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ABSTRACT

We describe a new method for determining proper motions of extended ob-
jects, and a pipeline developed for the application of this method. We then apply
this method to an analysis of four epochs of [S II] HST images of the HH 1 jet
(covering a period of ≈ 20 yr). We determine the proper motions of the knots along
the jet, and make a reconstruction of the past ejection velocity time-variability
(assuming ballistic knot motions). This reconstruction shows an “acceleration” of
the ejection velocities of the jet knots, with higher velocities at more recent times.
This acceleration will result in an eventual merging of the knots in ≈ 450 yr and
at a distance of ≈ 80′′ from the outflow source, close to the present-day position of
HH 1.

RESUMEN

Describimos un nuevo método para determinar movimientos propios de obje-
tos extendidos, y un código que desarrollamos para la aplicación de este método.
Aplicamos este método a un análisis de cuatro épocas de imágenes del HST de
[S II] del chorro de HH 1 (que cubren un peŕıodo de ≈ 20 años). Determinamos
los movimientos propios de los nudos a lo largo del chorro, y hacemos una recon-
strucción de la historia de la variabilidad de la velocidad de eyección (suponiendo
nudos baĺısticos). La reconstrucción muestra una “aceleración” de la velocidad de
eyección de los nudos del chorro, con velocidades mayores en tiempos más recientes.
Esta aceleración tendrá como consecuencia que los nudos que ahora observamos a
lo largo del chorro se junten en ≈ 450 años y a una distancia de ≈ 80′′ de la fuente,
en un sitio cercano a la posición actual de HH 1.

Key Words: Herbig-Haro objects — ISM: individual objects (HH1/2) — ISM: jets
and outflows — ISM: kinematics and dynamics — shock waves — stars:
formation

1. INTRODUCTION

The HH 1/2 outflow (discovered by Herbig 1951
and Haro 1952) has played a fundamental role in the
study of collimated flows from young stellar objects
(YSOs), and the associated observational and theo-
retical work has been reviewed by Raga et al. (2011).
This system has two bright “heads”: HH 1 (to the
NW) and HH 2 (to the SE), centered on the “VLA 1”
radio continuum source (Pravdo et al. 1985).

The VLA 1 source also has a jet/counterjet sys-
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4DAFM, Univ. de las Américas, Puebla, México.
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tem visible at IR wavelengths (Noriega-Crespo &
Raga 2012) extending out towards HH 1 and 2. Op-
tically, only the slightly blueshifted N jet (pointing
to HH 1) is visible (Bohigas et al. 1985; Strom et al.
1985), as shown in Figure 1. This optical feature has
been called the “HH 1 jet”. Apart from the papers
mentioned above, a limited number of papers have
studied some of the characteristics of the HH 1 jet:

• optical images and proper motions: Reipurth et
al. (1993), Eislöffel et al. (1994), Bally et al. (2002),

• radio proper motions: Rodŕıguez et al. (2000),

• infrared images: Davis et al. (2000), Reipurth
et al. (2000),

• infrared spectra: Eislöffel et al. (2000), Garćıa
López et al. (2008).
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486 RAGA ET AL.

Some of the most striking characteristics of
HH 1/2 are their proper motions (Herbig & Jones
1981; Eislöffel et al. 1994; Bally et al. 2002; Harti-
gan et al. 2011) and time-variability (Herbig 1969,
1973; Raga et al. 1990; Eislöffel et al. 1994). The
fact that there are now four epochs of HST images
of HH 1/2, covering a time span of ≈ 20 yr (Raga et
al. 2015a, b, c; 2016a, b, c) has allowed progress on
both these issues.

Raga et al. (2016a, b) used the 4 epochs of HST
images to determine proper motions of HH 1 and 2,
finding a small acceleration for the motion of HH 1
and a small braking for HH 2 (when comparing their
proper motions to the ones of Herbig & Jones 1981).
They also used the photometrically calibrated HST
images (Raga et al. 2016c) to evaluate the recent
time-variability of the emission of HH 1 and 2 (com-
paring their line fluxes to the ones of Brugel et al.
1981).

For their study of HH 1/2 proper motions, Raga
et al. (2016a, b) explored a new method for deter-
mining motions of angularly extended objects, based
on a two-step process:

• convolving the frames of the different epochs
with wavelets of chosen widths,

• spatially fitting the peaks in the (degraded an-
gular resolution) convolved frames.

In the present paper, we apply this new method
to the four available epochs of HH 1/2 HST [S II]
images, in order to determine the proper motions
and intensity variations of the knots along the HH 1
jet (which was not studied in the papers of Raga et
al. 2016a, b). We also present a detailed description
of the method, and describe a pipeline (written in
Python) developed for applying this method to ob-
servational or simulated emission map time-series.

The paper is organized as follows. § 2 reviews the
methods that have been used to measure proper mo-
tions in CCD frames of HH outflows. § 3 presents the
new method for deriving proper motions and intensi-
ties of extended structures, and describes the Python
pipeline. § 4 describes the proper motions of the
knots along the HH 1 jet, and § 5 the time-variability
of the [S II] emission. § 6 describes the standard at-
tempts at using the observed proper motions to re-
construct the history of the time-variability of the
ejection and to predict the future evolution of the
ejected material. Finally, the results are summarized
in § 7.

2. PROPER MOTIONS AND
TIME-VARIABILITES OF HH OBJECTS

FROM CCD IMAGES

As far as we are aware, the first attempt at
measuring positions and fluxes of condensations in
CCD frames of HH objects was done by Raga et al.
(1990), who analyzed Hα and [O III] 5007 images of
HH 1/2. These authors found the then non-trivial re-
sult that even though they had only two stars in their
CCD frames (and were therefore only able to com-
pute a scaling, rotation and translation rather than a
“real” astrometric calibration of the images) they ob-
tained positions for the HH 1/2 condensations that
coincided with the forward time-projection obtained
with the photographic proper motions of Herbig &
Jones (1981).

Raga et al. (1990) measured the positions (and
peak intensities) of the HH 1/2 condensations by car-
rying out paraboloidal fits to the emission peaks seen
in the images. This kind of “peak fitting” procedure
(fitting mostly either a paraboloid or a Gaussian) has
been extensively used for obtaining proper motions
of HH outflows (see, e.g., Eislöffel & Mundt 1992,
1994; Eislöffel et al. 1994).

Heathcote & Reipurth (1992) tried a different
method to obtain proper motions from CCD im-
ages of HH outflows. In their analysis of images
of HH 34, they defined a box (including the emis-
sion of the HH 34 jet) within which they carried
out cross-correlations between pairs of images. This
method proved to be a major improvement in de-
termining proper motions of HH outflows, since in-
stead of relying on the positions of sometimes ill-
defined peaks, the proper motions were determined
with the emission within a spatially more extended
box. This process yielded a cross-correlation func-
tion with a much better signal-to-noise ratio (com-
pared to the images themselves), the peak of which
could be fitted to a many times surprising accu-
racy. This cross-correlation technique has become
the standard method for determining proper motions
of HH objects (see, e.g., Curiel et al. 1997; Reipurth
et al. 2002; Hartigan et al. 2005; Anglada et al.
2007).

The main inconvenience of the cross-correlation
method is the fact that one has to choose boxes of ar-
bitrary shapes (mostly square boxes have been used),
sizes and locations so as to include features that one
judges to be well-defined “entities” within the im-
ages. This is of course inconvenient in images with
complex structures of different sizes, and also some-
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PROPER MOTIONS OF THE HH 1 JET 487

what problematic, since the determined proper mo-
tions clearly depend on the “cross correlation boxes”
that have been chosen.

In a study of a planetary nebula, Szyskza et al.
(2011) used the interesting method of covering the
images with a regular array of cross-correlation boxes
(which they call “tiles”). The shifts of the peaks
of the correlation functions corresponding to these
boxes then give a “proper motion map” of the whole
field (actually, a low-intensity cut-off has to be im-
posed so as to avoid random motions in boxes with
no visible emission structures). Raga et al. (2012a,
2013) applied this method to HH objects (with the
implementation of the method being presented in de-
tail in the latter paper).

This method of cross-correlation “tiles” has the
clear advantage that one only needs to define:

• a size for the tiles,

• a “beginning point” at which to begin to draw
one of the tiles,

• a “low intensity cutoff” necessary for the proper
motions to be calculated.

There are of course many fewer free parameters than
the ones involved in a “free choice” cross-correlation
box scheme.

However, it is evident that there are complica-
tions in this method. Two of these are that:

• the tiles sometimes include only part of an ap-
parently coherent structure (algorithmical ef-
forts to surmount this problem are described by
Raga et al. 2013),

• identifiable features sometimes are shifted away
from a tile into neighbouring tiles in the image
pairs (so that a shift has to be applied to one
of the images before applying the division into
tiles, see Raga et al. 2012a).

3. MEASURING PROPER MOTIONS OF HH
OBJECTS WITH A “WAVELET
TECHNIQUE”: A PIPELINE

In order to try to avoid these problems, Raga et
al. (2016a, b) proposed (and used) an alternative,
two-step method:

• convolving the images with a wavelet of a chosen
size,

• determining proper motions from spatial fits to
the peaks in the convolved maps.

This method is, of course, a “peak fitting method”,
but it also incorporates a spatial averaging (through
the convolution with a wavelet function) such as is
obtained with the “cross correlation method”. The
only free parameter of this method basically is the
half-width σ of the wavelet function (and of course,
the choice of which peaks are identified as “pairs” in
two different epochs!).

Convolving an image with a wavelet of half-width
σ has three effects:

1. improving the signal-to-noise ratio at the ex-
pense of spatial resolution,

2. eliminating emitting structures with scales < σ,

3. eliminating structures with scales > σ.

If one convolves images with functions similar to
instrumental “point spread functions” (e.g., with a
Gaussian), one eliminates small scale structures, but
larger scale structures in the images still remain. It
is, however, unlikely that proper motions determined
on images convolved with Gaussians would be sub-
stantially different from proper motions measured on
convolutions with wavelets. We prefer convolutions
with wavelets basically because of the mathematical
properties of wavelet decompositions, which allow
partial rebuildings of images with arbitrary ranges
of spatial scales (see, e.g., Kajdic et al. 2012). How-
ever, this feature is not used in the present proper
motion determinations.

The choice of the particular form of the wavelet
function does not affect the obtained results in a sub-
stantial way. In our implementation, we have chosen
a “Mexican hat” wavelet:

gσ(x, y) =
1

πσ2

(

1−
x2 + y2

σ2

)

e−(x2+y2)/σ2

, (1)

where σ is the half-width of the central peak. This
function has an approximately Gaussian central
peak, surrounded by a negative ring (such that its
spatial integral is zero). Together with the “French
hat” wavelet, this is one of the standard “wavelet
kernels”. For an astronomically oriented discussion
of the properties of these wavelet kernels (along with
graphic depictions) see, e.g., Rauzy et al. (1993).

The convolved maps Iσ are then calculated
through the usual integral

Iσ(x, y) =

∫ ∫

I(x′, y′) gσ(x−x′, y−y′) dx′dy′ , (2)
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488 RAGA ET AL.

Fig. 1. [S II] image taken with the HST in 2007 of the region including the HH 1 (VLA 1) source, the HH 1 jet and
HH 1 itself. The Cohen-Schwartz (CS) star is also labeled. This image (displayed with a logarithmic colour scale) has
been rotated clockwise by 37◦ so that the axis of the outflow is parallel to the abscissa. The white box encloses the
region around the HH 1 jet shown in Figures 2-4. The color figure can be viewed online.

where I(x′, y′) is the original (i.e., not convolved) im-
age, and (x, y) are the coordinates of the convolved
image. The convolutions are carried out with a stan-
dard, “Fast Fourier Transform” method.

On the convolved image, we then carry out
paraboloidal fits to intensity peaks, from which we
determine the positions and intensities of the peaks.
We then determine proper motions from the shifts
of the positions between successive epochs.

We have developed a pipeline (written in Python)
that:

1. reads an image;

2. convolves it with Mexican hat wavelets of the
specified σ values;

3. finds peaks (either chosen by the user, or
searches for all peaks above a given intensity
threshold) and carries out paraboloidal fits;

4. has a “user confirmation and labelling” routine
(with which the user can choose the relevant
peaks);

5. identifies the same peaks in two or more images
and calculates the proper motions (with linear
least squares fits to the knot positions as a func-
tion of time).

Item number 5 allows for several possibilities:

• the more straightforward one is to calculate
proper motions for the knots identified by the
user with the same label in the available epochs.
This is of course appropriate for images with a
small number of emitting knots;

• to automatically associate the “nearest knots”
detected in two successive epochs;

• to search for the nearest knot (in the following
epoch), but only in the general direction away
from the outflow source.

It is also possible to use the wavelet spectrum of
the individual knots in order to find the knot pairs
that are morphologically closest to each other, and
to then use the identified pairs to calculate proper
motions. This kind of “morphological evaluation”
using wavelet spectra has been studied in detail by
Masciadri & Raga (2004, in the context of the search
for exoplanets), but has not yet been implemented
in our pipeline.

Finally, our Python pipeline has routines to pro-
duce appropriately labeled plots for publication.
Figures 1-4 (see the following sections) were pro-
duced with these routines. After further testing and
improvements to the user interface, the routine will
be available to the community.

4. PROPER MOTIONS OF THE HH 1 JET

We have taken the four epochs of [S II] HST im-
ages of HH 1/2 described by Raga et al. (2016a, b,
c) obtained in 1994.61, 1997.58, 2007.63 and 2014.63
(we have not analyzed the Hα frames because the
HH 1 jet is very faint in this line). Figure 1 shows a
region of the 1997 frame including the position of the
VLA 1 source, HH 1 and the HH 1 jet. The Cohen-
Schwartz (CS) star, despite its strategic location, is
apparently not associated with the outflow.

The analysis presented in this paper is restricted
to the region around the HH 1 jet shown with a white
box in Figure 1. The [S II] emission within this re-
gion in the four epochs is shown in Figure 2, with the
knots labeled with identifications that correspond to
the ones of Reipurth et al. (2000) and Hartigan et
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PROPER MOTIONS OF THE HH 1 JET 489

Fig. 2. The HH 1 jet in the four available epochs
of [S II] HST images (see § 3). The labels used for
the knots (some of them not visible in all epochs) are
given. The bottom bar gives the logarithmic colour
scale (in erg cm−2 s−1 arcsec−2). A flat background (of
3× 10−16 erg cm−2 s−1 arcsec−2 for the first three epochs
and of 10−15 erg cm−2 s−1 arcsec−2 for the 2014 frame)
has been subtracted. The boxes have a 30′′ horizontal
extent. The color figure can be viewed online.

al. (2011). Also, we have labeled knot B of the
HH 501 jet (see Bally et al. 2002) with a lower case
“b”. This outflow appears to have been ejected by
another source in the vicinity of the HH 1/2 source
(Bally et al. 2002).

In Figure 3, we show the four [S II] frames after
convolution with a σ = 4 pix wavelet (i.e., with a
central peak with a full width of 0′′.8). In these con-
volved frames, the jet breaks up into knots with well
defined peaks, to which we fit paraboloids (giving
peak fluxes and the positions shown in Figure 3).

Fig. 3. The four epochs of [S II] HST images (see Fig-
ure 2) convolved with a Mexican hat wavelet of half-
width σ = 4 pix (see the text). The color figure can be
viewed online.

With the positions measured for the successive
knots (some of them seen in all frames, but others in
only two or three frames) we carry out linear least
squares fits to determine their proper motion veloc-
ities. These velocities are given in Table 1 (for a
distance of 400 pc to HH 1/2) and are shown in Fig-
ure 4.

The errors for the proper motion velocities given
in Table 1 are calculated as follows. We estimate
that the errors of the fits to the knot positions are
at most 1 pixel (0′′.1). This estimated error is used
to calculate the errors in the proper motion veloc-
ities of knots A and H, which have measured posi-
tions in only two frames. For all of the other knots,
we calculate the error in the knot positions using
the standard deviation of the measured positions
with respect to the (straight line) least squares fits.
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490 RAGA ET AL.

Fig. 4. 2007 [S II] image with the proper motions derived from the four available epochs (see Table 1). The scale of the
velocity arrows is given by the arrow in the top left corner of the plot. The color figure can be viewed online.

TABLE 1

PROPER MOTIONS OF THE HH 1 JET

Knot vx
a vy

a

[km s−1] [km s−1]

A 128 (91) 86 (45)

B 245 (12) −6 (4)

C 258 (17) 3 (4)

D 235 (12) 5 (6)

E 271 (12) 9 (2)

F 259 (12) 18 (2)

G3 286 (13) 9 (5)

G1 288 (16) 17 (2)

H 247 (38) 38 (19)

b 149 (12) −24 (5)

aThe values in parenthesis are the estimated errors.

These errors (as is standard) are then propagated us-
ing the covariance matrix to calculate the errors in
the proper motion velocities. Therefore, the quoted
errors (see Table 1) correspond to estimates of the
standard deviations.

It is clear that we do not obtain a significant re-
sult for knot A (as the errors are comparable to the
determined proper motions). This is not surprising
because we only see this knot in the two first epochs
(which only have a time range of 3 years). For the
remaining knots we do obtain proper motions along
(vx) and across (vy) the outflow axis with reasonable
errors (ranging from ≈ 10 to 40 km s−1, see Table 1).

5. THE INTENSITIES OF THE KNOTS IN THE
HH 1 JET

Figure 5 shows the peak [S II] intensities for knots
A-I of the HH 1 jet in all epochs, obtained through
paraboloidal fits to the peaks of the convolved images
(see § 4). It is clear that for distances from the VLA 1
source larger than x ≈ 7′′ there is a general trend of
decreasing intensities as a function of x. This trend
approximately follows an I ∝ x−3 power law (shown
with a dashed line in Figure 5).

Our observations do not show in a conclusive
way that individual knots have intensities that “slide
down” the x−3 slope as a function of time. This is be-
cause in the 2014 frame (intensities shown with open
circles in Figure 5) we obtain systematically larger
intensites for all knots than in the 2007 frame. This
is a result of the fact that the HH 1 jet region has
a relatively strong reflection nebula, with peak in-
tensities aligned with the jet. This reflection nebula
has a stronger contribution in the 2014 frame, which
was obtained with the WFC3 camera (with a [S II]
filter of 118 Å width). The first three epochs were
obtained with the WFPC2 camera (with a [S II] fil-
ter of 47 Å width), and have a smaller contribution
from the reflection continuum.

The observed I[S II] ∝ x−3 dependence for large
distances along the HH 1 jet (see Figure 5) is in re-
markable agreement with the prediction of the ana-
lytic, “asymptotic regime” of periodic internal work-
ing surfaces of Raga & Kofman (1992). These au-
thors note that at large enough distances from the
source, the decaying working surfaces should have
an intensity I ∝ x−(κ+1), where κ is the index of
an assumed power law dependence of the line emis-
sion as a function of shock velocity (see equation 25
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PROPER MOTIONS OF THE HH 1 JET 491

Fig. 5. Peak [S II] emission of the knots (determined
from the fits to the convolved maps of the four epochs)
as a function of distance from the VLA 1 outflow source.
The points corresponding to the four epochs are shown
with different styles of dots (as specified in the text above
the plot) and the successive knots are joined by lines of
different colours (with labels in the same colour giving
the identifications of the knots). The color figure can be
viewed online.

of Raga & Kofman 1992). If one takes the plane-
parallel shock models of Hartigan et al. (1987), from
the lower range of the shock velocities of their mod-
els one obtains that the [S II] intensity has a scaling
∝ v−2

shock. Therefore, the asymptotic regime of Raga
& Kofman (1992) predicts a [S II] intensity ∝ x−3,
in surprisingly good agreement with our observations
of the HH 1 jet (see Figure 5).

6. THE PAST AND FUTURE EVOLUTION OF
THE HH 1 JET

As can be seen in Table 1, along the HH 1 jet
we see a general trend of decreasing velocities with
increasing distances from the outflow source. Such
a decreasing velocity trend could in principle be the
result of drag due to entrainment of stationary, en-
vironmental material.

It is clear that in some of the “parsec scale HH
jets” (e.g. in HH 34, see Devine et al. 1997) a pro-
gressive decrease in proper motions for the “heads”
at larger distances are seen, and that this trend can-
not be explained as a result of a secularly increasing
ejection velocity from the outflow source (Cabrit &
Raga 2000). This rather dramatic slowing down of
the HH 34 “heads” is due to the fact that a precession

of the outflow axis results in a direct interaction of
the successive heads with undisturbed environmental
material (Masciadri et al. 2002).

As the knots along the HH 1 jet are very well
aligned, we would not expect them to slow down due
to frontal interaction with the surrounding, station-
ary environment (as occurs in the giant HH 34 jet,
see above). One might still have “side entrainment”
into the HH 1 jet, resulting in some amount of slow-
ing down at increasing distances from the source.
This effect has recently been evaluated by Raga
(2016, in terms of a somewhat uncertain “α prescrip-
tion” for the entrainment velocity), who finds that
in order to obtain a substantial slowing down one
needs a surrounding environment (in contact with
the jet beam) ≈ 10 to 100 times denser than the jet.
This is unlikely to be the case in the optically visible
HH 1 jet, which has already emerged from the dense
core surrounding the outflow source. Also (as dis-
cussed by Raga 2016), the effect of buoyancy (which
includes the gravity and the environmental pressure
gradient) is negligible for the high velocities of HH
outflows.

We therefore interpret the decreasing proper mo-
tion velocities (with increasing distances from the
outflow source) along the HH 1 jet as ballistic mo-
tions resulting from an increasing ejection velocity
as a function of time. We then take the positions of
the HH 1 jet knots in the 2007 frame, and calculate
the dynamical ejection times

tdyn = −
x

v
, (3)

where x is the distance from the outflow source and
v is the proper motion velocity. In Figure 6, we then
plot v as a function of tdyn, which is the “ballistic
knot” prediction of the past ejection time-variability
history of the outflow source. The ejection velocity
has a general trend of increasing velocities towards
more recent times, which we fit with a straight line,
giving:

u0(τ) = (303± 15) + (0.59± 0.19)τ , (4)

where u0(τ) is the ejection velocity in km s−1 and
τ is the ejection time in years (τ = 0 corresponding
to 2007, since we have used the knot positions of
this epoch). The linear least squares fit (equation
4) has been calculated with the method described in
Appendix A.

The ejection velocity clearly should also have a
short-term variability that produces the knots that
we observe along the HH 1 jet, so that the trend
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492 RAGA ET AL.

Fig. 6. Proper motion velocities of the knots as a function
of dynamical ejection times (calculated through equa-
tion 3, with tdyn = 0 corresponding to 2007). The
straight line corresponds to the linear fit given in equa-
tion (4).

of equation (4) would actually correspond to a long-
term variability superimposed on the “knot produc-
ing” mode (see, e.g., Raga et al. 2015c).

An interesting question is whether the relatively
low velocity of knot H (see Table 1 and Figure 6)
is evidence that the more recently ejected, optically
detected material is starting to show a decreasing
ejection velocity vs. time trend. Given the large er-
ror of our H knot proper motion (see Figure 6), it is
hard to conclude that this is indeed the case.

Also, we can obtain a second estimation of the
motion of knot H as follows. We take the separation
between knots H and F in the 1998.15, [Fe II] 1.64 µm
image of Reipurth et al. (2000) (in which knot H is
already visible), and compare it with the separation
between these two knots in our 2014.63 image. From
this comparison, we find that knot H has an axial
motion 17±2 km s−1, faster than knot F. Combining
this result with our knot F proper motion (see Table
1), we obtain a (276 ± 18) km s−1 velocity for knot
H, which is consistent (within the errors) with the
proper motion obtained from the optical images (see
Table 1), but does not support the existence of a
drop in ejection velocity associated with this knot.

In order to use the present day positions and
proper motions to predict the future evolution of the
HH 1 jet, in Figure 7 we plot the ballistic trajectories
of the knots on a (x, t) plot (where x is the position
of the knots as a function of time t). The t = 0 axis
corresponds to the 2007 knot positions. For knot H

Fig. 7. Ballistic trajectories of the HH 1 jet knots on
an (x, t)-plane (where x is the distance from the out-
flow source and t is the time measured from 2007). The
present-day position of HH 1 is indicated on the bottom
right of the plot.

(the trajectory with the smallest x at t = 0), we
have used the 276 km s−1 velocity estimated from
IR images (see above).

In Figure 7, we see that the knot trajectories have
crossing points in the x = 0 → 80′′ distance range,
at times smaller than ≈ 500 yr. Therefore, by the
time the HH 1 jet knots have reached the present-
day position of HH 1 (also shown in Figure 7), many
knot-merging events will have occurred. This result
is similar to the one found by Raga et al. (2012a)
for the HH 34 jet.

In order to visualize the effect of the knot-
merging events, we use the simple momentum con-
serving knot-merging model of Raga et al. (2012b).
We take the 2007 HH 1 jet knot positions and veloc-
ities, and assign equal masses to all knots. We then
follow the knot trajectories, merging colliding knots
using mass and momentum conservation conditions.
The knots are not assigned sizes, so that knot colli-
sions take place at the points of trajectory crossings
(see Figure 7).

The result of this exercise is shown in Figure 8.
In this figure we show the knot positions at 150 yr
intervals (t = 0 corresponding to 2007). The knots
are represented as circles (centred on the knot po-
sitions) with radii proportional to the mass of the
knots. It is clear that by t ≈ 450 yr most of the
knots have merged, and that at this time the posi-
tion of the merged knots is slightly upstream of the
present position of HH 1 (at x ≈ 4.5 × 1017 cm or
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Fig. 8. Results of the “momentum conserving knot”
model described in § 6. The t = 0 (top) frame shows the
2007 positions of the HH 1 jet knots, and the following
frames show the knot positions at 150 yr time intervals.
The radii of the circles (indicating the knot positions)
are proportional to the mass of the merged knots. The
present-day position of HH 1 is shown with the dashed,
vertical line.

75′′ at a distance of 400 pc). Therefore, the material
that is being ejected now (in the HH 1 jet) will even-
tually form a new “head” close to the present-day
position of HH 1.

7. SUMMARY

We present a discussion of the methods used in
the past for measuring proper motions of HH out-
flows (§ 2), and a description of a new method re-
cently developed (§ 3). This method has been im-
plemented in a Python pipeline.

We then use this pipeline to determine proper
motions of the knots along the HH 1 jet in the four
available epochs of [S II] HST images (obtained in
1994, 1997, 2007 and 2014). We find proper motions
that are well aligned with the outflow axis, and with
values ranging from ≈ 230 to 290 km s−1, with the
faster velocities mostly in the knots closer to the out-
flow source (see § 4 and Table 1).

For each knot, we calculate a dynamical ejection
time, and then plot the outflow (proper motion) ve-
locity as a function of ejection time (see Figure 6).
This plot shows that (under the assumption of ballis-
tic knot motions) the outflow velocity has increased
towards more recent times.

This “acceleration” of the ejection (as a function
of ejection time) implies that the knots presently ob-
served along the HH 1 jet will merge into a large
working surface. This is seen in the crossings of the
ballistic knot trajectories (see Figure 7) and in the
momentum/mass conserving, “merging knot” model
shown in Figure 8. From this model, we see that
in ≈ 450 yr most of the HH 1 jet knots will have
merged, and that at this time the position of the
merged knots will be slightly upstream of the present
position of HH 1 (at x ≈ 4.5 × 1017 cm or 75′′ at a
distance of 400 pc). This result is qualitatively con-
sistent with the suggestion of Gyulbudaghian (1984)
that the diverging proper motions of the condensa-
tions of HH 1 directly imply that it was formed not
far upstream from its present-day position.

This kind of morphology (a large working surface
at large distances, and a short chain of knots that
will merge at the position of the present-day large
working surface) is to be expected from models of
two-mode ejection variabilities (see the analytic dis-
cussion of Raga et al. 2015c). Also, a qualitatively
most similar situation has been previously found for
the HH 34 outflow (see Raga et al. 2012a, b), in
which the knots along the jet will merge when they
reach the present-day position of HH 34S.

An important question is whether or not this kind
of configuration (of knots along a jet predicted to
merge at the present-day position of a large “head”)
is found in other HH jets. For some HH outflows,
it is possible that proper motion data of sufficient
accuracy might be already available, and a detailed
study of the available data might yield interesting
results. In other cases, future observations might be
necessary in order to resolve this question.

Support for this work was provided by NASA
through grant HST-GO-13484 from the Space Tele-
scope Science Institute. ARa acknowledges support
from the CONACyT grants 167611 and 167625 and
the DGAPA-UNAM grants IA103315, IA103115,
IG100516 and IN109715. ARi acknowledges support
from the AYA2014+57369-C3-2-P grant. We thank
the anonymous referee for constructive comments.

APPENDIX

A. LEAST SQUARES FIT TO THE OBSERVED
vx vs. tdyn DEPENDENCE

In Figure 6, we see that the errors in vx are prob-
ably more important than the errors in tdyn, so that
a traditional linear, least squares fit (in which the
errors in the measured values of the abscissa are as-
sumed to be zero) is probably reasonable. However,
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in order to obtain a more convincing result, we have
done a fit in which the errors in both vx and tdyn are
considered.

One could in principle use a standard “errors in
the two variables” least squares fit approach (see,
e.g., the classical paper of York 1966), but these solu-
tions are based on the assumption that the errors in
the two variables are statistically independent from
each other, and this is not the case in our “vx vs.
tdyn” problem.

Given the fact that the error in the position x of
the knots is much smaller than the errors in the cor-
responding values of vx, the errors in tdyn are given
by:

ǫ(tdyn) =
tdyn
vx

ǫ(vx) , (5)

which can be obtained by assuming a perturbed ve-
locity and appropriately linearizing equation (3), or
alternatively by using the standard error propaga-
tion relation.

We then proceed in the standard way, writ-
ing the “true” values of the measured points as
[tdyn + ǫ(tdyn), vx + ǫ(vx)], through which the lin-
ear fit passes, so that

vx + ǫ(vx) = a[tdyn + ǫ(tdyn)] + b , (6)

where a and b are the parameters of the linear fit that
we want to calculate. Combining equations (5-6) we
then find:

ǫ(vx) =
atdyn + b− vx

1− at
vx

. (7)

These are the deviations from the straight line fit
resulting from the displacements due to the errors in
both vx and tdyn.

We now define a weighted χ2 as:

χ2 =
∑

i

[ǫ(vx)i]
2
wi , (8)

where the ǫ(vx)i values are calculated from equa-
tion (7) with all of the observationally determined
(tdyn, vx) pairs, and wi = 1/σ2

i , where σi are the
estimated errors of the vx values (see Table 1).

Now, given the measured (tdyn, vx) pairs, it is
straightforward to find the values of a and b that
give the minimum χ2 (we do this by exploring nu-
merically a range of values for a and b). It is also
possible to estimate the errors of a and b by per-
turbing (with their estimated errors) the variables
of each of the measured points, recalculating the re-
sulting a and b values, and then using the standard
error propagation formula.

When this method is applied to the knots of the
HH 1 jet, one obtains a = (0.59 ± 0.19) yr and
b = (303± 15) km s−1 (these are the values given in
equation 4). These values are actually very similar
to the a = (0.54±0.18) yr and b = (299±14) km s−1

results obtained from a standard, weighted least
squares fit (in which only the errors in the ordinate
are considered).
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Garćıa López, R., Nisini, B., Giannini, T., 2008, A&A,

487, 1019
Gyulbudaghian, A. L. 1984, Ap, 20, 75
Haro, G. 1952, ApJ, 115, 572
Hartigan, P. et al. 2011, ApJ, 736, 29
Hartigan, P., Heathcote, S., Morse, J., Reipurth, B., &

Bally, J. 2005, AJ, 130, 2197
Hartigan, P., Raymond, J. C., & Hartmann, L. W. 1987,

ApJ, 316, 323
Heathcote, S. & Reipurth, B. 1992, AJ, 104, 2193
Herbig, G. H. 1951, ApJ, 113, 697

. 1969, Comm. of the Konkoly Obs., 65 (Vol
VI, 1), 75

. 1973, Information Bulletin on Variable Stars,
832

Herbig, G. H. & Jones, B. F. 1981, AJ, 86, 1232
Kajdic, P., Reipurth, B., Raga, A. C., Bally, J., &

Walawender, J. 2012, AJ, 143, 106
Masciadri, E., de Gouveia Dal Pino, E., Raga, A. C., &

Noriega-Crespo, A. 2002, ApJ, 580, 950
Masciadri, E. & Raga, A. C. 2014, 611, L137
Noriega-Crespo, A. & Raga, A. C. 2012, ApJ, 750, 101
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