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RESUMEN

En nuestro trabajo I empleamos, de manera aproximada, el teorema de
Bernoulli para estudiar el equilibrio de un esferoide homogéneo deformado auto-
gravitante, con corrientes internas de vorticidad diferencial donde, por comodidad,
se supuso que la constante k de esa ecuacién era la misma en todas partes del cuerpo,
lo que eventualmente condujo a inconsistencias, que desaparecieron al permitir que
cada linea de corriente tenga su propia k. En el presente trabajo investigamos, me-
diante una ley de rotacion simple y precisa, el equilibrio de un cuerpo heterogéneo
que consiste de dos esferoides deformados concéntricos -nucleo y envoltura- cuyos
semiejes no guardan relacién alguna entre si. El modelo aporta, para cada valor
de la densidad relativa del cuerpo, series pentaparamétricas de figuras, restringidas
por ciertos limites geométricos y fisicos. La distribucién de velocidad angular per-
tinente es por cilindros coaxiales al eje de rotacién; contrariamente a lo estipulado
en nuestro trabajo II, la distribucién por discos no es posible.

ABSTRACT

In our Paper I, Bernoulli’s theorem was employed in an approximate form to
study the equilibrium of a self-gravitating homogeneous distorted spheroid, with
internal differential vorticity currents, where, for ease, the Bernoulli constant &
was taken as being the same everywhere, eventually leading this to inconsistencies,
which are no longer present when each streamline has its own k. In the current
paper we investigate, through a simple and general rotation law, the equilibrium
of a heterogeneous body composed of two concentric distorted spheroids—core and
envelope—whose axes are not correlated. The model yields, for each value of the
body’s relative density, five-parametric series of figures, constrained by certain ge-
ometrical and physical limits. The pertinent distribution for the angular velocity
is by cylinders coaxial with the rotation axis. Contrary to what was stated in our

Papaer II, the distribution by disks is impossible.
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1. INTRODUCTION

In Cisneros et al. I (2015) equilibrium figures
were obtained from a self-gravitating homogeneous
liquid mass endowed with an internal motion of dif-
ferential vorticity, whose surface equation was that
of either a distorted ellipsoid or a distorted spheroid;
however, as we noticed a posteriori, the figures,
called ellipsoidal and spheroidal after Jeans (1920),
were erroneously deduced, although their qualitative
features remained more or less unaffected (see § 5.1).

1Facultad de Ciencias, Universidad Auténoma de San Luis
Potosi, México.

2Instituto de Fisica, Universidad Auténoma de San Luis
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In the current paper, we investigate the equilibrium
of a heterogeneous model consisting of two concen-
tric homogeneous spheroidal masses of different den-
sity, the ‘nucleus’ and the ‘atmosphere’ (whose semi-
axes are not correlated) through a simple and pre-
cise rotation law. Affixing sub indexes n and a to
the pertinent quantities, the body’s relative density,
(Pn — Pa)/pa, is denoted by e, with p, > p,, so that
the distribution of density is somewhat closer to that
prevailing in real stars. The quantities in our de-
velopment are normalized as explained in Cisneros
et al. I (2015).
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2. BERNOULLI'S THEOREM, THE CLASSICAL
HOMOGENEOUS FIGURES AND OURS

Before going on with our heterogeneous model,
we wish to discuss Bernoulli’s theorem as is com-
monly employed for obtaining the classical homoge-
neous figures (Lyttleton 1953; Dryden 1956), par-
ticularly the Dedekind ellipsoids which, along with
our models, are static. The steady-state equations of
motion for a self-gravitating fluid are

1 .
(v-grad)v = gradV — ;gradp, divv =0, (1)
where v is the velocity field, V is the potential and p

is the pressure. These equations can also be written
as

1 1

grad <2v2 —V+p) = v X (rotv), divv = 0.
P

(2)

For a streamline (tangent to v) we get, after taking
the dot product of v in the first equation (2),

1 1
v - grad <2V2 -V+ pp> =0; (3)
that is
1v2—V—|-1 =k (4)
B ppi )

k being constant on a streamline. Commonly, k
changes from one streamline to another, being an
overall constant only when rotv = 0. The changes
in k are dictated by [cf. equations (2) and (4)]

gradk = v X (rotv). (5)

The Maclaurin and Jacobi figures are characterized
by the rotational velocity field

V:w(—y,x,O), (6)

where w is the constant angular velocity. We can
see that relation (6) satisfies the continuity equa-
tion divv = 0. According to equation (6), the k in
Bernoulli’s equation is given by

grad k = 2w*(x,y,0), (7)
that is
ok 5 ok o ok
%—2w z, a—y—Zw Y, . 0, (8)

from which we deduce

k= w? (m2+y2)+c, (9)

¢ being any constant. Therefore, Bernoulli’s equa-
tion (4) becomes

1 1
SVt p=e (10)

which agrees with the well-known equation.?

While the Jacobi and the Maclaurin figures ro-
tate as a rigid body, a Dedekind ellipsoid (1, es, e3
are the major, middle, and minor semi-axes) remains
fixed in space, its equilibrium being due to an inter-
nal motion of uniform vorticity ¢, its velocity field
being

¢

2
v = T a (—y,e52,0). (11)

We can convince ourselves that v is tangent to el-
lipses 22 + y2/e3 = const.. Hence, streamlines are
ellipses perpendicular to the z-axis. For { constant,
the velocity field satisfies the continuity equation,
and k obeys the relation

2

2
gradk: 1+€% (62 I7y70)7 (12)
so that
ok S ok ¢? ok
S = TS5 6%, a =Y - =0.
Oor 1+4e5 dy 1l+e3 0z
(13)
The solution of the partial differential equations (13)
is e
k=———r(e52% + 3 14
2(1_’_6%)(621‘ +y)+c7 ( )

where ¢ is an arbitrary constant. In this case,
Bernoulli’s equation

2 2
2(6;1)2(63$Q+y2)—v+i’=2(1i63) (€5 2% +y?)+e,
reduces to
fvfi(x2+y2)+lp:c. (15)
2(e3 + 1)2 P

This is essentially equation (10) for obtaining the
Jacobi ellipsoids if we put
2.2
w2 = 74 € 35 (16)
2(e3+1)

a known result that establishes the equivalence be-
tween Jacobi’s angular velocity and Dedekind’s vor-
ticity (Chandrasekhar 1969). Of course, if we had as-
sumed from the beginning that k£ = const., it would
have been impossible to reach equation (15).

3Lyttleton assumes from the beginning that k is constant;
he obtains a valid result because of the special value of k of
the present case.
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2.1. General Case with Cylindrical Symmetry

Each fluid point rotates, now, with non-constant
angular velocity w. The velocity field is given again
by

v =w(-y,x,0), (17)

but the continuity equation leads, presently, to

divv = fyg—(: erg—z =0,
or
Ow _ 0w
0x2  oy?’
which means that, generally, the angular velocity
must be a function of the kind

(18)

w:w(x2+y2,z). (19)

Assuming, additionally, that the velocity field is
symmetric about the z-axis, we can express it as

w=w(z® +y% 2% . (20)

Here, it is more convenient to use cylindrical coordi-
nates (R, ¢, z), and so the problem is independent of
one coordinate: . In this system, the velocity field
(tangent to circles) has a p-component alone:

v=w(0,R,0). (21)

Equation (5) will have two terms only:
ok Ow ok Oow
— =w|R*——; — = Rw—.
orz Y ( or? + “’) 9 VYo

Making the variable change

B o

equations (22) become

ok 0 1 ok 99

R am R 92 g2
From the last of equations (24), we deduce
k(R 2%) =Q(R*2°) + f(R?),  (25)

where f is an arbitrary function. Therefore, the first
equation (24) implies that

Q(R2722) — R2f/ (RZ)7

or

w® =2f"(R?), (26)

i. e., the angular velocity can be at most a function
of R alone, and the same for k:

k=R (R*)+ f(R?) = %RQ w’+ f(R?). (27)

In other words, the angular velocity distribution has
cylindrical symmetry. Since k£ does not depend ex-
clusively on z, disk-like distributions are impossible,
contrary to what we stated in Paper II. Substituting
k of equation (27) into Bernoulli’s equation (4), we
obtain

—f (R?) —V(R27z2)+%p:0. (28)

Since the function f depends on R but not on z (i.
e., it is constant on cylinders), we can determine it
using only the surface equation, on which p = 0:

f(R?) =V (R*2?), (29)

where z is a function of R for a figure with cylin-
drical symmetry. Equation (29) allows to determine
the function f (= —V), and with equation (26) w is

established: o
2
w=-=2 Fizh (30)
which is the general angular velocity distribution
law for any axial-symmetric, incompressible, self-
gravitating fluid with p = 0 on its surface. Equa-
tion (30) is, essentially, Newton’s second law for a

unit mass particle:

d
(Radial force=)—— = —w? R(=centripetal acceleration).

dR

Using the familiar variable r (= 22 +y? = R?), equa-
tion (30) can be written as

dv
2= _9 31
w dr ( )

In the special case of a Maclaurin spheroid, the
potential can be expressed as

V=v.—m (m2+y2)—0322:1)5—1)11“—1)322.

At any interior point; on the surface (r +22%/e% = 1),
we have

Vzvc—vge§+(vge§—v1)r.

Hence, according to equation (31), the angular ve-
locity is given by

w2:2(v1—vge§),
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which agrees with the well-known result. Taking into
account that

27r< 63763\/176§C0871(63)+1)
U3 = o2 )
(1—e3)

and that v1 = 27 — vz, we can also write

2es (3 e3y/1—e2 — (2e%+ 1) cos™ (63))

(1 3)37

w- =

2.2. The Homogeneous Spheroidal Mass
The surface equation of the homogeneous
spheroidal mass (the ellipsoidal mass will not be con-
sidered here) is

) , 22 et
Ay + 5 +d—5 =1, (32)
€3 €3

where d is a parameter larger than —1/4; the rotation
semi-axis is not ez, but

Vad+1—1

5 (33)

ZM = €3
For establishing the angular velocity at equilib-
rium (31), we must take the derivative of the poten-
tial with respect to r at the surface. Since V is only
known numerically, this process has to be carried
out numerically. Nonetheless, we can use another
approach. We approximate the potential by a poly-
nomial in r of the form

V=ag+arr+asr®+asr’®+asr?, (34)
so that the angular velocity becomes
2= 2(oq +2aar +3azr? +4ayr®).  (35)

For d not too large, the mean absolute error in V
is about 10~7, which grows with increasing d (for
d = 2, the mean error is 107%).

3. THE HETEROGENEOUS SPHEROIDAL
MASS

The composite model consists of a core, or nu-
cleus, of density p,,, whose shape is

2 4
+:+dn 421, (36)

1 n

ﬂ

surrounded by an envelope, or atmosphere, of den-
sity pq, of the form

2 2’4

2 2, ? _
T4y +67+da67—1. (37)

a a

Here e; is the ratio of the nucleus and atmosphere
major axes; e, and e, are proportional to the rota-
tion semi-axes, which are

Vad, +1-1

Vaid, +1-1
2d, '

2,

ZMmn =€n yZMa =€aq

(38)
The net potentials at any point of the nucleus
and the atmosphere are (Montalvo et al. 1983),

Vn =V + Via, Va=¢eVin +Vaa, (39)

respectively, where V,,,, is the self-potential of the

nucleus; V,,, is the potential on the nucleus due to

the atmosphere; V,, is the potential on the atmo-

sphere due to the nucleus; V,, is the self-potential

of the atmosphere; ¢ is the body’s relative density
difference: p p
n a

€ P (40)

Let us now suppose that core and envelope rotate

with (variable) angular velocities w,, and w,, so that

their velocity fields are

(—y,z,0). (41)

Both fields must obey the continuity equation
divv = 0. Thus, according to equation (20), we have

Vn = Wn (—y,x, 0)7 Vg = Wq

wn:wn(xQ + 92, 22) , wa:wa(xQ + 92, z2) . (42)
In the equilibrium state the angular velocities
(42) must fulfill Bernoulli’s equation:

L— Vit fa (B2, L =Vatfa (R, (43)
Pn Pa
where f,, and f, are functions to be determined. f,,
and f, are established from the surface conditions
Pn = po (core surface) and p, = 0 (envelope sur-
face), where p,, and p, are pressures on points of the
nucleus and the atmosphere:

eV+(1+4e) fo (R?)—fa (R?) =0, Va+fq (R?) =0.
(44)

Using equation (31), these relations can be written
as

— _9 dVA w2 _ 2¢e dVN 1 w2
Wa = dr’ " 14e dr 14¢e %
(45)

where » = x2 + 32 and Vy, V4 are potentials on
core and envelope surfaces, taken as functions of r
only. Thus, for establishing w, and w,, the poten-
tial derivatives must be available at each point of
the surface. Since the potential is given numerically,
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its derivative must be numerically computed. For a
homogeneous body (only interior points are needed),
we find that a reasonable good approximated expres-
sion for the potential at points on the surface is:

V=ag4+arir+asr?+asrd+asr?, (46)

where «; are parameters to be fixed by fit proce-
dures, and thus the angular velocity is given by equa-
tion (35)

In the case of our heterogeneous mass, equa-
tion (46) is not acceptable, especially at points where
external potentials are needed (they must approach
0, as r — 00). To obtain equilibrium figures for the
heterogeneous case, the potential derivatives will be
established by numerical means. For this purpose,
we use the approximation

fir+h) = flr=h)
2h ’

f(r) = (47)
where h is a small quantity. The precision of expres-
sion (47) is of order h%. A not too small value for
h will be used, since potentials are calculated with
an accuracy of about 10~7; a reasonable h could be
~ 5 x 1073,

4. MODEL GEOMETRY

The heterogeneous mass can easily be built by
making the two surfaces similar: coordinates of cor-
responding surface points are proportional, so that

2 2 2 4
r+y z z 9
—5—t+—5+d, =c

e? e2 el (

1 n n

2 4
x2+y2+22+dac2z4) ,

e(l e{l
(48)
for all (z,y,2), from what it follows that ¢ = 1/ey,
e, = e1e, and d,, = d,. Thus, the whole mass is
characterized by only two parameters, say, e, and
d, (and, of course, the relative size e; of major semi-
axes, and the relative density difference ¢). Hence,
the series, should they exist, would be relatively sim-
ple to handle. Yet we prefer to explore a more gen-
eral case, and let e,, ey, dy,, d, vary freely, thus lead-
ing to more involved series (actually, six-parametric,
if we take into account the parameters e; and ¢).
The model effectively yields series which are sub-
ject to certain limits, both physical and geometrical;
for instance, the major semi-axis of the atmosphere
must be greater than that of the nucleus: e; < 1;
besides, the rotation semi-axes zp;n, Zpe must be

smaller than the corresponding major semi-axes:

Zpn < €1, ZMa < 1,

or [cf. equation (38)]

2d,, 2d,

— 0 <4 — .
Vad, 111 ¢ Vad, F1-1
(49)

en < €1

Finally, the rotation semi-axis of the atmosphere
must not be smaller than that of the nucleus, oth-
erwise the atmosphere would intrude in the nucleus,
and the present equilibrium conditions would not ap-
ply:

ZMa > ZMn- (50)
The particular configuration for which zpr, = 2upa
(e1 # 1), i. e., when the poles coincide, is termed a
‘contact figure’; e, and e,, are related by

 da (VAd, +1-1)
TV (VT

(51)

5. NUMERICAL RESULTS
5.1. The Homogeneous Spheroidal Mass

Clearly, our calculations of (Cisneros et al. 2015,
Paper I) must be affected if the right k in Bernoulli’s
equation (4) is used, but the qualitative features of
the new figures remain more or less alike. In the case
of homogeneous figures for which the surface equa-
tion is

2’2 2’4
Pyt + S +d5 =1,
€3 €3

we come as before to continuous es-series for each d
value and, furthermore, we again find limits. For d
positive, and low es-values up to a definite limit, w?
increases from pole to equator; thereafter, the ten-
dency is inverted (Figure 1). For d negative (but
greater than —1/4), another limit appears: as d be-
comes more and more negative, the es-series becomes
shorter, because w? takes negative values, and the
figures come into a forbidden region (Figure 1), a
behavior that was also noticed in previous work.

5.2. The Heterogeneous Spheroidal Mass

The present series are more involved than those
for the homogeneous case, so we must proceed care-
fully and not try to get an overwhelming bulk of
models that would render it difficult to give a clear
panorama of their regularities. For this purpose, a
basic series is constructed by fixing five parameters:
e=1,e1=05,¢,=0.1andd, =d, = —1/8, while
the remaining one e, is let to vary in its allowed
range.
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031 Transition limit

0271

Fig. 1. Limiting es-d curves for the w? tendency transi-
tion (left) and the forbidden region (right) where w? is
partially negative. In fact, the last figure is plotted from
the condition that w? is 0 at the pole.
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Fig. 2. Angular velocity distribution between pole
(R =0) and equator for the nucleus (shorter line) and
atmosphere as e, varies from 0.1 (contact figure) to the
limiting value 0.78. Fixed parameters are: e; = 0.5,
en=01,d, =d, =—-1/8, e = 1.

Fig. 3. Heterogeneous equilibrium figures as e, varies
from 0.1 (contact figure) to the limiting value 0.78. Poles
are suggested by a thick dot. Fixed parameters are: e; =
0.5, e, =0.1,do =dn=-1/8, e =1.

5.2.1. The Case d, =d, = —1/8

First, we take d,, = d, = —1/8 and allow e, to
vary from 0.1 up to its maximum value, finding that
equilibrium is possible for the angular velocity distri-
bution given by equation (31) for the envelope and
core. In Figure 2 we plot the angular velocity distri-
bution in the nucleus (R < 0.5), and the atmosphere
(R < 1); Figure 3 is a sketch of the model geometry.

In Figure 2 (see also Figure 3), the series be-
gins with a contact figure in which the poles of core
and envelope touch each other, but not the equa-
tors, since the equator of the atmosphere is twice
as large as that of the nucleus (e; = 0.5). We see
that the core rotates slower than its envelope, even
at the pole. In both, the angular velocity decreases
from pole to equator, i. e., the central parts rotate
faster than the outer ones. As e, increases (the at-
mosphere expands), w? decreases, until a point is
reached where the tendency is reversed: the angular
velocity now increases from pole to equator, remain-
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Fig. 4. Sketch of en-series for do, = dr, = 1/8,6 = 1. The
series begin with a contact figure for e, < 0.3975 and
end at an e, around 0.9. After e, = 0.3975 they become
narrower and begin without a contact figure.

ing so up to the end; we say that a transition figure
occurs. For larger e,-values, w? steadily decreases,
reaching a zero value at the pole; thereafter, it is
negative and unacceptable. The limit is achieved at
ea = 0.78 (2pq = 0.84). At the same time, less
dramatic changes in the core occur with increasing
eq: the pole w? increases a little, until the angu-
lar velocity decreasing tendency ends: a transition
figure occurs. Subsequently, w? monotonically in-
creases from pole to equator. Both angular veloc-
ity distributions have, therefore, two limits: one for
which w? becomes zero at a point, and the other,
less drastic, where the angular velocity reverses its
tendency from monotonically decreasing to increas-
ing. Certainly, the change takes place gradually, and
we refer to a limit when w? increases monotonically
for the first time. Still another limit might be dis-
closed by building more series for larger e, values.
Indeed, we find similar series starting with a contact
figure and ending up with a top figure (e, = 0.78)
if e, <0.3975 (zpr, = 0.43). For the small interval
0.4004 > e,, > 0.3975 there are series that do not be-
gin with a contact figure and end with a one-member
series at e,, = 0.4004, e, = 0.969.

5.2.2. The Case d,, =d, =1/8

Here we take d, = d, = 1/8 and let e, vary
from 0.1 (contact figure) up. Once more, we get a
set of series somewhat different from the former one
(Figure 2), but also sharing several properties:

1. The series begins with a contact figure with the
atmosphere rotating faster than the nucleus, as
formerly.

2. Both differential angular velocities always
monotonically decrease from pole to equator. In
other words, there are not transition figures.

3. The limiting figure occurs at e, = 0.967
(zma = 0.917).

4. The contact figure has a limit for e,, = 0.398 (cf.
§2.1.1).

5. The series do not end at e, = 0.398; they
continue for larger e, and are more and more
narrow, ending with an isolated figure with
e, =0.4827, e, = 0.969 (zpm = 0.457) (see
Figure 4).

Hence, the plus sign of d,,d, hinders the
monotonous property of the angular velocity, and
raises the upper limit of e,. Additionally, the series
does not disappear after a last contact figure, but at
a higher e,, limit.

5.2.3. The Case d, =1/8,d, = —1/8
This time, only d,, sign is modified, so that our
set of parameters is

1 1 1 1
e = 5, €en = — =
Once more, the series starts with the contact figure
eq, = 0.0876; ¢, is established by zprq = zapm con-
dition (equation (51)). The series resembles more
the d, = d,, = —1/8 case than the d, = d,, = 1/8
one, in the sense that it has angular velocity transi-
tion limits and a limiting contact figure at e, =~ 0.4
(zam = 0.38). For greater e, values, there are, how-
ever, more series without an initial contact figure,
which become narrower as e,, — 0.5 (27, = 0.47).
For e, = 0.5 there only exists a series with the mem-
ber e, = 0.97 (zp = 0.92).

5.2.4. The Case d, = —1/8,d, =1/8

Here, d, alone is modified relative to first case,
so that the parameters values are now

1 1 d 1 1
2 T T TE
With these parameters, we also establish series start-
ing with a contact figure, when e, < 0.4 (zprn, =
0.43). Series without a contact figure are possible
when 0.4 < e, < 0.421; for e,, = 0.421 (zpz, = 0.46)
the series has a unique member at e, = 0.97. The
atmosphere does not present angular velocity transi-
tion limits, and the nucleus has only one, at e,, = 0.2,
e, = 0.6.

e =



© Copyright 2016: Instituto de Astronomia, Universidad Nacional Auténoma de México

382 CISNEROS, MARTINEZ, & MONTALVO
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Fig. 5. As ¢ increases, the last contact figure e, (lower
curve) first decreases and then increases slowly; on the
contrary, for the last one-member series e,, decreases con-
tinually. Both curves tend to the same point, i. e.,
the last contact figure is at the same time the last one-
member series.
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Fig. 6. As ¢ increases, the last contact figure e, (lower
curve) first decreases and then increases slowly; on the
contrary, last one-member series e,, decreases continually.
Both curves tend to the same point, i. e., last contact
figure is at the same time last one-member series.

5.3. Consequences of the e-value

To study the £ impact on our series, we assumed
values for the parameters according to

do=2 -1 o 194004,

dn:_ ;
’ 8 8

€1 =

1
787

| =

1
2
and constructed the series changing e, for a given

en of a set 0.1...0.5, as formerly done. As an illus-
tration, only cases d,, = F1/8,d, = £1/8 were con-

£, 18 d =—= d =—-
R Y
0.8+
0.6+
.t g
i t t t *
i 0.4 0i o.g

Fig. 7. As e; increases, the last contact figure e,/e1
(lower curve) increases continuously, practically for all
e1 values; on the contrary, for the last one-member se-
ries en/e1 remains constant up to about e; = 0.5. Both
curves coincide after about e; = 0.5. The curves were
plotted for d,,,d, = —1/8.

&
el \f—
d = ! i = L
.74 YRR
054 ¢
0.2 04 0.6 0.8

Fig. 8. As e; increases, the last contact figure e, /e:
(lower curve) increases continuously with some small os-
cillation, for all e; values; on the contrary, the last one-
member series e,/e; remains constant (== 0.98) prac-
tically all the way. Both curves coincide after about
e1 = 0.7. The curves were plotted for d,,,d, = 1/8

sidered, and cases with d,, = d, = —1/8,1/8 were
disregarded. We refer briefly to these d-values as
—+, +—, ——, and ++ (first sign for d,, second for
d,). Generally speaking, we did not find any new
property, (other than those recognized above) when
€ was modified, i. e., for each ¢, the set of series can
or cannot show angular velocity distribution ‘turning
points’ (transition to monotonically increasing distri-
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bution), there is a final series having a contact figure,
and there is a last (one-member) series. Clearly, as ¢
changes, the values characterizing a last contact fig-
ure, a last series, and a transition figure, must suffer
modifications. The contact limiting figure has an
ep-value that first decreases and then increases, as ¢
increases from 1 to 24 (see Figure 5). On the other
hand, e, in the last series continually decreases as ¢
increases. The e, span between last contact figure
series and last series initially increases and thereafter
continuously decreases (Figure 5).

5.4. Consequences of the ey-value

To study changes of our basic series (Figure 2)
regarding the nucleus and atmosphere relative size
ey, we varied it in steps of 0.1 from 0.9 down. We
fixed dq = £1/8,d,, = £1/8,¢ = 1 and constructed
en series varying e, for each e; value of the set.
For example, when e; = 0.9 we built the series for
en = 0.1,0.2,.... Qualitatively again, we found se-
ries with or without transition limits, e, upper lim-
its, last contact figure for e, series, and final one-
member series. Quantitatively, there are differences
regarding the above results. The w? magnitudes and
the variation range change; the e,, gap between last
contact figure and last one-member series grows as

e1 decreases, starting at e; = 0.5; likewise, beyond
e1 = 0.5 the gap approaches 0 (see Figures 6 and
7). This behavior is somewhat similar to the e-effect
(Figures 4 and 5): as ej or € increases the gap be-
comes narrower, and finally it disappears.

We thank Edgardo Ugalde Saldana from the In-
stituto de Fisica UASLP, Mexico, for kindly provid-
ing computer support that facilitated the calcula-
tions of our numerical results.
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