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RESUMEN

En nuestro trabajo I empleamos, de manera aproximada, el teorema de
Bernoulli para estudiar el equilibrio de un esferoide homogéneo deformado auto-
gravitante, con corrientes internas de vorticidad diferencial donde, por comodidad,
se supuso que la constante k de esa ecuación era la misma en todas partes del cuerpo,
lo que eventualmente condujo a inconsistencias, que desaparecieron al permitir que
cada ĺınea de corriente tenga su propia k. En el presente trabajo investigamos, me-
diante una ley de rotación simple y precisa, el equilibrio de un cuerpo heterogéneo
que consiste de dos esferoides deformados concéntricos -núcleo y envoltura- cuyos
semiejes no guardan relación alguna entre śı. El modelo aporta, para cada valor
de la densidad relativa del cuerpo, series pentaparamétricas de figuras, restringidas
por ciertos ĺımites geométricos y f́ısicos. La distribución de velocidad angular per-
tinente es por cilindros coaxiales al eje de rotación; contrariamente a lo estipulado
en nuestro trabajo II, la distribución por discos no es posible.

ABSTRACT

In our Paper I, Bernoulli’s theorem was employed in an approximate form to
study the equilibrium of a self-gravitating homogeneous distorted spheroid, with
internal differential vorticity currents, where, for ease, the Bernoulli constant k
was taken as being the same everywhere, eventually leading this to inconsistencies,
which are no longer present when each streamline has its own k. In the current
paper we investigate, through a simple and general rotation law, the equilibrium
of a heterogeneous body composed of two concentric distorted spheroids—core and
envelope—whose axes are not correlated. The model yields, for each value of the
body’s relative density, five-parametric series of figures, constrained by certain ge-
ometrical and physical limits. The pertinent distribution for the angular velocity
is by cylinders coaxial with the rotation axis. Contrary to what was stated in our
Papaer II, the distribution by disks is impossible.

Key Words: gravitation — hydrodynamics — stars: rotation

1. INTRODUCTION

In Cisneros et al. I (2015) equilibrium figures
were obtained from a self-gravitating homogeneous
liquid mass endowed with an internal motion of dif-
ferential vorticity, whose surface equation was that
of either a distorted ellipsoid or a distorted spheroid;
however, as we noticed a posteriori, the figures,
called ellipsoidal and spheroidal after Jeans (1920),
were erroneously deduced, although their qualitative
features remained more or less unaffected (see § 5.1).

1Facultad de Ciencias, Universidad Autónoma de San Luis

Potośı, México.
2Instituto de F́ısica, Universidad Autónoma de San Luis

Potośı, México.

In the current paper, we investigate the equilibrium
of a heterogeneous model consisting of two concen-
tric homogeneous spheroidal masses of different den-
sity, the ‘nucleus’ and the ‘atmosphere’ (whose semi-
axes are not correlated) through a simple and pre-
cise rotation law. Affixing sub indexes n and a to
the pertinent quantities, the body’s relative density,
(ρn − ρa)/ρa, is denoted by ε, with ρn > ρa, so that
the distribution of density is somewhat closer to that
prevailing in real stars. The quantities in our de-
velopment are normalized as explained in Cisneros
et al. I (2015).
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376 CISNEROS, MARTÍNEZ, & MONTALVO

2. BERNOULLI’S THEOREM, THE CLASSICAL
HOMOGENEOUS FIGURES AND OURS

Before going on with our heterogeneous model,
we wish to discuss Bernoulli’s theorem as is com-
monly employed for obtaining the classical homoge-
neous figures (Lyttleton 1953; Dryden 1956), par-
ticularly the Dedekind ellipsoids which, along with
our models, are static. The steady-state equations of
motion for a self-gravitating fluid are

(v · grad)v = gradV − 1

ρ
grad p, div v = 0, (1)

where v is the velocity field, V is the potential and p
is the pressure. These equations can also be written
as

grad

(

1

2
v

2 − V +
1

ρ
p

)

= v×(rotv), divv = 0.

(2)
For a streamline (tangent to v) we get, after taking
the dot product of v in the first equation (2),

v · grad

(

1

2
v

2 − V +
1

ρ
p

)

= 0; (3)

that is
1

2
v

2 − V +
1

ρ
p = k, (4)

k being constant on a streamline. Commonly, k
changes from one streamline to another, being an
overall constant only when rotv = 0. The changes
in k are dictated by [cf. equations (2) and (4)]

grad k = v × (rotv). (5)

The Maclaurin and Jacobi figures are characterized
by the rotational velocity field

v = ω (−y, x, 0), (6)

where ω is the constant angular velocity. We can
see that relation (6) satisfies the continuity equa-
tion divv = 0. According to equation (6), the k in
Bernoulli’s equation is given by

grad k = 2ω2(x, y, 0), (7)

that is

∂k

∂x
= 2ω2 x,

∂k

∂y
= 2ω2 y,

∂k

∂z
= 0, (8)

from which we deduce

k = ω2 (x2 + y2) + c, (9)

c being any constant. Therefore, Bernoulli’s equa-
tion (4) becomes

−1

2
ω2 (x2 + y2) − V +

1

ρ
p = c, (10)

which agrees with the well-known equation.3

While the Jacobi and the Maclaurin figures ro-
tate as a rigid body, a Dedekind ellipsoid (1, e2, e3

are the major, middle, and minor semi-axes) remains
fixed in space, its equilibrium being due to an inter-
nal motion of uniform vorticity ζ, its velocity field
being

v =
ζ

1 + e2

2

(−y, e2

2
x, 0). (11)

We can convince ourselves that v is tangent to el-
lipses x2 + y2/e2

2
= const.. Hence, streamlines are

ellipses perpendicular to the z-axis. For ζ constant,
the velocity field satisfies the continuity equation,
and k obeys the relation

grad k =
ζ2

1 + e2

2

(e2

2
x, y, 0), (12)

so that

∂k

∂x
=

ζ2

1 + e2

2

e2

2
x,

∂k

∂y
=

ζ2

1 + e2

2

y,
∂k

∂z
= 0.

(13)
The solution of the partial differential equations (13)
is

k =
ζ2

2(1 + e2

2
)

(e2

2
x2 + y2) + c, (14)

where c is an arbitrary constant. In this case,
Bernoulli’s equation

ζ2

2(e2

2
+1)

2

(

e4

2
x2+y2

)

−V +p=
ζ2

2(1 + e2

2
)
(e2

2
x2+y2)+c,

reduces to

−V − e2

2
ζ2

2 (e2

2
+ 1)

2

(

x2 + y2
)

+
1

ρ
p = c. (15)

This is essentially equation (10) for obtaining the
Jacobi ellipsoids if we put

ω2 =
ζ2e2

2

2 (e2

2
+ 1)

2
, (16)

a known result that establishes the equivalence be-
tween Jacobi’s angular velocity and Dedekind’s vor-
ticity (Chandrasekhar 1969). Of course, if we had as-
sumed from the beginning that k = const., it would
have been impossible to reach equation (15).

3Lyttleton assumes from the beginning that k is constant;

he obtains a valid result because of the special value of k of

the present case.
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THE HETEROGENEOUS SPHEROIDAL MASS 377

2.1. General Case with Cylindrical Symmetry

Each fluid point rotates, now, with non-constant
angular velocity ω. The velocity field is given again
by

v = ω (−y, x, 0), (17)

but the continuity equation leads, presently, to

divv = −y
∂ω

∂x
+ x

∂ω

∂y
= 0,

or
∂ω

∂x2
=

∂ω

∂y2
, (18)

which means that, generally, the angular velocity
must be a function of the kind

ω = ω
(

x2 + y2, z
)

. (19)

Assuming, additionally, that the velocity field is
symmetric about the z-axis, we can express it as

ω = ω
(

x2 + y2, z2
)

. (20)

Here, it is more convenient to use cylindrical coordi-
nates (R,ϕ, z), and so the problem is independent of
one coordinate: ϕ. In this system, the velocity field
(tangent to circles) has a ϕ-component alone:

v = ω (0, R, 0). (21)

Equation (5) will have two terms only:

∂k

∂R2
= ω

(

R2
∂ω

∂R2
+ ω

)

,
∂k

∂z2
= R2ω

∂ω

∂z2
.

(22)
Making the variable change

ω =

√

2Ω

R2
, (23)

equations (22) become

∂k

∂R2
=

∂Ω

∂R2
+

1

R2
Ω,

∂k

∂z2
=

∂Ω

∂z2
. (24)

From the last of equations (24), we deduce

k
(

R2, z2
)

= Ω
(

R2, z2
)

+ f
(

R2
)

, (25)

where f is an arbitrary function. Therefore, the first
equation (24) implies that

Ω
(

R2, z2
)

= R2f ′
(

R2
)

,

or
ω2 = 2 f ′

(

R2
)

, (26)

i. e., the angular velocity can be at most a function
of R alone, and the same for k:

k = R2f ′
(

R2
)

+ f
(

R2
)

=
1

2
R2 ω2 + f

(

R2
)

. (27)

In other words, the angular velocity distribution has
cylindrical symmetry. Since k does not depend ex-
clusively on z, disk-like distributions are impossible,
contrary to what we stated in Paper II. Substituting
k of equation (27) into Bernoulli’s equation (4), we
obtain

−f
(

R2
)

− V
(

R2, z2
)

+
1

ρ
p = 0. (28)

Since the function f depends on R but not on z (i.
e., it is constant on cylinders), we can determine it
using only the surface equation, on which p = 0:

f
(

R2
)

= −V
(

R2, z2
)

, (29)

where z is a function of R for a figure with cylin-
drical symmetry. Equation (29) allows to determine
the function f (= −V ), and with equation (26) ω is
established:

ω2 = −2
dV

dR2
, (30)

which is the general angular velocity distribution
law for any axial-symmetric, incompressible, self-
gravitating fluid with p = 0 on its surface. Equa-
tion (30) is, essentially, Newton’s second law for a
unit mass particle:

(Radial force=)
dV

dR
=−ω2 R(=centripetal acceleration).

Using the familiar variable r (= x2+y2 = R2), equa-
tion (30) can be written as

ω2 = −2
dV

dr
. (31)

In the special case of a Maclaurin spheroid, the
potential can be expressed as

V = vc − v1

(

x2 + y2
)

− v3 z2 = vc − v1 r − v3 z2 .

At any interior point; on the surface
(

r + z2/e2

3
= 1

)

,
we have

V = vc − v3 e2

3
+

(

v3 e2

3
− v1

)

r.

Hence, according to equation (31), the angular ve-
locity is given by

ω2 = 2
(

v1 − v3 e2

3

)

,
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378 CISNEROS, MARTÍNEZ, & MONTALVO

which agrees with the well-known result. Taking into
account that

v3 =
2π

(

−e2

3
− e3

√

1 − e2

3
cos−1 (e3) + 1

)

(1 − e2

3
)
2

,

and that v1 = 2π − v3, we can also write

ω2 =
2πe3

(

3 e3

√

1 − e2

3
− (2e2

3
+ 1) cos−1 (e3)

)

(1 − e2

3
) 3/2

.

2.2. The Homogeneous Spheroidal Mass

The surface equation of the homogeneous
spheroidal mass (the ellipsoidal mass will not be con-
sidered here) is

x2 + y2 +
z2

e2

3

+ d
z4

e4

3

= 1, (32)

where d is a parameter larger than −1/4; the rotation
semi-axis is not e3, but

zM = e3

√√
4d + 1 − 1

2d
. (33)

For establishing the angular velocity at equilib-
rium (31), we must take the derivative of the poten-
tial with respect to r at the surface. Since V is only
known numerically, this process has to be carried
out numerically. Nonetheless, we can use another
approach. We approximate the potential by a poly-
nomial in r of the form

V = α0 + α1 r + α2 r2 + α3 r3 + α4 r4, (34)

so that the angular velocity becomes

ω2 = −2 (α1 + 2α2 r + 3α3 r2 + 4α4 r3). (35)

For d not too large, the mean absolute error in V
is about 10−7, which grows with increasing d (for
d = 2, the mean error is 10−4).

3. THE HETEROGENEOUS SPHEROIDAL
MASS

The composite model consists of a core, or nu-
cleus, of density ρn, whose shape is

x2 + y2

e2

1

+
z2

e2
n

+ dn
z4

e4
n

= 1, (36)

surrounded by an envelope, or atmosphere, of den-
sity ρa, of the form

x2 + y2 +
z2

e2
a

+ da
z4

e4
a

= 1. (37)

Here e1 is the ratio of the nucleus and atmosphere
major axes; en and ea are proportional to the rota-
tion semi-axes, which are

zMn =en

√√
4dn + 1 − 1

2dn
, zMa =ea

√√
4da + 1 − 1

2da
.

(38)
The net potentials at any point of the nucleus

and the atmosphere are (Montalvo et al. 1983),

VN = ε Vnn + Vna, VA = ε Van + Vaa, (39)

respectively, where Vnn is the self-potential of the
nucleus; Vna is the potential on the nucleus due to
the atmosphere; Van is the potential on the atmo-
sphere due to the nucleus; Vaa is the self-potential
of the atmosphere; ε is the body’s relative density
difference:

ε =
ρn − ρa

ρa
. (40)

Let us now suppose that core and envelope rotate
with (variable) angular velocities ωn and ωa, so that
their velocity fields are

vn = ωn (−y, x, 0), va = ωa (−y, x, 0). (41)

Both fields must obey the continuity equation
divv = 0. Thus, according to equation (20), we have

ωn =ωn

(

x2 + y2, z2
)

, ωa =ωa

(

x2 + y2, z2
)

. (42)

In the equilibrium state the angular velocities
(42) must fulfill Bernoulli’s equation:

p

ρn
= VN + fn

(

R2
)

,
p

ρa
= VA + fa

(

R2
)

, (43)

where fn and fa are functions to be determined. fn

and fa are established from the surface conditions
pn = pa (core surface) and pa = 0 (envelope sur-
face), where pn and pa are pressures on points of the
nucleus and the atmosphere:

ε VN+(1+ε) fn

(

R2
)

−fa

(

R2
)

= 0, VA+fa

(

R2
)

= 0.
(44)

Using equation (31), these relations can be written
as

ω2

a = −2
dVA

dr
, ω2

n = − 2 ε

1 + ε

dVN

dr
+

1

1 + ε
ω2

a,

(45)

where r = x2 + y2 and VN , VA are potentials on
core and envelope surfaces, taken as functions of r
only. Thus, for establishing ωa and ωn, the poten-
tial derivatives must be available at each point of
the surface. Since the potential is given numerically,
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its derivative must be numerically computed. For a
homogeneous body (only interior points are needed),
we find that a reasonable good approximated expres-
sion for the potential at points on the surface is:

V = α0 + α1 r + α2 r2 + α3 r3 + α4 r4, (46)

where αi are parameters to be fixed by fit proce-
dures, and thus the angular velocity is given by equa-
tion (35)

In the case of our heterogeneous mass, equa-
tion (46) is not acceptable, especially at points where
external potentials are needed (they must approach
0, as r → ∞). To obtain equilibrium figures for the
heterogeneous case, the potential derivatives will be
established by numerical means. For this purpose,
we use the approximation

f ′(r) =
f(r + h) − f(r − h)

2h
, (47)

where h is a small quantity. The precision of expres-
sion (47) is of order h2. A not too small value for
h will be used, since potentials are calculated with
an accuracy of about 10−7; a reasonable h could be
≈ 5 × 10−3.

4. MODEL GEOMETRY

The heterogeneous mass can easily be built by
making the two surfaces similar: coordinates of cor-
responding surface points are proportional, so that

x2 + y2

e2

1

+
z2

e2
n

+dn
z4

e4
n

=c2

(

x2 + y2 +
z2

e2
a

+ da c2
z4

e4
a

)

,

(48)

for all (x, y, z), from what it follows that c = 1/e1,
en = e1 ea and dn = da. Thus, the whole mass is
characterized by only two parameters, say, ea and
da (and, of course, the relative size e1 of major semi-
axes, and the relative density difference ε). Hence,
the series, should they exist, would be relatively sim-
ple to handle. Yet we prefer to explore a more gen-
eral case, and let en, ea, dn, da vary freely, thus lead-
ing to more involved series (actually, six-parametric,
if we take into account the parameters e1 and ε).
The model effectively yields series which are sub-
ject to certain limits, both physical and geometrical;
for instance, the major semi-axis of the atmosphere
must be greater than that of the nucleus: e1 < 1;
besides, the rotation semi-axes zMn, zMa must be
smaller than the corresponding major semi-axes:

zMn < e1, zMa < 1,

or [cf. equation (38)]

en < e1

√

2dn√
4dn + 1 − 1

, ea <

√

2da√
4da + 1 − 1

.

(49)

Finally, the rotation semi-axis of the atmosphere
must not be smaller than that of the nucleus, oth-
erwise the atmosphere would intrude in the nucleus,
and the present equilibrium conditions would not ap-
ply:

zMa > zMn. (50)

The particular configuration for which zMn = zMa

(e1 6= 1), i. e., when the poles coincide, is termed a
‘contact figure’; ea and en are related by

ea = en

√

da

(√
4dn + 1 − 1

)

dn

(√
4da + 1 − 1

) . (51)

5. NUMERICAL RESULTS

5.1. The Homogeneous Spheroidal Mass

Clearly, our calculations of (Cisneros et al. 2015,
Paper I) must be affected if the right k in Bernoulli’s
equation (4) is used, but the qualitative features of
the new figures remain more or less alike. In the case
of homogeneous figures for which the surface equa-
tion is

x2 + y2 +
z2

e2

3

+ d
z4

e4

3

= 1,

we come as before to continuous e3-series for each d
value and, furthermore, we again find limits. For d
positive, and low e3-values up to a definite limit, ω2

increases from pole to equator; thereafter, the ten-
dency is inverted (Figure 1). For d negative (but
greater than −1/4), another limit appears: as d be-
comes more and more negative, the e3-series becomes
shorter, because ω2 takes negative values, and the
figures come into a forbidden region (Figure 1), a
behavior that was also noticed in previous work.

5.2. The Heterogeneous Spheroidal Mass

The present series are more involved than those
for the homogeneous case, so we must proceed care-
fully and not try to get an overwhelming bulk of
models that would render it difficult to give a clear
panorama of their regularities. For this purpose, a
basic series is constructed by fixing five parameters:
ε = 1, e1 = 0.5, en = 0.1 and dn = da = −1/8, while
the remaining one ea is let to vary in its allowed
range.
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380 CISNEROS, MARTÍNEZ, & MONTALVO

Fig. 1. Limiting e3-d curves for the ω2 tendency transi-
tion (left) and the forbidden region (right) where ω2 is
partially negative. In fact, the last figure is plotted from
the condition that ω2 is 0 at the pole.

Fig. 2. Angular velocity distribution between pole
(R = 0) and equator for the nucleus (shorter line) and
atmosphere as ea varies from 0.1 (contact figure) to the
limiting value 0.78. Fixed parameters are: e1 = 0.5,
en = 0.1, dn = da = −1/8, ε = 1.

Fig. 3. Heterogeneous equilibrium figures as ea varies
from 0.1 (contact figure) to the limiting value 0.78. Poles
are suggested by a thick dot. Fixed parameters are: e1 =
0.5, en = 0.1, da = dn = −1/8, ε = 1.

5.2.1. The Case dn = da = −1/8

First, we take dn = da = −1/8 and allow ea to
vary from 0.1 up to its maximum value, finding that
equilibrium is possible for the angular velocity distri-
bution given by equation (31) for the envelope and
core. In Figure 2 we plot the angular velocity distri-
bution in the nucleus (R < 0.5), and the atmosphere
(R < 1); Figure 3 is a sketch of the model geometry.

In Figure 2 (see also Figure 3), the series be-
gins with a contact figure in which the poles of core
and envelope touch each other, but not the equa-
tors, since the equator of the atmosphere is twice
as large as that of the nucleus (e1 = 0.5). We see
that the core rotates slower than its envelope, even
at the pole. In both, the angular velocity decreases
from pole to equator, i. e., the central parts rotate
faster than the outer ones. As ea increases (the at-
mosphere expands), ω2

a decreases, until a point is
reached where the tendency is reversed: the angular
velocity now increases from pole to equator, remain-
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Fig. 4. Sketch of en-series for da = dn = 1/8, ε = 1. The
series begin with a contact figure for en < 0.3975 and
end at an ea around 0.9. After en = 0.3975 they become
narrower and begin without a contact figure.

ing so up to the end; we say that a transition figure
occurs. For larger ea-values, ω2

a steadily decreases,
reaching a zero value at the pole; thereafter, it is
negative and unacceptable. The limit is achieved at
ea = 0.78 (zMa = 0.84). At the same time, less
dramatic changes in the core occur with increasing
ea: the pole ω2

n increases a little, until the angu-
lar velocity decreasing tendency ends: a transition
figure occurs. Subsequently, ω2

n monotonically in-
creases from pole to equator. Both angular veloc-
ity distributions have, therefore, two limits: one for
which ω2 becomes zero at a point, and the other,
less drastic, where the angular velocity reverses its
tendency from monotonically decreasing to increas-
ing. Certainly, the change takes place gradually, and
we refer to a limit when ω2 increases monotonically
for the first time. Still another limit might be dis-
closed by building more series for larger en values.
Indeed, we find similar series starting with a contact
figure and ending up with a top figure (ea ≈ 0.78)
if en ≤ 0.3975 (zMn = 0.43). For the small interval
0.4004 > en > 0.3975 there are series that do not be-
gin with a contact figure and end with a one-member
series at en = 0.4004, ea = 0.969.

5.2.2. The Case dn = da = 1/8

Here we take dn = da = 1/8 and let ea vary
from 0.1 (contact figure) up. Once more, we get a
set of series somewhat different from the former one
(Figure 2), but also sharing several properties:

1. The series begins with a contact figure with the
atmosphere rotating faster than the nucleus, as
formerly.

2. Both differential angular velocities always
monotonically decrease from pole to equator. In
other words, there are not transition figures.

3. The limiting figure occurs at ea = 0.967
(zMa = 0.917).

4. The contact figure has a limit for en = 0.398 (cf.
§ 2.1.1).

5. The series do not end at en = 0.398; they
continue for larger en and are more and more
narrow, ending with an isolated figure with
en = 0.4827, ea = 0.969 (zMn = 0.457) (see
Figure 4).

Hence, the plus sign of da, dn hinders the
monotonous property of the angular velocity, and
raises the upper limit of ea. Additionally, the series
does not disappear after a last contact figure, but at
a higher en limit.

5.2.3. The Case dn = 1/8, da = −1/8

This time, only dn sign is modified, so that our
set of parameters is

e1 =
1

2
, en =

1

10
, dn =

1

8
, da = −1

8
, ε = 1.

Once more, the series starts with the contact figure
ea = 0.0876; ea is established by zMa = zMn con-
dition (equation (51)). The series resembles more
the da = dn = −1/8 case than the da = dn = 1/8
one, in the sense that it has angular velocity transi-
tion limits and a limiting contact figure at en ≈ 0.4
(zMn = 0.38). For greater en values, there are, how-
ever, more series without an initial contact figure,
which become narrower as en → 0.5 (zMn = 0.47).
For en = 0.5 there only exists a series with the mem-
ber ea = 0.97 (zMa = 0.92).

5.2.4. The Case dn = −1/8, da = 1/8

Here, da alone is modified relative to first case,
so that the parameters values are now

e1 =
1

2
, en = − 1

10
, dn = −1

8
, da =

1

8
, ε = 1.

With these parameters, we also establish series start-
ing with a contact figure, when en < 0.4 (zMn =
0.43). Series without a contact figure are possible
when 0.4 < en < 0.421; for en = 0.421 (zMn = 0.46)
the series has a unique member at ea = 0.97. The
atmosphere does not present angular velocity transi-
tion limits, and the nucleus has only one, at en = 0.2,
ea = 0.6.
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Fig. 5. As ε increases, the last contact figure en (lower
curve) first decreases and then increases slowly; on the
contrary, for the last one-member series en decreases con-
tinually. Both curves tend to the same point, i. e.,
the last contact figure is at the same time the last one-
member series.

Fig. 6. As ε increases, the last contact figure en (lower
curve) first decreases and then increases slowly; on the
contrary, last one-member series en decreases continually.
Both curves tend to the same point, i. e., last contact
figure is at the same time last one-member series.

5.3. Consequences of the ε-value

To study the ε impact on our series, we assumed
values for the parameters according to

e1 =
1

2
, dn = −1

8
,
1

8
, da =

1

8
,−1

8
, ε = 1, 2, 4, 9, 24 ,

and constructed the series changing ea for a given
en of a set 0.1 . . . 0.5, as formerly done. As an illus-
tration, only cases dn = ∓1/8, da = ±1/8 were con-

Fig. 7. As e1 increases, the last contact figure en/e1

(lower curve) increases continuously, practically for all
e1 values; on the contrary, for the last one-member se-
ries en/e1 remains constant up to about e1 = 0.5. Both
curves coincide after about e1 = 0.5. The curves were
plotted for dn, da = −1/8.

Fig. 8. As e1 increases, the last contact figure en/e1

(lower curve) increases continuously with some small os-
cillation, for all e1 values; on the contrary, the last one-
member series en/e1 remains constant (≈ 0.98) prac-
tically all the way. Both curves coincide after about
e1 = 0.7. The curves were plotted for dn, da = 1/8

sidered, and cases with dn = da = −1/8, 1/8 were
disregarded. We refer briefly to these d-values as
−+, +−, −−, and ++ (first sign for dn, second for
da). Generally speaking, we did not find any new
property, (other than those recognized above) when
ε was modified, i. e., for each ε, the set of series can
or cannot show angular velocity distribution ‘turning
points’ (transition to monotonically increasing distri-
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bution), there is a final series having a contact figure,
and there is a last (one-member) series. Clearly, as ε
changes, the values characterizing a last contact fig-
ure, a last series, and a transition figure, must suffer
modifications. The contact limiting figure has an
en-value that first decreases and then increases, as ε
increases from 1 to 24 (see Figure 5). On the other
hand, en in the last series continually decreases as ε
increases. The en span between last contact figure
series and last series initially increases and thereafter
continuously decreases (Figure 5).

5.4. Consequences of the e1-value

To study changes of our basic series (Figure 2)
regarding the nucleus and atmosphere relative size
e1, we varied it in steps of 0.1 from 0.9 down. We
fixed da = ±1/8, dn = ±1/8, ε = 1 and constructed
en series varying ea for each e1 value of the set.
For example, when e1 = 0.9 we built the series for
en = 0.1, 0.2, . . . . Qualitatively again, we found se-
ries with or without transition limits, ea upper lim-
its, last contact figure for en series, and final one-
member series. Quantitatively, there are differences
regarding the above results. The ω2 magnitudes and
the variation range change; the en gap between last
contact figure and last one-member series grows as
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e1 decreases, starting at e1 = 0.5; likewise, beyond
e1 = 0.5 the gap approaches 0 (see Figures 6 and
7). This behavior is somewhat similar to the ε-effect
(Figures 4 and 5): as e1 or ε increases the gap be-
comes narrower, and finally it disappears.
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tions of our numerical results.
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