations
and proposed a parametrized form for the “entrain-
ment velocity”, with which environmental material
is dragged into the collimated flow.

Morton et al. (1956) derived an analytic solu-
tion for a collimated, entraining, buoyant flow in the
so-called “Boussinesq approximation”. In this ap-
proximation, the effect of the compressibility of the

flow was neglected, except in the “buoyancy term”
which appears in the momentum equation.

In the astrophysical context, this kind of ap-
proach was first used by Bicknell (1984) to model
extragalactic jets. An application of this kind of
model to Herbig-Haro (HH) jets was presented by
Raga et al. (1993).

For the case of HH jets, one can assume that the
heating due to shocks and/or turbulent dissipation
is balanced by the radiative cooling of the gas. Be-
cause of the steep rise of the cooling function of the
ISM for temperatures above ≈ 103 K, the energy bal-
ance condition results in very similar temperatures
regardless of the magnitude of the shock/turbulent
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heating. Therefore, the flow can be approximated
as being approximately isothermal (see Raga et al.
1993).

As with the Boussinesq approximation (appro-
priate for almost incompressible flows), the assump-
tion of an isothermal flow leads to a simplified set
of conservation equations. These equations have an
approximate analytic solution, valid for high Mach
number jets embedded in exponentially stratified en-
vironments. These solutions are applicable for bipo-
lar HH outflows at the outer edge of a molecular
cloud (which can be modeled as having an exponen-
tial density/pressure stratification extending over a
few pressure scale heights).

The paper is organized as follows. In § 2, we
derive the model equations. An analytic solution
of these equations is derived in § 3. In § 4, exam-
ples for different flow parameters (appropriate for
HH jets) are presented. § 5 discusses in some detail
the approximations that have been done in order to
construct the model. Finally, the conclusions are
presented in § 6.

2. THE ENTRAINING JET MODEL

In order to have a simple model leading to ana-
lytic results, we study a radially averaged turbulent
jet model, in which the equations are closed by giv-
ing a recipe for an entrainment velocity The model is
further simplified by assuming that both the jet and
the surrounding environment are isothermal (though
with different temperatures).

The isothermal approximation for an HH jet has
been used, e.g., by Raga et al. (1993). The justifi-
cation for this is that the turbulent dissipation pro-
duces an energy gain that is balanced by the rapidly
rising ISM cooling function at ≈ 103K. The energy
then always results in a temperature of this order,
regardless of the precise value of the thermal energy
source. We then model the jet as a flow with a con-
stant, c0 = 3 km s−1 isothermal sound speed. For the
surrounding environment, we assume a temperature
of ≈ 100 K, leading to a ca = 1 km s−1 isothermal
sound speed. The energy equation of the flow in this
way is replaced by the (much simpler) condition of
isothermality.

We further assume lateral pressure balance be-
tween the jet and a hydrostatic the ambient medium:

Pa = ρac2
a = ρc2

0 , (1)

where ρa is the (stratified) ambient density, ρ is the
jet density (constant over the jet cross section be-
cause of the isothermal and pressure balance condi-
tions) and Pa is the ambient pressure, which obeys

the hydrostatic balance condition:

dPa

dz
= −ρag , (2)

where g is the acceleration of gravity (with positive
values of g corresponding to a gravitational force in
the −z direction). For constant g, this equation has
the well-known integral:

Pa(z) = P0e
−z/H , (3)

where P0 is the pressure at z = 0 and H = c2
a/g is

the pressure scale height.
We now write the continuity and the z-

momentum equation for an axisymmetric flow:

∂

∂z
(ρw) +

1

r

∂

∂r
(rρu) = 0 , (4)

∂

∂z
(ρw2 + P ) +

1

r

∂

∂r
(rρuw) = −ρg , (5)

where z is the axial coordinate, r the cylindrical ra-
dius, w the axial velocity, u the radial velocity, ρ the
density, and P is the pressure.

As is usual for modelling turbulent jets or plumes
(see, e.g., Hunt & van den Bremer 2011), we apply an
operator

∫

∞

0
[ ]r′dr′ to these equations. By definition,

at the outer radius r of the jet the axial velocity is
w = 0, and the radial velocity is u = −ve (where
ve is the positively defined “entrainment velocity”).
Applying this integral operator to equations (4) and
(5) we then obtain the equations:

d

dz
(r2ρw) = 2rρave , (6)

d

dz
(r2ρw2) = (ρa − ρ)gr2 , (7)

where we have also used equations (1) and (2), and
assumed that the jet has a “top hat” axial veloc-
ity cross section (with an axial velocity w). These
equations can straightforwardly be interpreted as the
mass and momentum (non-) conservation of the gas
flowing along the jet.

In order to close the system of equations (6-7) we
use the simple “α-prescription”:

ve = αca , (8)

with α ≈ 0.1, appropriate for a jet with Mach num-
ber M = w/ca > 1 (see Raga et al. 1993).

Expanding the derivatives of equations (6) and
(7) and using conditions (1) and (2) we can obtain
the differential equations:

dM

dz
=

(

c2
0

c2
a

− 1

)

1

M H
−

β

r
, (9)
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dr

dz
=

β

M
+

r

2H
−

(

c2
0

c2
a

− 1

)

r

2M2 H
, (10)

where

β = 2α

(

c2
0

c2
a

)

, (11)

M = w/ca is the (appropriately defined) Mach num-
ber of the jet, r is the outer radius of the jet cross
section and H is the environmental pressure (and
density) scale height (see equation 3).

Equations (9-10) can be integrated numerically
in a straightforward way starting from the conditions
M = M0 and r = r0 at z = 0. In the following sec-
tion, we describe an approximate, analytic solution
for this system of differential equations.

3. APPROXIMATE ANALYTIC SOLUTION

In order to proceed analytically, we carry on as
follows. It is clear that for a highly supersonic jet
(with M ≫ 1, as appropriate for an HH jet) the
second term on the right hand side of equation (9)
is much smaller than the first term. This can be
seen in more detail evaluating the two terms with
the values of α, c0 and ca given above, and assuming
a jet with M ≈ 100, r ≈ 1015cm and an environment
with H ≈ 1016cm. Also, from the scaling with M of
the two terms on the right hand side of equation
(10), we see that they dominate over the third term
(inserting the parameters discussed above, one sees
that the first two terms are actually comparable).

In this way, we derive the simplified system of
equations:

dM

dz
= −

β

r
, (12)

dr

dz
=

β

M
+

r

2H
. (13)

This simplication is due to the simple fact that the
buoyancy terms are negligible in a high Mach num-
ber flow.

Now, in order to obtain an analytic solution,
equations (12-13) can be combined to obtain the dif-
ferential equation:

d

dz
(rM) =

rM

2H
, (14)

with solution:

r(z) =
r0M0

M(z)
ez/(2H) . (15)

This result can then be inserted in equation (12) to
obtain the differential equation for the Mach num-
ber:

dM

dz
= −

βM

r0M0
e−z/(2H) , (16)

with solution:

M(z) = M0 exp
[

−κ
(

1 − e−z/(2H)
)]

, (17)

with

κ ≡
2Hβ

r0M0
=

4αc2
0

c2
a

H

r0M0
, (18)

where for the second equality we have used the defi-
nition of β given by equation (11).

This result can now be inserted in equation (15)
to obtain the jet radius as a function of z:

r(z) = r0 exp
[

κ
(

1 − e−z/(2H)
)

+
z

2H

]

. (19)

Equations (17-19) are the full analytic solution for
the propagation of a steady, entraining, isothermal,
highly supersonic jet moving in the direction of de-
creasing pressure within an exponentially stratified
hydrostatic environment.

The model can be straightforwarldy recalculated
for the case in which the acceleration of gravity
points in the +z direction (i.e., changing the sign
of g in equation 7). The resulting solution is:

M+(z) = M0 exp
[

−κ
(

ez/(2H) − 1
)]

, (20)

r+(z) = r0 exp
[

κ
(

ez/(2H) − 1
)

−
z

2H

]

. (21)

This is the solution for a jet moving into a hy-
drostatic environment in the direction of increasing
pressures (which can be directly obtained from equa-
tions 17-19 with the substitution H → −H).

4. NUMERICAL EXAMPLES

Let us now consider a bipolar outflow embed-
ded in an exponentially stratified environment with
the outflow axis aligned with the pressure gradient.
Given the parameters of the system, we can use equa-
tions (17-19) and equations (20-21) to compute the
flow in the directions of decreasing and increasing
ambient pressures (respectively).

For the environment, we assume an isothermal
sound speed ca = 1 km s−1 and a pressure scale
height H = 1016cm. For the jet we assume a
c0 = 3 km s−1 sound speed, a w0 = 100 km s−1 ini-
tial velocity (corresponding to a M0 = w0/ca = 100
initial Mach number) and a r0 = 1015cm initial ra-
dius. We also assume that the “entrainment pre-
scription” has α = 0.1 (see equation 8). These pa-
rameters have already been used in § 2 and § 3.
With these parameters, from equation (18) we ob-
tain κ = 0.36.
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Fig. 1. Mach number (top) and jet radius (bottom) as a
function of distance z from the source. The Mach num-
ber and the jet radius are adimensionalized with the cor-
responding ejection values, and the distance from the
source is given in units of the environmental pressure
scale height H. The exponential environmental strati-
fication has pressures that decrease for positive z (and
increase for negative z). The solid curves correspond
to a model with the dimensionless parameter κ = 0.36
(see equation 18) deduced from the nominal HH jet pa-
rameters chosen in § 4. The short and long dash curves
correspond to the two bracketing values κ = 0.1 and 1.0
(respectively).

The results obtained for this value of κ (as well
as for two bracketing values κ = 0.1 and κ = 1.0)
are shown in Figure 1. In this Figure, for positive
z we show the solution corresponding to decreasing
ambient pressures (equations 17-19) and for negative
z the solutions corresponding to increasing ambient
pressures (equations 20-21).

In the top frame of Figure 1, we see that (as ex-
pected) a stronger slowing down of the outflow is
obtained for the lobe in the region of increasing am-
bient pressures (i.e., for negative z). In the bottom
frame of Figure 1 we see that for z > 0 the jet radius
monotonically grows with z. For the κ = 0.1 and
0.36 solutions, for z < 0 the jet radius first decreases
with increasing distances from the source (i.e., for
more negative z-values) and then has a rapid rise
at larger distances. In the κ = 1.0 solution, the jet
radius grows monotonically (for increasing distances

from the source) in the z < 0 region. These be-
haviours can be understood from a visual analysis of
equations (17-21).

A clear feature of the jet Mach number is that
for z > 0 (i.e., in the direction of decreasing ambi-
ent pressure) it has a non-zero asymptotic limit for
large distances from the source (see the top frame of
Figure 1). From equation (17), it is clear that this
asymptotic Mach number has a value:

M∞ = M0 e−κ . (22)

Therefore, an evaluation of the κ parameter (see
equation 18) directly gives us an estimate (through
equation 22) of whether or not entrainment will pro-
duce a substantial braking in a jet emerging from a
stratified environmental structure.

For the case of an outflow travelling in the direc-
tion of increasing environmental pressure, the Mach
number of the jet goes to zero in a rather drastic
way (as an exponential of an exponential, see equa-
tion 20). For this outflow lobe one would expect a
jet velocity that has a dramatic drop over distances
corresponding to a few environmental scale heights.

5. DISCUSSION

5.1. The effect of neglecting the buoyancy force

This paper discusses a simple steady, isothermal,
entraining jet model. This problem has an analytic
solution valid for high Mach number jets, in which
the buoyancy force can be neglected. The magnitude
of the errors introduced by neglecting the buoyancy
can be evaluated as follows.

If we have a non-entraining, steady, isothermal
jet, the flow along the axis obeys Bernoulli’s theo-
rem:

w2

2
+ c2

0 ln
ρ

ρ0
=

w2
0

2
, (23)

where c0 is the isothermal sound speed of the jet, w
is the axial velocity, w0 is the ejection velocity, ρ is
the density, and ρ0 the ejection density. Assuming
lateral pressure balance (i.e., ρ/ρ0 = Pa(z)/P0 where
Pa(z) is given by equations 2-3), we then obtain the
relation

M2 = M2
0 +

(

c0

ca

)2
2z

H
, (24)

where M = w/ca is the Mach number of the flow
(relative to the environmental sound speed ca). We
note that this equation can be obtained straightfor-
wardly by setting α = 0 in equation (9).
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Therefore, as expected, the effect of the buoyancy
is to produce an encrease in the velocity (or Mach
number) of a jet travelling in the direction of decreas-
ing environmental pressure. For our example of a jet
with an initial Mach number M0 = 100 and with
c0/ca = 3, this effect is quite small. Putting these
numbers in equation (24), we see that for z = 10H,
the jet Mach number has a value M10 ≈ 100.9, so
that the resulting acceleration is indeed very small.
Because of this, neglecting the buoyancy force does
not introduce significant effects for jets of Mach num-
ber ≈ 100.

5.2. The assumption of lateral pressure balance

The assumption of lateral jet/environment pres-
sure balance for modelling astrophysical jets in a
stratified environment was first used by Icke (1991).
It is, however, unclear that this is a valid approx-
imation in the case of high Mach number flows,
since they can develop relatively large pressure im-
balances. These pressure imbalances lead to the for-
mation of “crossing shocks”, as shown by the steady
simulations of jets in stratified environments of Falle
& Wilson (1985) and Wilson & Falle (1985).

Cantó & Raga (1996) carried out comparisons
between steady jet simulations and analytic, lateral
pressure balance models of jets travelling in an expo-
nentially stratified environment. Interestingly, they
find that even though the numerical simulations de-
velop systems of crossing shocks (corresponding to
local lateral pressure imbalances), the general prop-
erties of the flow (i.e., the jet velocity and trajectory)
are in good agreement with the analytic, lateral pres-
sure balance analytic model.

Therefore, we expect that the predictions from
the models described in the present paper are likely
to be at least a qualitatively correct description of
the real flows.

5.3. The assumption of an outflow axis parallel to
the pressure gradient

We have assumed that we have an outflow system
with a jet/counterjet axis parallel to the direction of
the environmental pressure gradient. If we have a
jet in the outer edge of a molecular cloud (which
could be modeled as having an exponential pressure
stratification), this is indeed a very particular case!

For the general case of an outflow axis at an an-
gle to the direction of the environmental gradient,
a steady, non-entraining jet model predicts that the
jet/counterjet system will curve in the direction of
decreasing pressures (see Cantó & Raga 1996).

However, as this deflection of the jet beam is due
to the buoyancy force, in the case of high Mach num-
ber jets it occurs over distances of many scale heights
(see Cantó & Raga 1996). Therefore, for outflows
propagating over distances of only a few environ-
mental pressure heights we will have straight jets in
which the entrainment produces the slowing down of
the outflow velocity described by equations (17-21),
but with an effective scale height Heff = H/ cos φ
(where H is the environmental pressure height and
φ is the angle between the pressure gradient and the
outflow axis).

5.4. The entrainment velocity parametrization

As described in § 2, it is necessary to adopt a
“parametrization” for calculating the entrainment
velocity (see equation 8). We have adopted the
parametrization of Raga et al. (1993), which was
based on the analysis of experimental results of
Cantó & Raga (1991). This parametrization is
of course not unique (see Komissarov 1990, who
adopted a somewhat different parametrization).

Experiments of subsonic jets in stratified environ-
ments (Kaminski et al. 2005) show that parametriza-
tions of the entrainment velocity similar to the one of
Raga et al. (1993) are also appropriate (at least in an
approximate way) for this kind of flow. Adjustments
to the entrainment velocity parametrization (in or-
der to reproduce laboratory experiments of subsonic
jets in stratified environments) have been proposed
by van Reeuwijk et al. (2016).

As there are no published experimental results of
supersonic jets in stratified environments (that we
are aware of), we are forced to assume that in this
case the entrainment velocity parametrizations for
jets in uniform environments are still approximately
applicable (as is the case for subsonic jets, see van
Reeuwijk et al. 2016). Clearly, this parametrization
is the primary source of uncertainties in the models
that we are presenting.

6. CONCLUSIONS

This paper describes a simple, new analytic solu-
tion for the problem of an entraining jet in a strati-
fied environment. This solution is an interesting ad-
dition to the modelling of turbulent jets and plumes,
for which analytic solutions exist in some limiting
cases, but which generally depends on numerical in-
tegrations of the conservation equations (see, e.g.,
Hunt & van de Bremer 2010).
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The model describes a jet/counterjet system em-
bedded in an exponentially stratified, isothermal
environment, which could correspond to the outer
boundary of a molecular cloud. There are two solu-
tions:

1. Jet travelling into regions of decreasing pressure:
the entrainment of environmental material leads
to a slowing down of the jet, which can be sub-
stantial provided that the dimensionless param-
eter κ (see equation 18) is at least of order unity
(see equation 22). Otherwise, the jet will emerge
unscathed (i.e., with a velocity very similar to
the ejection velocity) from the molecular cloud,

2. (Counter-) jet travelling into regions of increas-
ing pressure: over a distance of a few environ-
mental scale heights a substantial braking of the
jet will take place, regardless of the parameters
of the flow.

This is a very interesting prediction, which gives
a clear framework for interpreting observations of
bipolar HH jets, and can also serve as a guide for
computing numerical simulations of HH jets in strat-
ified environments (see, e.g., O’Neill et al. 2005).
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We acknowledge support from the CONACYT
grants 167611 and 167625 and the DGAPA-
UNAM grants IA103315, IA103115, IG100516 and
IN109715.

REFERENCES

Bicknell, G. V. 1984, ApJ, 286, 68
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