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ABSTRACT

In this paper, a novel analysis was established to prove how Hansen’s infe-
rior and superior partial anomalies k and k1 can divide the elliptic orbit into two
segments. The analysis depends on the departures of r (for k) and 1/r (for k1)
from their minima. By these departures, we can find: (i) Transformations relating
the eccentric anomaly to k and the true anomaly to k1. (ii) Expressions for k and
k1 in terms of the orbital elements. (iii) The interpretation and the intervals of
definition of two moduli (X, S) related to k and k1. (iv) The extreme values of r
and the elliptic equations in terms of k and k1. (v) For r′ and r′′, the modulus X
as a measure of the asymmetry of r′ (or r′′) from r′′ (or r′), and the modulus S12

as a measure of the asymmetry of r′ and r′′ from the minimum value of r. (vi) A
description of the segments represented by k and k1. (vii) The relative position of
the radius vector at k = 0◦ and k1 = 180◦.

RESUMEN

Presentamos un nuevo análisis para demostrar que las anomaĺıas parciales
superior e inferior de Hansen, k y k1, pueden dividir a la órbita eĺıptica en dos
segmentos. El análisis depende de qué tanto se alejan r (para k) y 1/r (para k1) de
sus mı́nimos. Con estas diferencias podemos encontrar lo siguiente. (i) Transfor-
maciones que relacionan a la anomaĺıa excéntrica con k y a la anomaĺıa verdadera
con k1. (ii) Expresiones para k y k1 en términos de los elementos orbitales. (iii)
La interpretación y los intervalos de definición para los módulos X y S relacionados
con k y k1. (iv) Los valores extremos de r y las ecuaciones eĺıpticas en términos
de k y k1. (v) Para r′ y r′′ el módulo X como una medida de la asimetŕıa de r′ (o
bien r′′) respecto de r′′ (o bien r′), mientras que el módulo S12 como una medida
de la asimetŕıa de r′ y r′′ respecto al valor minimo de r. (vi) Una descripción de
los segmentos representados por k y k1. (vii) La posición relativa del radio vector
en k = 0◦ y k1 = 180◦.

Key Words: celestial mechanics — comets: general — methods: analytical

1. INTRODUCTION

The conventional methods of treating astronomical perturbations do not yield manageable series solutions
for the motions of highly eccentric orbits (e.g. most comets and some asteroids) because they lie partly inside
and partly outside the orbits of the disturbing bodies. Consequently, in applications of the conventional methods
of expansion the disturbing force becomes a highly oscillating function, and results in divergent or at least very
slowly convergent series expansions.

1Astronomy, Space Science and Meteorology Department Faculty of Science, Cairo University, Egypt.
2Department of Astronomy, National Research Institute of Astronomy and Geophysics, Cairo, Egypt.
3Department of Mathematics, Preparatory Year, Qassim University, Buraidah, KSA.
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200 SHARAF & SAAD

Fig. 1. Segmentation of elliptic orbit.

In an effort to overcome this situation, Hansen [1856] devised a method of computing the absolute per-
turbation of a periodic comet with large eccentricity based on the so called partial anomalies. This method
involved division of the elliptic orbit of the perturbed body into segments. In each of the segments the classical
variables (the true, eccentric or mean anomalies), were substituted by new ones: partial anomalies. The series
representing the disturbing function was strongly convergent within the segment but invalid outside of it.

The first person to make full use of Hansens original method of partial anomalies was Nacozy (1969), who
completed Hansens numerical example and compared the results with a numerical integration extending through
50 years. In his work, Nacozy utilized the pure harmonic analysis technique. In addition, the method was ap-
plied to the calculation of the general perturbations caused by Saturn on comet P/Tuttle (Skripnichenko 1972).
All his analytical calculations were carried out by manipulating of Fourier series with numerical coefficients.
In 1982, Sharaf proposed a regularization approach based on the idea of the orbit segmentation.

Originally, Hansen introduced two partial anomalies, the inferior anomaly denoted by k and the superior

anomaly denoted by k1. By means of these anomalies, the ellipse could be divided into two segments (as will
be shown latter). Now one may ask: is it possible to divide the elliptic orbit into an arbitrary number of
segments? The answer is yes, and can it be achieved firstly by a full understanding of the idea of the division
of the elliptic orbit into two segments. The present paper is devoted towards this goal.

The idea of the segmentation may be stated as follows. As shown in Figure 1, let r′ be the radius to a point
on the orbit between periapsis and apoapsis on one side of the major axis, where 0◦ ≤ E ≤ 180◦, and let r′′ be
the radius to a point on the other side of the major axis, where 180◦ ≤ E ≤ 360◦.

For the segment of the orbit containing the periapsis, we may consider the departure of r from rmin = a(1−e).
This departure should satisfy the following conditions.
1. To be a periodic function of one independent variable.
2. To be positive ∀r between r′ and r′′.
3. To attain its maximum values at r′ and r′′, and its minimum value at a(1− e).
This departure therefore can be written as

r − a(1− e) = (M sin k +N)2, (1)

where

M +N = (r′ − a(1− e))1/2; M −N = (r′′ − a(1− e))1/2. (2)

The variable k is called the inferior partial anomaly.
For the segment of the orbit containing the apoapsis, we may consider the departure of 1/r from
rmin = 1/a(1 + e). This departure should satisfy the following conditions.
1. To be a periodic function of one independent variable.
2. To be positive ∀r between r′ and r′′.
3. To attain its maximum values at 1/r′ and 1/r′′, and its minimum value at 1/a(1 + e).
This departure therefore can be written as,

1

r
− 1

a(1 + e)
= (M ′ sin k1 +N ′)2, (3)
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DIVISION OF ELLIPTIC ORBIT INTO TWO SEGMENTS 201

where

M ′ +N ′ =

(

1

r′
− 1

a(1 + e)

)1/2

; M ′ −N ′ =

(

1

r′′
− 1

a(1 + e)

)1/2

. (4)

The variable k1 is called the superior partial anomaly.
By means of these departures, many findings are established for both k and k1, namely: (i) A transformation
relating the eccentric anomaly to k and a transformation relating the true anomaly to k1. (ii) Expressions
for defining each of k and k1 in terms of the orbital elements. (iii) The interpretation and the intervals of
definition of two moduli (X, S) related to k and k1. (iv)The extreme values of the radius vector r and the
elliptic equations in terms of k and k1. (v) That for two radii vectors, r′ and r′′, the modulus X appearing in
definition of the k and k1 is a measure of the asymmetry of r′ (or r′′) from r′′ (or r′), while the modulus S12

is a measure of the asymmetry of r′ and r′′ from the minimum value of r. (vi) A description of the segments
represented by k and k1. (vii) The relative position of the radius vector at k = 0◦ and k1 = 180◦.

In what follows, we shall consider that the above equations are given and derive various conclusions associ-
ated with the segmentation, as well as provide additional interpretations to the parameters M , N , M ′ and N ′

appearing in these equations.

2. THE INFERIOR PARTIAL ANOMALY k

2.1. The equation defining k

This equation is,
r = a(1− e) + (M sin k +N)2, (5)

where M +N and M −N are defined in equations (2), r′ and r′′ are any two radii vectors of the ellipse.
The expression relating the radius vector and the eccentric anomaly for elliptic motion is:

r = a(1− e cosE) = a(1− e) + 2ae sin2
E

2
. (6)

Upon comparing equations (5) and (6) one obtains:

sin
E

2
=

1√
2ae

{M sin k +N}, (7)

as the transformation relating the eccentric anomaly to the inferior partial anomaly k. Also, by equation (6)
we can write equations (2) as:

M −N =
√
2ae sin

E′′

2
; M +N =

√
2ae sin

E′

2
, (8)

from which we obtain:

M =

√

ae

2

{

sin
E′

2
+ sin

E′′

2

}

, (9)

N =

√

ae

2

{

sin
E′

2
− sin

E′′

2

}

, (10)

where E′ and E′′ are the eccentric anomalies corresponding to r′ and r′′ respectively. Further, setting

M =
M√
2ae

= S12 cosX, (11)

N =
M√
2ae

= S12 sinX, (12)

equations (5) and (7) could be written in terms of S12 and X as:

r = a(1− e) + 2aeS2
12 (cosX sin k + sinX)

2
, (13)

sin
E

2
= S12 (cosX sin k + sinX) . (14)

Any one of the equations (5), (7), (13) or (14) could be used for the definition of the inferior partial anomaly k.
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202 SHARAF & SAAD

2.2. The equations defining S12 and X in terms of r′, r′′ and in terms of E′, E′′

From equations (11) and (12) we have:

S12 =

(

M2 +N2

2ae

)1/2

, (15)

tan(45−X) =
M −N

M +N
. (16)

Using equations (2) we can write equations (15) and (16) in terms of r′ and r′′ as:

S12 =

{

r′ + r′′ − 2a(1− e)

4ae

}1/2

, (17)

tan(45−X) =

{

r′′ − a(1− e)

r′ − a(1− e)

}1/2

. (18)

Using equations (9) and (10) we can write equations (15) and (16) in terms of E′ and E′′ as:

S12 =

{

sin2 E′/2 + sin2 E′′/2

2

}1/2

, (19)

tan(45−X) =
sinE′′/2

sinE′/2
. (20)

Equations (17) and (18) are the required equations defining S12 andX in terms of r′ and r′′, while equations (19)
and (20) are the corresponding equations in terms of E′ and E′′.

2.3. The intervals of definition for S12 and X

Since for any radius vector r of the ellipse we have:

max(r) = a(1 + e); min(r) = a(1− e) (21)

Consequently, for the two radii vectors r′ and r′′ we have:

max [r′ − a(1− e)] = max [r′′ − a(1− e)] = 2ae, (22)

min [r′ − a(1− e)] = min [r′′ − a(1− e)] = 0, (23)

max [r′ + r′′] = max(r′) + max(r′′) = 2a(1 + e), (24)

min [r′ + r′′] = min(r′) + min(r′′) = 2a(1− e). (25)

Equation (17) could be written as:

min

{

r′ + r′′ − 2a(1− e)

4ae

}1/2

≤ S12 ≤ max

{

r′ + r′′ − 2a(1− e)

4ae

}1/2

. (26)

Then, by equations (24) and (25) this inequality becomes:

0 ≤ S12 ≤ 1. (27)

In addition, we can write equation (18) as:

min

{

r′′ − a(1− e)

r′ − a(1− e)

}1/2

≤ tan(45−X) ≤ max

{

r′′ − a(1− e)

r′ − a(1− e)

}1/2

, (28)



©
 C

o
p

y
ri

g
h

t 
2

0
1

7
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

DIVISION OF ELLIPTIC ORBIT INTO TWO SEGMENTS 203

and then
min(r′′ − a(1− e))1/2

max(r′ − a(1− e))1/2
≤ tan(45−X) ≤ max(r′′ − a(1− e))1/2

min(r′ − a(1− e))1/2
. (29)

Using equations (22) and (23), the inequality (29) becomes:

0 ≤ tan(45−X) ≤ ∞, (30)

and then we have:

−π

4
≤ X ≤ π

4
. (31)

Inequalities (27) and (31) are what we need to obtain.

2.4. The extreme values of the radius vector r and the elliptic equations in terms of k

Equation (13) could be written as:

r = a
{

1− e+ eS2
12 + eS2

12 sin
2 X

}

+ 2aeS2
12 sin 2X sin k

−aeS2
12 cos

2 X cos 2k. (32)

Consequently,
dr

dk
= 2aeS2

12

{

sin 2X cos k + cos2 X sin 2k
}

. (33)

The necessary condition for the extreme values of r is dr/dk = 0,

that is

or

{

sin 2X cos k + cos2 X sin 2k = 0,

cosX cos k{sinX + sin k cosX} = 0.
(34)

Therefore, the extreme values of r when expressed in terms of k occur at

k = 90◦, k = 270◦, sin k = − tanX. (35)

Differentiating equation (33) with respect to k, we obtain:

d2r

dk2
= 2aeS2

12{− sin 2X sin k + 2 cos2 X cos 2k}. (36)

Let us test the values of k given in equations (35) for the extreme values of r.

At k = 90◦:
For this value of k, equation (36) becomes:

d2r

dk2
= −2aeS2

12{sin 2X + 2 cos2 X}. (37)

Since −π/4 ≤ X ≤ π/4, it follows that:

sin 2X + 2 cos2 X ≥ 0. (38)

Consequently,
d2r

dk2
|k=90◦≤ 0. (39)

That is to say, at k = 90◦ ∀ − π/4 ≤ X ≤ π/4, r is maximum. Let this maximum be r1. By equation (32) for
k = 90◦, we get for r1 the value:

r1 = a(1− e) + 2aeS2
12 + 2aeS2

12 sin 2X. (40)
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From equations (11) and (12) we obtain:

S2
12 sin 2X =

MN

ae
. (41)

Using equations (9) and (10) in this equation yields:

S2
12 sin 2X =

1

2

{

sin
E′

2

2

− sin
E′′

2

2
}

, (42)

or

S2
12 sin 2X =

1

2

{

r′ − r′′

4ae

}

. (43)

Using equations (43) and (17) in equation (40) it gives:

r1 = r′. (44)

This equation could be obtained from equation (5) for k = 90◦, by comparing the resulting equation with
equations (2).

At k = 270◦:
For this value of k, equation (36) becomes:

d2r

dk2
= 2aeS2

12{sin 2X − 2 cos2 X}. (45)

Again, since −π/4 ≤ X ≤ π/4, it follows that:

sin 2X − 2 cos2 X ≤ 0. (46)

Consequently,
d2r

dk2
|k=270◦≤ 0. (47)

That is to say, at k = 270◦ ∀− π/4 ≤ X ≤ π/4, r is maximum. Let this maximum be r2. By equation (32) for
k = 270◦ we get:

r2 = a(1− e) + 2aeS2
12 − 2aeS2

12 sin 2X. (48)

Using equations (43) and (17) in equation (48) yields:

r2 = r′′. (49)

This equation could be obtained from equation (5) for k = 270◦, by comparing the resulting equation with
equations (2).

At sin k = − tanX = −N/M :
Equation (5) with sin k = −N/M or equation (32) with sin k = − tanX will give:

r = a(1− e). (50)

Therefore, at sin k = − tanX r is minimum.
From the above analysis we have the following results.

Result 1:
The periodic representation of the radius vector r in terms of the inferior partial anomaly k [equation (5) or
equation (13)] has two maxima, r′′ and r′, when k = 270◦ and k = 90◦ respectively, and has a minimum a(1−e)
when sin k = −N/M or sin k = − tanX.
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Now we are in a position to obtain the elliptic equations in terms of k, and this is done as follows. We have
already obtained the expression of r in terms of k as given in equation (32).
Since

r sin f = a(1− e2)1/2 sinE = 2a(1− e2)1/2 sin
E

2
cos

E

2
, (51)

and

sin
E

2
= S12 (cosX sin k + sinX) , (52)

we can write

r sin f = 2aS12(1− e2)1/2 (cosX sin k + sinX)A, (53)

where

A =
(

1− S2
12 sin

2 X − S2
12 cos

2 X sin2 k − S2
12 sin 2X sin k

)1/2
= cos

E

2
. (54)

Also, since

r cos f = a(cosE − e) = a

(

1− e− 2 sin2
E

2

)

, (55)

using the expression of sinE/2 in terms of k we obtain:

r cos f = a
{

1− e− 2S2
12

(

cos2 X sin2 k + sin 2X sin k + sin2 X
)}

, (56)

that is,

r cos f = a
(

1− e− S2
12 − S2

12 sin
2 X

)

− 2aS2
12 sin 2X sin k + aS2

12 cos
2 X cos 2k. (57)

By equation (14) we have:
1

2
cos

E

2
dE = S12 cosX cos k dk, (58)

or

dE =
2S12 cosX cos k

A
dk (59)

where A is given by equation (54).
Since

ncdt =
( r

a

)

dE, (60)

then

ncdt =
( r

a

)

{

2S12 cosX cos k

A

}

dk. (61)

where nc is the mean motion. Equations (51) to (61) in addition to equation (32) are the required elliptic
equations in terms of k.

2.5. Some remarks concerning the inferior partial anomaly k

It is evidently shown by the above analysis that certain points need discussion. In the following, some
important remarks are given.

2.5.1. Interpretation of X and S12

From equation (32) we have;

r′′ = a
{

1− e+ eS2
12 + eS2

12 sin
2 X

}

− 2aeS2
12 sin 2X + aeS2

12 cos
2 X. (62)

and

r′ = a
{

1− e+ eS2
12 + eS2

12 sin
2 X

}

+ 2aeS2
12 sin 2X + aeS2

12 cos
2 X. (63)
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Fig. 2. Description of the segment represented by the inferior partial anomaly k.

By these equations, and equations (18), (31) we have,



























r′ > r′′ ⇔ Xǫ[0, π/4],

r′ < r′′ ⇔ Xǫ[−π/4, 0],

r′ = r′′ 6= a(1− e) ⇔ X = 0,

r′′ = a(1− e) 6= r′ ⇔ X = π/4,

r′ = a(1− e) 6= r′′ ⇔ X = −π/4.

(64)

By these equations, and the equations defining S12 , the interpretation of X and S12 may be as follows.

Result 2:
The modulus X appearing in the definition of the inferior partial anomaly k is a measure of the asymmetry of
r′(or r′′) from r′′( or r′), while the modulus S12 is a measure of the asymmetry of r′ and r′′ from the minimum
value of r, which is a(1− e).

2.5.2. Description of the segment represented by k

Equations (51) to (61), in addition to equation (32), show the following

• At r = r′′, k = 270◦. As r decreases, k increases.

• After passing the periapsis, r increases as does k, until at r = r′ we have k = 90◦.

• If we allow k to increase beyond 90◦ we retrace the same segment of the ellipse in reverse order.

Thus, we can describe the segment of the ellipse represented by the inferior partial anomaly k as follows.

Result 3:
The inferior partial anomaly k represents the segment of the ellipse from the periapsis to r = r′ on one side of
the major axis, where 0◦ ≤ E ≤ 180◦, and from the periapsis to r = r′′ on the other side of the major axis,
where 180◦ ≤ E ≤ 360◦.
As k is varied from 0◦ to 360◦, equations (5) or (13) and equations (7) or (14) give the coordinates of the
ellipse, r and E , only in the segment formed by r′ and r′′ as indicated in Figure 2 (in which r′′ > r′).

2.5.3. Relative position of the radius vector at k = 0

Let the value of r at k = 0 be r0; then, by equation (32) we have

r0 = a(1− e) + 2aeS2
12 sin

2 X. (65)
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From equations (62), (63) and (65) we have;

r′′ − r0 = 2aeS2
12 cosX(cosX − 2 sinX), (66)

and
r′ − r0 = 2aeS2

12 cosX(cosX + 2 sinX). (67)

Now we have to consider the following cases:

1. If r′ > r′′.
According to the first relation in (64), we have cosX < 2 sinX, sinX > 0 and cosX > 0. Hence, by these
conditions and equations (66) and (67) we have for this case;

r0 > r′′; r0 < r′. (68)

2. If r′ < r′′.
According to the second relation in (64), we have cosX > 0 and sinX < 0. Hence, by these conditions and
equations (66) and (67) we have for this case;

r0 < r′′; r0 > r′. (69)

3. If r′ = r′′ 6= a(1− e).
According to the third relation in (64) and equation (65) we have for this case;

r0 = a(1− e). (70)

From equations (68), (69) and (70), we may conclude the following result.

Result 4:
For r′ < r′′ or r′ > r′′, the radius vector r0 corresponding to k = 0 lies on the same side of the major axis as
the max{r′, r′′}, while for r′ = r′′ 6= a(1− e), r0 occurs at the periapsis. Figure 3 illustrates this result.

This section completes the analysis of the inferior partial anomaly k. In the following section we shall
consider the superior partial anomaly k1.

3. THE SUPERIOR PARTIAL ANOMALY k1

3.1. The equation defining k1

This equation is:
1

r
=

1

a(1 + e)
(M ′ sin k1 +N ′)2, (71)

where

M ′ −N ′ =

{

1

r′′
− 1

a(1 + e)

}1/2

, (72)

M ′ +N ′ =

{

1

r′
− 1

a(1 + e)

}1/2

. (73)

The expression relating the radius vector to the true anomaly f for elliptic motion is:

1

r
=

1 + e cos f

a(1− e)
=

(1− e) + 2e cos2(f/2)

a(1− e2)
=

{

1

a(1 + e)
+

2e cos2(f/2)

a(1− e2)

}

. (74)

Upon comparing (71) and (74) one obtains:

cos
f

2
=

√

a(1− e2)

2e
(M ′ sin k1 +N ′) , (75)
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Fig. 3. Relative position of the radius vector r0 for the three cases: r′ < r′′, r′ > r′′ and r′ = r′′ 6= a(1− e).

as the transformation relating the true anomaly to the superior partial anomaly k1.
From equation (74) we have:

cos
f

2
= ±

√

a(1− e2)

2e

{

1

r
− 1

a(1 + e)

}1/2

. (76)

From the analysis of § 2.5 we have f ′ ≤ 180◦ and f ′′ ≥ 180◦, then we must have:

cos
f ′

2
=

√

a(1− e2)

2e

{

1

r′
− 1

a(1 + e)

}1/2

, (77)

and

cos
f ′′

2
= −

√

a(1− e2)

2e

{

1

r′′
− 1

a(1 + e)

}1/2

. (78)

Hence, by these equations, equations (72) and (73) could be written as:

N ′ −M ′ =

√

2e

a(1− e2)
cos

f ′′

2
; N ′ +M ′ =

√

2e

a(1− e2)
cos

f ′

2
, (79)
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hence

N ′ =

√

2e

a(1− e2)

(

cos
f ′

2
+ cos

f ′′

2

)

/2, (80)

and

M ′ =

√

2e

a(1− e2)

(

cos
f ′

2
− cos

f ′′

2

)

/2. (81)

Let

M ′

√

a(1− e2)

2e
= S′

22 cosX
′, (82)

N ′

√

a(1− e2)

2e
= −S′

22 sinX
′. (83)

By means of equations (82) and (83) we can write equations (71) and (75) in terms of S′

22 and X ′ as:

1

r
=

1

a(1 + e)
+

2eS′2
22

a(1− e2)
(cosX ′ sin k1 − sinX ′)

2
, (84)

cos
f

2
= S′

22 (cosX
′ sin k1 − sinX ′) . (85)

Any of the equations (71), (75), (84) or (85) may be used for the definition of the superior partial anomaly k1.

3.2. Equations defining S′

22 and X ′ in terms of r′, r′′, and in terms of f ′, f ′′

From equations (82) and (83) we have:

S′

22 =

√

a(1− e2)

2e
(M ′2 +N ′2)1/2, (86)

tan(45−X ′) =
M ′ +N ′

M ′ −N ′
. (87)

Using equations (80), (81) we can write equations (86), (87) in terms of f ′ and f ′′ as:

S′2
22 =

{(

cos2 f ′/2 + cos2 f ′′/2
)

/2
}1/2

, (88)

tan(45−X ′) = − cos f ′/2

cos f ′′/2
, (89)

where f ′ and f ′′ are the true anomalies at r′ and r′′ respectively.
Using equations (72), (73) we can write equations (86), (87) in terms of r′ and r′′ as:

S′2
22 =

{

a(r′ + r′′)(1 + e)− 2r′r′′

4er′r′′
(1− e)

}1/2

, (90)

tan(45−X ′) =

{

a(1 + e)− r′

a(1 + e)− r′′
r′′

r′

}1/2

. (91)
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3.3. The intervals of definition for S′

22 and X ′

For any radius vector r of the ellipse we have:

max(r) = a(1 + e); min(r) = a(1− e), (92)

consequently

max

(

1

r

)

=
1

a(1− e)
; min

(

1

r

)

=
1

a(1 + e)
, (93)

and

max {a(1 + e)− r} = 2ae; min {a(1 + e)− r} = 0. (94)

Also for any radius vectors r′ and r′′ we have:

max

(

1

r′
+

1

r′′

)

=
2

a(1− e)
; min

(

1

r′
+

1

r′′

)

=
2

a(1 + e)
. (95)

Equation (90) could be written as:

min(U) ≤ S′

22 ≤ max(U), (96)

where

U =

(

1− e

4e

)1/2 {

a(1 + e)

(

1

r′
+

1

r′′

)

− 2

}1/2

. (97)

Then by equation (95) the inequality (96) becomes:

0 ≤ S′

22 ≤ 1. (98)

In addition, we can write equation (91) as:

min

{

a(1 + e)− r′

a(1− e)− r′′
r′′

r′

}1/2

≤ tan(45−X ′) ≤ max

{

a(1 + e)− r′

a(1− e)− r′′
r′′

r′

}1/2

, (99)

or

min(V1) ≤ tan(45−X ′) ≤ max(V2), (100)

where

V1 =
min(a(1 + e)− r′)1/2.min(r′′)1/2

max(a(1 + e)− r′′)1/2.max(r′)1/2
, (101)

and

V2 =
max(a(1 + e)− r′)1/2.max(r′′)1/2

min(a(1 + e)− r′′)1/2.min(r′)1/2
. (102)

By equation (94) this inequality becomes:

0 ≤ tan(45−X ′) ≤ ∞, (103)

which gives

−π/4 ≤ X ′ ≤ π/4. (104)

The inequalities (98) and (104) are what we need to obtain.
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3.4. The extreme values of the radius vector r and the elliptic equations in terms of k1

Equation (84) could be written as:

a(1− e2)

r
= 1− e+ eS′2

22 + eS′2
22 sin

2 X ′ − 2eS′2
22 sin 2X

′ sin k1 − eS′2
22 cos

2 X ′ cos 2k1. (105)

Differentiating equation (105) with respect to k1 we obtain:

a(1− e2)
dr

dk1
= 2eS′2

22r
2
{

sin 2X ′ cos k1 − cos2 X ′ sin 2k1
}

. (106)

Since the necessary condition for the extreme values of r is dr/dk1 = 0, then

cosX ′ cos k1(sinX
′ − sin k1 cosX

′) = 0. (107)

Therefore, the extreme values of r when expressed in terms of k1 occur at:

k1 = 90◦; k1 = 270◦; sin k1 = tanX ′. (108)

Differentiating equation (106) with respect to k1 we obtain:

a(1− e2)
d2r

dk21
= 2eS′2

22

{

r2
(

− sin 2X ′ sin k1 − 2 cos2 X ′ cos 2k1
)

+
(

sin 2X ′ cos k1 − cos2 X ′ sin 2k1
)

(

2r
dr

dk1

)}

.

(109)
Now we shall test the values of k1 given in equation (108) for the extreme values of r.

At k1 = 90◦:
For this value of k1, dr/dk1 = 0 and hence equation (109) gives:

d2r

dk21
|k1=90◦=

[ −2eS′2
22

a(1− e2)

]

(r2)k1=90◦
{

sin 2X ′ − 2 cos2 X ′
}

. (110)

Since −π/4 ≤ X ′ ≤ π/4, it follows that:

sin 2X ′ − 2 cos2 X ′ ≤ 0. (111)

By this condition, and the fact that 2eS′2
22(r

2)k1=90◦/a(1− e2) > 0, it follows that:

d2r

dk21 k1=90◦

≥ 0. (112)

That is to say, at k1 = 90◦, ∀ − π/4 ≤ X ′ ≤ π/4, r is minimum. Let this minimum be r′1. By equation (105)
for k1 = 90◦ we get:

a(1− e2)

r′1
= 1− e+ eS′2

22 − 2eS′2
22 sin 2X

′. (113)

From equations (82) and (83) we get:

S′2
22 sin 2X

′ = −M ′N ′

[

a(1− e2)

e

]

. (114)

Using equations (80) and (81) in this equation gives:

S′2
22 sin 2X

′ =

{

cos2 f ′′/2− cos2 f ′/2

2

}

, (115)

or

S′2
22 sin 2X

′ =

{

a(1− e2)(r′ − r′′)

4er′r′′

}

. (116)
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Using equations (116) and (90) in equation (113) gives:

a(1− e2)

r′1
= 1− e+ 2e

{

a(r′ + r′′)(1− e2)− 2r′r′′(1− e)

4er′r′′

}

+ 2e

{

a(1− e2)(r′′ − r′)

4er′r′′

}

, (117)

or
a(1− e2)

r′1
= 1− e+

a(1− e2)

r′
− (1− e). (118)

Then
r′1 = r′. (119)

This equation could be found from equation (71) with k1 = 90◦, by comparing the resulting equation with
equation (73).

At k1 = 270◦:
Since for this value dr/dk1 = 0, equation (109) gives:

d2r

dk21
|k1=270◦=

[

2eS′2
22

a(1− e2)

]

(r2)k1=270◦
{

sin 2X ′ + 2 cos2 X ′
}

. (120)

Again, since −π/4 ≤ X ′ ≤ π/4, it follows that:

sin 2X ′ + 2 cos2 X ′ ≥ 0. (121)

From this condition, and from the fact that 2eS′2
22(r

2)k1=270◦/a(1− e2) > 0, it follows that:

d2r

dk21 k1=270◦

≥ 0. (122)

That is to say, at k1 = 270◦ ∀ − π/4 ≤ X ′ ≤ π/4, r is minimum. Let this minimum be r′2. By equation (105)
for k1 = 270◦ we obtain:

a(1− e2)

r′2
= 1− e+ 2eS′2

22 + 2eS′2
22 sin 2X

′. (123)

Using equations (116) and (90) in this equation, gives:

r′2 = r′′. (124)

This equation could be found from equation (71) with k1 = 270◦, by comparing the resulting equation with
equation (72).

At sin k1 = −N ′/M ′ = tanX ′:
Equation (71) with sin k1 = −N ′/M ′ or equation (105) with sin k1 = tanX ′ will give:

r = a(1 + e). (125)

Therefore, at sin k1 = −N ′/M ′ = tanX ′, r is maximum. From the above analysis we can summarize

Result 5

The periodic representation of the radius vector r in terms of the superior partial anomaly k1 [equation (71)
or equation (105)] has two minima, r′′ and r′, when k1 = 270◦ and k1 = 90◦ respectively, and has a maximum
a(1 + e), when sin k1 = −N ′/M ′ or (sin k1 = tanX ′).

Now we are in a position to obtain the elliptic equations in terms of k1. This is done as follows.

We have already obtained the expression of r in terms of k1 as:

1

r
= D/a(1− e2), (126)



©
 C

o
p

y
ri

g
h

t 
2

0
1

7
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

DIVISION OF ELLIPTIC ORBIT INTO TWO SEGMENTS 213

where

D = (1− e+ eS′2
22 + eS′2

22 sin
2 X ′)− 2eS′2

22 sin 2X
′ sin k1 − eS′2

22 cos
2 X ′ cos 2k1. (127)

Since

cos f = 2 cos2 f/2− 1, (128)

then by using equation (85) we get cos f in terms of k1 as:

cos f = (S′2
22 + S′2

22 sin
2 X ′ − 1)− 2S′2

22 sin 2X
′ sin k1 − S′2

22 cos
2 X ′ cos 2k1. (129)

Also, since:

sin f = 2 sin f/2 cos f/2 = 2 cos f/2
(

1− cos2 f/2
)1/2

= 2C cos f/2, (130)

where

C =
{

1− S′2
22 sin

2 X ′ + S′2
22 sin 2X

′ sin k1 − S′2
22 cos

2 X ′ sin2 k1
}1/2

, (131)

then by equation (85) we get sin f in terms of k1 as:

sin f = 2S′2
22(cosX

′ sin k1 − sinX ′)C. (132)

Since

r = a(1− e cosE) = a(1− e2)(1 + e cos f)−1, (133)

then we can write:

sinE dE =
(1− e2) sin f

(1 + e cos f)2
df =

r2(1− e2) sin f

a2(1− e2)2
df =

r2 sin f

a2(1− e2)
df. (134)

Since

r sin f = a(1− e2)1/2 sinE ⇒ sinE =
r sin f

a(1− e2)1/2
. (135)

Hence, by using equation (135) in the left hand side of equation (134) we obtain:

dE =
( r

a

)

(1− e2)−1/2 df. (136)

Therefore, ncdt in terms of f is written as

ncdt =
( r

a

)2

(1− e2)−1/2 df. (137)

Again, by equation (85) we have;

df = −2S′

22 cosX
′ cos k1/C dk1, (138)

where C is given by (131).

Using equation (138) in equation (137) yields for ncdt in terms of k1 the formula;

ncdt = −2
( r

a

)2

(1− e2)−1/2S′

22 cosX
′ cos k1/C dk1. (139)

Equations (126), (129), (132) and (139) are the required elliptic equations in terms of k1.
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3.5. Some remarks concerning the superior partial anomaly k1

Corresponding to § 3.4, the following remarks are given for the superior partial anomaly k1.

3.5.1. The interpretation of X ′ and S′

22

From equation (126) we have;

a(1− e2)

r′
= 1− e+ 2eS′2

22 − 2eS′2
22 sin 2X

′. (140)

and
a(1− e2)

r′′
= 1− e+ 2eS′2

22 + 2eS′2
22 sin 2X

′. (141)

Using these equations, and equations (91), (104) we get;



























r′ > r′′ ⇔ X ′ǫ[0, π/4],

r′ < r′′ ⇔ X ′ǫ[−π/4, 0],

r′ = r′′ 6= a(1 + e) ⇔ X ′ = 0,

r′ = a(1 + e) ⇔ X ′ = π/4,

r′′ = a(1 + e) ⇔ X ′ = −π/4.

(142)

By these equations, and the equations defining S′

22 , the interpretation of X ′ and S′

22 may be as follows:

Result 6:

The modulus X ′ appearing in the definition of the superior partial anomaly k1 is a measure of the asymmetry
of r′(or r′′ ) from r′′(or r′ ), while the modulus S′

22 is a measure of the asymmetry of r′ and r′′ from the
maximum value of r, which is a(1 + e).

3.5.2. Description of the segment represented by k1

The elliptic equations in terms of k1 show that:

• At r = r′, we have k1 = 90◦. As r increases, so does k1.

• After passing the apoapsis, r decreases, k1 increases until at r = r′′ we have k1 = 270◦.

• If k1 increases beyond 270◦, the same segment of the ellipse is retraced in the reverse order.

From these notes we can describe the segment of the ellipse represented by the superior partial anomaly k1 as
follows.

Result 7:

The superior partial anomaly k1 represents the segment of the ellipse from the apoapsis to r = r′ on the side
of the major axis where 0◦ ≤ E ≤ 180◦, and from apoapsis to r = r′′ on the other side of the major axis where
180◦ ≤ E ≤ 360◦. As k1 is varied from 0◦ to 360◦, equations (71) or (105) and equations (75) or (85) give the
coordinates of the ellipse , r and f , only in the segment formed by r′ and r′′, as indicated in Figure 4 (in which
r′′ > r′).
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Fig. 4. Description of the segment represented by the superior partial anomaly k1.

3.5.3. Relative position of the radius vector at k1 = 1800

Let the value of r at k1 = 180◦ be r′0; then, by equation (126) we have;

a(1− e2)

r′0
= 1− e+ 2eS′2

22 sin
2 2X ′. (143)

From equations (140), (141) and (143) we have

a(1− e2)

(

1

r′
− 1

r′0

)

= 2eS′2
22 cosX

′ [cosX ′ − 2 sinX ′] , (144)

or

a(1− e2)

(

1

r′′
− 1

r′0

)

= 2eS′2
22 cosX

′ [cosX ′ + 2 sinX ′] . (145)

Now we shall consider the following cases.

1. If r′ > r′′.
According to the first relation in (142), we have cosX ′ < 2 sinX ′, sinX ′ > 0 and cosX ′ > 0. Hence, by these
conditions and equations (144) and (145) we have for this case

r′0 > r′′; r′0 < r′. (146)

2. If r′ < r′′.
According to the second relation in (142), we have cosX ′ > 0 and sinX ′ < 0. Hence, by these conditions and
equations (144) and (145) we have for this case

r′0 < r′′; r′0 > r′. (147)

3. If r′ = r′′ 6= a(1 + e).
According to the third relation in (142) and equation (143)we have for this case

r′0 = a(1 + e). (148)

From equations (145), (146) and (147), we may state the following result.

Result 8:
For r′ > r′′ or r′ < r′′, the radius vector r′0 corresponding to k1 = 180◦ lies on the same side of the major
axis as the min{r′, r′′}, while for r′ = r′′ 6= a(1 + e), r′0 occurs at the apoapsis. Figure 5 illustrates this result.
This section completes the analysis of the superior partial anomaly k1. This analysis leads to the following
conclusions.
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Fig. 5. Relative position of the radius vector r′0 for the three cases: r′ > r′′, r′ < r′′ and r′ = r′′ 6= a(1 + e).

Fig. 6. Division the ellipse into two segments.

4. CONCLUSIONS

In the present paper, a novel analysis is given to show how Hansens inferior and superior partial anomalies k
and k1 can be used to divide the elliptic orbit into two segments (see Figure 6). The first segment includes the
periapsis and is represented by the inferior partial anomaly k. The second segment includes the apoapsis and
is represented by the superior partial anomaly k1. The main findings of this manuscript can be summarized
as follows.
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• The periodic representation of the radius vector r in terms of the inferior partial anomaly k has two
maxima r′′ and r′ when k = 270◦ and k = 90◦ respectively, and a minimum a(1−e) when sin k = − tanX.

• The inferior partial anomaly k represents the segment of the ellipse from the periapsis to r = r′ on one
side of the major axis where 0◦ ≤ E ≤ 180◦ and from the periapsis to r = r′′ on the other side of the
major axis, where 180◦ ≤ E ≤ 360◦.

• For r′ < r′′ or r′ > r′′ the radius vector r0 corresponding to k = 0 lies on the same side of the major axis
as the max{r′, r′′}, while for r′ = r′′ 6= a(1− e), r0 occurs at the periapsis.

• The periodic representation of the radius vector r in terms of the superior partial anomaly k1 has two min-
ima r′′ and r′ when k1 = 270◦ and k1 = 90◦ respectively, and has a maximum a(1+e) when sin k = − tanX.

• The superior partial anomaly k1 represents the segment of the ellipse from the apoapsis to r = r′ on one
side of the major axis where 0◦ ≤ E ≤ 180◦ and from the apoapsis to r = r′′ on the other side of the
major axis, where 180◦ ≤ E ≤ 360◦.

• For r′ > r′′ or r′ < r′′ the radius vector r′0 corresponding to k1 = 180◦ lies on the same side of the major
axis as the min{r′, r′′}, while for r′ = r′′ 6= a(1 + e), r′0 occurs at the apoapsis.

The authors are grateful to the referee for valuable comments that improved the original manuscript.

A. APPENDIX

Table of symbols

a: The semi-major axis of elliptic orbit e: The eccentricity of elliptic orbit

f : The true anomaly [rad] E: The eccentric anomaly [rad]

nc:The mean motion [rad/s] t: The time [s]

k: The inferior partial anomaly by Hansen k1: The superior partial anomaly by Hansen

r: The rdius vector
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