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ABSTRACT

We performed a series of 3D N-body simulations where the initial conditions
were chosen to get two sets of models; unbarred and barred ones. In this work,
we analyze the growth of spirals and bar structures using 1D, and 2D Fourier
transform (FT) methods. Spectrograms and diagrams of the amplitude of the
Fourier coefficients as a function of time, radius and pitch angle show that the
general morphology of our modeled galaxies is due to the superposition of structures
which have different values of pitch angle and number of arms. Also, in barred
models a geometric classification of orbits from the bar reference frame was done,
showing that the barred potential and the Lagrangian points L4 and L5 catch
approximately one-third of the total disk mass.

RESUMEN

Se ejecutaron simulaciones de N-cuerpos en 3D donde las condiciones iniciales
fueron escogidas para obtener dos conjuntos de modelos; no-barrados y barrados.
Se analiza el crecimiento de las estructuras espirales y/o de barra usando transfor-
madas de Fourier en 1D y 2D. Los espectrogramas y los diagramas de la amplitud
de los coeficientes de Fourier en función del tiempo, radio y ángulo de enrollamiento
muestran que la morfoloǵıa de nuestros modelos se debe a la superposición de diver-
sas estrucuturas con valores diferentes para el ángulo de enrollamiento, número de
brazos y velocidad angular. Además, en los modelos con barra, se estudió las órbitas
de las part́ıculas en el sistema de referencia de la barra. Una clasificación geométrica
de las órbitas muestra que el potencial de la barra y los puntos lagrangianos L4 y
L5 capturan aproximadamente 1/3 de la masa total del disco.

Key Words: galaxies: kinematics and dynamics — galaxies: spiral — galaxies:
structure — methods: numerical

1. INTRODUCTION

The physical origin and the evolution of non-
axisymmetric structures in disk galaxies are long-
standing problems in astrophysics. One of the most
widely accepted hypothesis is the spiral density wave
theory, e.g. Lin & Shu (1964); Bertin & Lin (1996).
In this theory, the spiral arms are explained as long-
lived quasi-stationary density waves with a constant
pattern speed. Additionally, Bertin & Lin (1996) in-
troduced the supposition that these waves are the
result of global modes. Their global mode analy-
sis shows that the spiral arms are manifestations of

1Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
INAOE, México.

the gravitationally unstable global eigen-oscillations
of the disk galaxies (Dobbs & Baba 2014). Goldre-
ich & Lynden-Bell (1965), Julian & Toomre (1966)
and Toomre (1981) proposed that the spiral arms
were stochastically produced by local gravitational
perturbations in a differentially rotating disk: short
leading spiral perturbation shear at corotation into
a short trailing spiral due to differential rotation.
The wave is amplified by self-gravity of the assem-
bly of stars at the perturbation. This mechanism is
known as swing-amplification, and the resulting spi-
ral structure is short lived (Toomre 1981). Masset &
Tagger (1997) suggested that global modes in stel-
lar disks can be coupled through non-linear interac-
tions. They proposed that a Wave 1 excites a Wave
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258 VALENCIA-ENŔıQUEZ, PUERARI, & CHAVES-VELASQUEZ

2 through second-order coupling terms that are large
when CR of Wave 1 lies at approximately the same
radius as the ILR of Wave 2 (Sellwood 2013).

Many simulations of stellar disks show that the
spiral arms fade out after some galactic rotations.
Furthermore, if the effects of gas are not included,
the velocity dispersion of the disk will increase;
therefore the disk will become stable and will not
form spiral arms e.g. Sellwood & Carlberg (1984);
Baba et al. (2009); Wada et al. (2011). Sellwood
& Carlberg (1984) noticed that the spiral pattern
in N-body simulations generally fades over time be-
cause the spiral arm structure heats the disk kine-
matically and causes the Toomre Q parameter to in-
crease. Hence the disk becomes quite stable against
the development of non-axisymmetric structures. It
is also shown that the addition of new particles with
low-velocity dispersion at a constant rate in the disk
maintains the spiral patterns for longer time scales.
Baba et al. (2009) performed self-consistent high-
resolution, N-body+hydrodynamical simulations to
explore how the spiral arms are formed and main-
tained. They also showed that spiral arms are not
quasi-stationary, but that they are transient and re-
current, like alternative theories of spiral structures
suggest e.g. Goldreich & Lynden-Bell (1965); Julian
& Toomre (1966); Toomre (1981).

Fujii et al. (2011) performed a series of high-
resolution 3D N-body simulations of pure stellar
disks. Their models are based on those of Baba et
al. (2009) with the Toomre’s Q initial parameter,
approximately equal to one. They showed that stel-
lar disks can maintain spiral features for several tens
of rotations without the help of cooling. They also
found that if the number of particles is sufficiently
large, e.g., larger than 3×106, multi-arm spirals will
develop on an isolated disk and that they can survive
for more than 10 Gigayears.

Baba et al. (2013) discussed the growth of spi-
rals structures using one very high-resolution N-body
simulation (3×108 particles). They pointed out that
radial migration of stars around spiral arms is essen-
tial for damping the spiral structure because large
Coriolis forces dominate the gravitational perturba-
tion exerted by the spiral and, as a result, stars
escape from the spirals and join a new spiral at a
different position. This process is cyclic; therefore,
the dominant spiral mode indeed changes over radius
and time.

Recent work by Wada et al. (2011), Grand et al.
(2012a), Roca-Fàbrega et al. (2013), Dobbs & Baba
(2014) showed that the pattern speed of the spiral
arms decreases with radius similarly to the angular

rotation velocity of the disc. Thus, the spiral arms
are considered to be corotating with the rest of the
disc at every radius; they are material spiral arms.
In these models, the evolution of the spiral arms is
governed by the winding of the arms, which leads to
breaks and bifurcations of the spiral structure.

Other works have shown that the continuous
infall of substructures from the dark matter ha-
los of the galaxies could induce spiral patterns by
generating a localized disturbance that grows by
swing amplification (Gauthier et al. 2006). How-
ever, D’Onghia et al. (2010) proposed that dark mat-
ter substructures orbiting in the inner regions of the
galaxies halos would be destroyed by dynamical pro-
cesses such as disk shocking. Hence, they would not
be able to seed the formation of spiral structures. On
the other hand, the interaction with galactic satel-
lites could produce the growth of the spirals (Gerin
et al. 1990, and references therein).

D’Onghia et al. (2013) developed high-resolution
N-body simulations to follow the motions of stars.
Firstly, they performed the simulation by using equal
masses for each particle in the disk; then they added
particles with masses similar to those of the molecu-
lar clouds. They demonstrated that eventually, the
response of the disk can be highly non-linear and
time-variable. Ragged spiral structures can thus sur-
vive (at least in a statistical sense) long after the
original perturbing influence has been removed.

Observational evidence of spiral galaxies sup-
ports both long- and short-lived spiral patterns.
Recently, based on an analysis with the radial
Tremaine−Weinberg method (Tremaine & Weinberg
1984) using CO and HI data of several galaxies, it
has been proposed that the spiral pattern speed Ωp

may increase with decreasing radius in some objects
(Merrifield et al. (2006); Meidt et al. (2009); Speights
& Westpfahl (2012)). This behavior is also seen
in simulations by Wada et al. (2011), Grand et al.
(2012a), Grand et al. (2012b), Roca-Fàbrega et al.
(2013). If this is indeed the case, the lifetime of the
spiral structure is very short. However, Mart́ınez-
Garćıa & González-Lópezlira (2013) used azimuthal
age/color gradients across spiral arms to show that
the spiral patterns in some grand design galaxies are
long-lived. Foyle et al. (2011) estimated that the
torque produced by spiral patterns may redistribute
the disk angular momentum on a time scale of ap-
proximately 4 Gigayears.

Recently, Saha & Elmegreen (2016) presented a
series of simulations in which they changed the mass
of the bulge. The models included the bulge which
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is a King model, an exponential disk, and a flat-
tened, cored dark-matter halo. In some models with
intermediate bulge mass, spiral structures survived
for several Gigayears. In their models, a “Q” barrier
developed, preventing the arrival of the waves at the
ILR, and ensuring the wave’s long time survival.

In this work, we have generated a series of high-
resolution N-body simulations (∼ 106 particles) in
which we included halo, bulge, and disk compo-
nents following the distribution functions described
by Kuijken & Dubinski (1995). The simulations were
analyzed using 1D and 2D Fourier transform meth-
ods. These analyses show the growth and evolution
of spiral or bar structures. This paper is organized as
follows. In § 2, we describe the models and the FT1D
and FT2D methods used to illustrate the growth of
non-axisymmetric structures. In § 3, we present the
results of our analysis, the comparison with previous
studies and a discussion. Finally, we summarize our
findings in § 4.

2. METHODOLOGY

2.1. Setting Up the Initial Conditions

We used the methodology delineated by Kuijken
& Dubinski (1995) to generate the initial conditions
of our models. In that work, they described methods
for setting up self-consistent disc-bulge-halo galaxy
models. Our models were evolved from 0 to 5 Gi-
gayears, with four free parameters: the disk radial
velocity dispersion σR, the disk scale height zd, the
disk mass md, and the number of particles. Most of
the structural parameters are given in Table 1.

Figure 1 shows all the models studied. For all
quantities, the reader is referred to a normalization
UL = 3kpc, UT = 107 years, UV = 293 km/sec,
UM = 6× 1010 M⊙, for G = 1. We carried out two
sets of simulations: unbarred and barred models.
The disk in unbarred models is stable against bar for-
mation, but transient spiral structures can appear.
On the other hand, the disk in barred models is un-
stable to bar formation, and a bar develops around
the first gigayear of our simulations. The number of
particles used in our models was N = 1.2× 106 and
N = 8× 106 particles. The higher resolution models
were done in order to test the effect of interactions
between disk particles and bulge and halo particles,
showing that two-body relaxation will not artificially
induce chaotic orbits, which could scatter particles
out of resonance. Also, we ran some simulations with
particles of equal mass for all the components. We
sumarize these parameters in Table 2.

All our models generated similar rotation curves
except those with the highest mass in the disk. As an

Fig. 1. This figure shows a grid of all our 26 simulations.
The names of the models are given in the bottom left
corner. The models have different disk central radial ve-
locity dispersions σR,0 and disk scale height zd. These
values are given in the upper right corner of each panel.
Other parameters for the models are given in Table 1.
The 16 black boxes correspond to models ran with 1.2
million particles. The blue box represents the MW-A
model (Kuijken & Dubinski 1995). The red box shows
models also ran with 8 million particles. The model in
the green box was also ran with different numbers of par-
ticles and different disk masses (see Table 1). The color
figure can be viewed online.

example, Figure 2 shows the rotation curve resulting
in model s27 z10D, and the initial Toomre stability
parameter Q as a function of radius generated by the
first 16 models listed in Table 2. The models with
low values of Q will be called cold models, those
with high values of Q, hot models. We will discuss
the evolution of the Q parameter in § 3.3.

2.2. Temporal Evolution of the Models

The simulations performed in this work employed
the N-body code gyrfalcON, based on the Dehnen
(2000, 2002) force solver falcON (force algorithm
with complexity) and the NEMO package (Teuben
1995). As do tree-codes, falcON begins by building a
tree of cells at each time-step, then it determines the
potential of the system using a multipole expansion
for the cells and finally, it exploits the similarity of
the force from a distant cell upon cells that are close
to each other.



©
 C

o
p

y
ri

g
h

t 
2

0
1

7
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
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TABLE 1

MODEL PARAMETERS FOR THE MW-A MODEL

Diska Bulgeb Haloc

Md Rd Rt zd δRout σR,0 Mb Ψc σb ρb Mh Ψ0 σ0 q C Ra

0.87 1.0 5.0 0.10 0.5 0.47 0.42 -2.3 0.71 14.5 5.2 -4.6 1.00 1.0 0.1 0.8

a
Disk mass Md, disk scale radius Rd, disk truncation radius Rt, zd disk scale height, δRout disk truncation width, disk central radial

velocity dispersion, σR,0.

b
Bulge mass Mb, bulge cutoff potential Ψc, bulge velocity dispersion σb, bulge central density ρb.

c
Halo mass Mh, halo central potential Ψ0, halo velocity dispersion σ0, halo potential flattening q, halo concentration C = R2

c/R
2

k,
characteristic halo radius Ra (Kuijken & Dubinski 1994).

TABLE 2

PARAMETERS OF THE MODELSa

model ND NB NH NG mB/mD mH/mD MD/MG MB/MG MH/MG MG

s27 z05D 320000 80000 800000 1200000 1.92 2.32 0.14 0.07 0.80 6.24

s27 z10D 320000 80000 800000 1200000 1.95 2.26 0.14 0.07 0.79 6.25

s27 z15D 320000 80000 800000 1200000 2.00 2.25 0.14 0.07 0.79 6.24

s27 z20D 320000 80000 800000 1200000 2.05 2.27 0.14 0.07 0.79 6.25

s37 z05D 320000 80000 800000 1200000 1.92 2.32 0.14 0.07 0.80 6.24

s37 z10D 320000 80000 800000 1200000 1.95 2.26 0.14 0.07 0.79 6.25

s37 z15D 320000 80000 800000 1200000 2.00 2.25 0.14 0.07 0.79 6.24

s37 z20D 320000 80000 800000 1200000 2.05 2.27 0.14 0.07 0.79 6.25

s47 z05D 320000 80000 800000 1200000 1.92 2.32 0.14 0.07 0.80 6.24

s47 z10D 320000 80000 800000 1200000 1.95 2.26 0.14 0.07 0.79 6.25

s47 z15D 320000 80000 800000 1200000 2.00 2.25 0.14 0.07 0.79 6.24

s47 z20D 320000 80000 800000 1200000 2.05 2.27 0.14 0.07 0.79 6.25

s57 z05D 320000 80000 800000 1200000 1.92 2.32 0.14 0.07 0.80 6.24

s57 z10D 320000 80000 800000 1200000 1.95 2.26 0.14 0.07 0.79 6.25

s57 z15D 320000 80000 800000 1200000 2.00 2.25 0.14 0.07 0.79 6.24

s57 z20D 320000 80000 800000 1200000 2.05 2.27 0.14 0.07 0.79 6.25

s27 z05X 2133333 533333 5333334 8000000 1.92 2.32 0.14 0.07 0.80 6.37

s27 z10X 2133333 533333 5333334 8000000 1.95 2.26 0.14 0.07 0.79 6.35

s27 z15X 2133333 533333 5333334 8000000 2.00 2.25 0.14 0.07 0.79 6.35

s37 z05X 2133333 533333 5333334 8000000 1.92 2.32 0.14 0.07 0.80 6.37

s37 z10X 2133333 533333 5333334 8000000 1.95 2.26 0.14 0.07 0.79 6.35

s37 z15X 2133333 533333 5333334 8000000 2.00 2.25 0.14 0.07 0.79 6.35

s37 z10M 320000 80000 800000 1200000 1.09 0.72 0.33 0.09 0.59 4.44

s37 z10MS 320000 87449 577113 984562 1.00 1.00 0.33 0.09 0.59 4.44

s37 z10MX 2133333 533333 5333334 8000000 1.09 0.72 0.33 0.09 0.58 4.40

s37 z10MXS 2133333 586831 3775591 6495755 1.00 1.01 0.32 0.09 0.59 4.48

The first column is the name of the model which indicates some initial conditions (σR,0 and zd, see Figure 1). The number
of particles of each component are given in Columns 2 to 4, and Column 5 shows the total number of particles for the system.
Column 6 gives the mass ratio between bulge and disk particles, while Column 7 gives the mass ratio between halo and disk
particles. Columns 8 to 10 give the total mass ratios of the components. Finally, Column 11 gives the total mass of the model MG.
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Fig. 2. Upper panel: the rotation curve generated by
model s27 z10D. All our models have similar rotation
curves, except the more massive disk one (barred mod-
els). Bottom panel: initial Q value for the 16 unbarred
models with 1.2 million particles.

In all our simulations, we used a softening pa-
rameter ε = 0.05 and an opening angle θ = 0.5.
With these parameters, we ensured that the en-
ergy conservation was better than 10−4. The mod-
els were evolved from 0 to 5 Gigayears. Figure 3
shows six snapshots for models s27 z10D (top row)
and s37 z10M (bottom row). The s27 z10D model
formed transient spiral structures that faded after
some rotations, and the s37 z10M model formed a
bar structure that persisted throughout the entire
evolution.

2.3. Analysis of the Models

We studied the time evolution of the models using
one and two dimensional Fourier transforms (FT1D
and FT2D, respectively). A high amplitude in the
FT1D allows us to identify the region of the disk
where the perturbation is strong and the FT2D al-
lows us to get the pitch angle of the spiral struc-
tures. Thus, performing FT1D and FT2D over each
snapshot shows how these modes (the structures)

and their pitch angles evolve during the simulation.
Moreover, the phase of the FT1D coefficients gives
information about the pattern speed of the struc-
tures (bar and spirals). We use the bar pattern speed
to study the orbits of the particles in the bar refer-
ence frame.

In order to implement the FT1D, we divided the
disk into 100 rings at each time t (snapshot). Then,
the FT1D was performed for each ring (R = 1 to
100) as follows:

AR(m) =
1

D

NR
∑

j=1

dje
−imθj , (1)

where D =
∑NR

j=1 dj , θj is the azimuthal position of
the j-th particle, NR is the number of particles for
a given ring, dj is the weight of the j-th particle (in
this case, we use the mass of each particle), and m is
the azimuthal frequency. We used this equation to
obtain the Fourier coefficients for each mode m and
for each ring at each time step.

The FT2D method was applied to the distribu-
tion of the disk particles as described in Puerari &
Dottori (1992) and references therein. We applied
the FT2D in an annulus with a minimum radius of
4.5 kpc and a maximum radius of 15 kpc. The FT2D
method was implemented using a logarithmic spiral

basis, r = r0 exp
(

−m
p θ

)

; where m is the number of

arms, and p is related to the pitch angle P of the spi-
ral structure by tanP = −m/p. The discrete FT2D
is given by the equation:

A(p,m) =
1

D

NA
∑

j=1

dje
−i(puj+mθj) (2)

Here, D =
∑NA

j=1 dj , NA is the number of par-
ticles in the annulus, dj is the weight of the j-th
particle, uj = ln rj , rj and θj are the polar coor-
dinates of the j-th particle. Thus, we applied the
FT2D at each time step in order to obtain values
of amplitudes A(p,m) for each p and m. These re-
sults allowed us to analyze the growth of the spiral
structures and the evolution of their pitch angles.

3. RESULTS AND DISCUSSION

3.1. Unbarred Models

In this section, we present the calculations of the
Fourier transform methods (FT1D and FT2D); for
the models with 1.2 and 8 million particles which did
not form a bar.
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Fig. 3. Some snapshots of the models s27 z10D (top row) and s37 z10M (bottom row). The model with a light disk
forms spiral structures which fade out after some rotations. The model with a heavier disk forms a bar, and this bar is
maintained throughout the entire evolution. The time in Gigayears is given in the bottom left corner.

Fig. 4. Average amplitude < A > for modes m 1 to 10
for all unbarred models. The upper left panel shows the
models with the lowest velocity dispersion (cold mod-
els) and the bottom right panel shows models with the
highest velocity dispersion (hot models). While the cold-
est models generate the strongest structures at modes
m = 2, m = 3 and m = 4, which is evidence of multi-
armed structures, the hottest models do not generate
structures.

3.1.1. FT1D for Unbarred Models

We summarize the results of FT1D amplitude for
all unbarred models in Figure 4. The mean ampli-
tude of a given mode m for each model was com-
puted for all times and radii. In this figure, the upper
left panel shows the cold models, while the bottom
right panel shows the hot ones. We found that the
cold models develop the strongest structures at mode
m = 2, but there are also some strong structures at

Fig. 5. Zoom of the FT1D for model s27 z15D for m = 2
as a function of radius and time. We can notice that
the structures appear where the Toomre parameter Q is
minimum (see Figure 2).

modes m = 3 and m = 4; in fact, models s27 z05D
and s27 z05X have a predominant mode at m = 2,
due to the later formation of an inner oval and spi-
rals. We conclude that the cold models are able to
develop multi-armed structures, i.e. spiral structures
with different azimuthal frequency number (m = 2,
m = 3, m = 4), while it is clear that the hot models
are unable to develop strong spiral structures with
any azimuthal frequency.

In order to recognize where and when an m mode
is amplified, we plot the Fourier coefficients AR(m)
in gray-scale as a function of radius and time. Fig-
ure 5 is an example of these plots. The figure shows
the amplitude of the FT1D for m = 2 between 2
and 3 Gigayears for the s27 z15D model. The re-
gions with larger amplitudes (black stains) depict
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Fig. 6. Spectrograms giving the pattern speeds of the
structures for some unbarred models with 1.2M particles
for the m = 2 mode. The curves correspond to Ω+ κ/2,
Ω and Ω− κ/2. We note that the pattern speeds of the
structures (dark regions) are well confined between the
inner and the outer Lindblad resonances.

Fig. 7. Pattern speeds for the model s27 z15D for differ-
ent m modes. The solid curves Ω and Ω ± κ/m corre-
spond to the main resonances. Dark regions correspond
to the pattern speed of the structures. It is clear that
this model develops a multi-armed spiral structure. The
pattern speeds of the structures for all m are well located
between their main resonances.

the growth of the structures. In this graph especially
we can notice the evolution of an m = 2 structure
appearing around a radial distance of 5 − 6 kpc. It
is worth noting that at those distances the Toomre
parameter Q is minimal. From there, the higher am-
plitudes move towards the inner and the outer parts
of the disk.

All our unbarred models follow this behavior.
Furthermore, we notice that the perturbation begins
to be amplified where the stability criterion is mini-
mum, around 5 − 6 kpc (see Figure 2). It is known
that models with low values of the Toomre parameter
(1 < Q < 1.2), corresponding to cold models (Binney
& Tremaine 1987), may develop non-axisymmetric
structures via swing amplification, while models with
high values of the Toomre parameter (Q > 2),
corresponding to hot models, are unable to form
structures in the linear regime. Indeed, our cold

Fig. 8. These plots show the average amplitude |A| for
modes m = 2, m = 3, and m = 4. We add 0.1 and
0.2 to the m = 3 and m = 4 for clarity. The mean was
calculated over the radial range 3.75 to 12.75 kpc. The
thickest line corresponds to mode m = 2, the interme-
diate thick line to mode m = 3, and the thinnest line
to mode m = 4. The upper panel shows the amplitudes
for the model with 1.2 million particles, and the bottom
panel shows the amplitudes for the model with 8 million
particles. These models generate multi-armed structures.
Note that the model with low mass resolution generates
structures earlier than the model with high mass resolu-
tion.

models (lower Q) are able to amplify strong non-
axisymmetric structures (Figure 4).

Our next step is to measure the location and the
pattern speed of the structures. Figure 6 shows spec-
trograms of the m = 2 perturbations as a function of
radius over the entire evolution of these bisymmetric
structures for four of our models. The darker areas
correspond to the angular velocity of the strongest
structures that are evolving in the disk. We note
that these structures are located between the ILR
and the OLR resonances, implying that there are
different structures with different pattern speed at
the same radius. Additionally, Figure 7 shows the
pattern speeds of the s27 z15D model for different
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Fig. 9. The amplitudes of the FT2D for m = 2 for two
of our unbarred models. Leading structures correspond
to p < 0, and trailing ones correspond to p > 0. We
can see that the amplitudes oscillated with time; these
oscillations are due to the superposition of waves with
different pattern speeds.

m modes illustrating that structures with different
m′s can co-exist in the galactic disk. Like in Sell-
wood (2011), Sellwood & Carlberg (2014), Valencia-
Enŕıquez & Puerari (2014) and Mata-Chávez et al.
(2014), these figures suggest that a spiral structure is
the result of the coupling of structures of an m mode
and different pattern speeds, but also that they are
coupling in different parts of the disk. The general
morphology of our modeled galaxies is due then to
the superposition of several different modes.

We also have evolved some models with a larger
number of particles to investigate the growth of the
spirals. We calculated models with 8 million parti-
cles (see Figure 1), i.e., we increased the number of
particles by a factor of 6.6. Figure 8 shows the am-
plitude of the FT1D for different modes m as a func-
tion of time. The upper panel shows the amplitude
for the s27 z10D model (with 1.2 million particles),
and the bottom panel shows the amplitude for the
same s27 z10X model (but with 8 million particles).
These two panels are similar; this implies that the
behavior of the model with more resolution is akin
to the model with less resolution.

Therefore, all unbarred models (with both high
and low resolution) have a similar behavior, as de-
scribed before. However, the structures formed in
the higher mass resolution runs appear somewhat
later and are weaker than the structures formed in
the lower mass resolution runs. It means that the
heating of the disk for the high resolution models
is weaker than the heating of the disk for low reso-
lution models. The heating is due mainly to spiral

Fig. 10. Upper panel: Zoom of FT2D at m = 2 am-
plitudes for the s27 z05D model. Spiral structures with
different pattern speeds ‘beat’ as waves to give the ap-
pearence of periodicity in the amplitudes. Bottom panel:
The FT2D calculated using two spirals with different
pitch angles and angular speeds. The superposition of
these two spirals gives a Fourier transform coefficient be-
havior very similar to that of our modelled galaxies.

activity and collisional relaxation. The collisional re-
laxation is a minor effect compared to the physically
real collective heating caused by spirals. Hence, the
high-resolution models have less heating because the
spirals are weaker.

Fujii et al. (2011), Sellwood (2013) and Sellwood
& Carlberg (2014) explored models with a different
number of particles N in the disk. Fujii et al. (2011)
found that the two-body relaxation has effects on
the heating of the disk only when the number of
particles is quite small, while Sellwood & Carlberg
(2014) explained that the spiral activity causes the
heating of the disk and the two-body relaxation is
controlled by the softening in the force computation.

We must note that our models with high and low
number of particles were calculated with the same
softening. The high-resolution models heat some-
what later because the two-body relaxation is less
important than in those with low resolution. The
spiral activity in a high-resolution disk results in less
heating than in a low-resolution disk because of the
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(a) s37 z10M (Bar fiducial) (b) s37 z10MX

(c) s37 z10MS (d) s37 z10MXS

Fig. 11. The average of the FT1D amplitude for some radial ranges for the massive disk models for m = 2. Note that
the amplitude for the inner radii grows and becomes more or less constant, representing the formation of the bar in the
disk. The amplitude for the outer radii oscillates, representing the formation of transient spiral structures.

smaller amplitudes of the perturbations. We will
strengthen this statement in § 3.3 where we discuss
the evolution of the Q parameter for all models.

3.1.2. TF2D for Unbarred Models

We performed the FT2D on all our models, but
for simplicity, we present in Figure 9 only the results
for two models, with modes m = 2, m = 3, and
m = 4. In this figure, each panel depicts the Fourier
coefficient (the amplitude) |A(p,m)| on gray-scale as
a function of time, and the frequency p. (see § 2.3).
The highest amplitudes represent the spiral struc-
tures which are appearing in the disk, and the black
stains show the evolution of these structures.

The oscillations present in the amplitudes of the
spiral patterns are a signature of the superposition
of structures − or modes − with different values of
pitch angles and angular speeds. Such modes were
already detected using the FT1D spectrograms (see
e.g., Figures 6 and 7).

In the upper panel of Figure 10 we present a zoom
of the FT2D amplitude for mode m = 2 between
three and five Gigayears for the s27 z05D model,
which is the coldest and thinnest model. In the bot-
tom panel, we show a FT2D calculation where we
simulated two different spirals with pitch angles of
14 and 12.5 degrees. One spiral rotates with an an-
gular speed of 48 km/sec/kpc, while the other one
rotates with Ω = 35 km/sec/kpc. The superposi-
tion of these two spirals gives a FT2D very similar
to those we are measuring in our simulations. Then,
we again emphasize that the Fourier analysis shows
that the general morphology of our modeled galaxies
is due to the superposition of several different modes.

All our models, including those with high and
low mass resolution, follow this behavior, as was
explained before. Moreover, the coldest/thinnest
models generate strong spiral structures, while the
hottest/thickest models do not generate structures.
Sellwood & Carlberg (1984) argued that the spiral
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Fig. 12. The pattern speed of the bar as a function of
time during the entire evolution for all barred models.
The angular speed decreases in all models, from approxi-
mately 70−80 km/sec/kpc at the first Gigayear to 30−35
km/sec/kpc at end of our calculations, at 5 Gigayears.

arms in N-body simulations generally fade over time
because the spiral arms heat the disc kinematically
and cause Q to rise. Our models also show this be-
havior when the Q parameter is increased. We study
the effect of increasing Q in § 3.3.

3.2. Bar Models

In this section, we follow the analysis performed
in § 3.1, but now on barred models. For these mod-
els, we also present an orbital analysis in order to
show the growth of the bar.

3.2.1. TF1D for Barred Models

We ran models with a more massive disk (see Fig-
ure 1 and Table 2). These models clearly developed
a bar feature because they had a quite small Q value
at the beginning of their evolution because of the
higher disk surface density.

We applied the FT1D in the same way as pre-
viously to analyze the growth of the bar and the
spiral structures formed in the disk. The results
of the FT1D are shown in Figure 11. Each panel
of this figure shows, for each model, the mean am-
plitude <A> (equation 1) in logarithmic scale for
m=2 as a function of time and radius. These plots
can be understood as growth curves of the struc-
tures that are being assembled. We observe that
the evolution of the amplitude is similar among all
barred models, the main difference being the bar’s
growth rate. For example, the amplitude in the
inner disk between 1−2 kpc for model s37 z10M
(called bar fiducial model) reaches its maximum ap-
proximately at 0.9 Gyr, while for model s37 z10MX

Fig. 13. The spectrograms calculated for three-time in-
tervals. We can see the bar slowdown over its evolution.
It is also clear that the spirals rotate slower than the bar
(see text).

it reaches its maximum approximately at 1.4 Gyr.
Also, while model s37 z10MS reaches its maximum
approximately at 1 Gyr, model s37 z10MXS reaches
its maximum much earlier, at 0.6 Gyr.

In order to calculate the instantaneous bar pat-
tern speed as a function of time, we calculated the
angle θ of the bar from the phase φ of FT1D for
m = 2, taking the mean value of θ over a radial range
from 0.15 to 2.25 kpc, thus obtaining a θ(t) curve.
We then fitted a straight line for each 5 points on
the θ(t) curve and took its slope for the middle point
as the pattern speed Ωp(t). Figure 12 shows Ωp(t)
for all barred models. It depicts the evolution of
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their instantaneous bar pattern speed showing that
the bars appear with a high angular velocity, and
that they slow down over time. Athanassoula (2014)
showed that this decrease of the pattern speed could
be explained as due to the angular momentum ex-
change within the galaxy or by the dynamical fric-
tion exerted by the halo on the bar. In a forthcom-
ing article (Valencia-Enŕıquez et al., in preparation)
we will present results focused on a large set of iso-
lated/interacting barred galaxy simulations to gain
insight on the processes which speed up or slow down
the bar.

In Figure 13 we present the m = 2 spectrograms
of these simulations, now calculating them for three
different time intervals (1 − 3, 2 − 4, 3 − 5 Gyr).
This calculation allows us to compare the bar pattern
speed and the spirals pattern speed. We can clearly
observe the bar pattern speed in the inner part of
the disk with high amplitude (dark horizontal line),
and the pattern speed of the spirals in the outskirts
of the disk with less amplitude.

The spectrograms of all barred models in Fig-
ure 13 show that the bar slows down more than the
spiral. Furthermore, the bar rotates around twice as
fast as the spiral structures. The spiral structure, as
in the previous cases, results from the superposition
of several m = 2 modes with different pattern speeds
at different radial regions (see Minchev & Famaey
(2010) for an extensive discussion on the spiral−bar
resonance overlap). The difference between barred
and unbarred models is that in barred models there
are more m = 2 modes being amplified, probably
due to the influence of the strong fast rotating cen-
tral bar.

Also, we show the main resonance curves to iden-
tify whether the bar has an ILR. These results are
shown in Figure 14. To plot these curves, we obtain
Ω from the circular velocity of the model, and the
main resonances from the equations Ω± κ/2, where

κ is the epicycle frequency (κ2 = R dΩ2

dR +4Ω2). This
figure shows Ω and the main resonance for all barred
models from 0 to 2 Gigayears. We can observe that
all our models have a clear ILR in the inner region
of the disk because of the presence of a strong bulge,
and it is increasing due to the increase of the den-
sity in the center of the disk over time. We must
note that the bar appears with a very large angular
velocity (see Figure 12), larger than the top of the
ILR at the beginning of the simulation (see the ILR
in Figure 14 at T = 0 drawn with a black line), im-
plying that the bar is probably formed in the linear
regime (Athanassoula & Sellwood 1986). Yet, after
some time, the bar slows down quickly and the top

Fig. 14. The angular frequency Ω (middle lines), Ω−κ/2
(bottom lines), and Ω + κ/2 (upper lines) at different
times for all bar models.

of the ILR overtakes the angular velocity of the bar.
This happens probably due to the exchange of angu-
lar momentum (Athanassoula (2003) and references
therein). The bar finally evolves developing an ILR
(Okamoto et al. 2015).

3.2.2. TF2D for Barred Models

For barred models with a heavier disk (green
box in Figure 1), the FT2D was separately com-
puted for both bar (0.1 < R < 4.5 kpc), and disk
(4.5 < R < 15 kpc) regions. Figure 15 shows the
Fourier coefficients of FT2D for the fiducial model;
the results of the FT2D for the other barred mod-
els are very similar. The upper panels of this figure
clearly show the presence of a bar structure; a very
large amplitude appears for m = 2 and p = 0. The
bottom panels show the spiral arms growing in the
disk.

Similarly to § 3.1.2, we zoom on the A(p,m = 2)
coefficients in the interval between 3 and 4 Gigayears
for the disk (4.5 < R < 15 kpc) region. These re-
sults are shown in Figure 16. We note that the spi-
ral structures become stronger due to the presence
of a bar (Buta et al. 2009) compared to those of
the lighter disk simulation (see Figure 9), All in all,
the spiral waves in this barred model have a simi-
lar behavior to the unbarred models. This is a clear
evidence of the effect of the coupling of the spiral
structures, now reinforced by the central bar.

3.2.3. Orbits for the Barred Models

We now focus our interest on an analysis of the
disk stellar orbits in the bar reference frame. Chat-
zopoulos et al. (2011) proposed a complete analysis
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Fig. 15. The upper panels show the amplitude of the FT2D from m = 1 to m = 4 for the fiducial bar model. The
FT2D was calculated over an inner radial region 0.1 < R < 4.5 kpc. The maximum amplitude found for the Fourier
coefficient A(p = 0,m = 2) is a clear sign of the presence of a bar. The lower panels show the amplitude of the FT2D
for the same modes m, but for the outer radial region 4.5 < R < 15 kpc. In the barred cases, the spiral structures are
stronger than in the unbarred ones. For the outer radial region, larger azimuthal frequencies are triggered at the time
of the bar formation.

Fig. 16. Zoom of the FT2D amplitude at them = 2 mode
for the barred model calculated over the radial interval
4.5 < R < 15 kpc. Both leading (p < 0, with smaller am-
plitude) and trailing spiral structures (p > 0, with larger
amplitude) appear at a given time due to the superpo-
sition of waves with different pitch angles and angular
speeds. Note that the amplitude of these spirals is larger
compared to that of the unbarred models (Figure 10).

of the stellar orbits of test particles in gravitational
potentials which is based on tracing patterns in se-
quences of characters, indicating sign changes of the
Cartesian coordinates. We propose a very simple
geometrical method in which we analyze three mor-
phological types of orbits in the bar reference frame.
For illustration, we show in Figure 17 the morpho-
logical evolution of six orbits for the fiducial barred
model. We can clearly notice that a given particle is

not confined to only one type of morphology; they
change their morphologies during the entire evolu-
tion (Athanassoula 2012).

In order to analyze the stellar orbits which
evolved with the bar formation, we graphically clas-
sified the orbits of the disk particles in three primary
morphological types as follows: orbits concentrated
in the galactic center (compacts, C), orbits that run
along the bar (bar, B), and orbits around the La-
grangian points L4 and L5 (loop orbits, L). We de-
veloped a code to identify these types of orbits tak-
ing our bar reference frame in a vertical position.
We used the following criteria. To classify orbits
as barred type we took |ymax| > 1.9|xmax| where
|ymax| is the maximum value of a given particle in
the vertical direction (along the bar) and |xmax| is
the maximum position value of the same particle in
the horizontal direction (perpendicular to the bar).
The criterion to classify orbits as compact type was
rmax ≤ 0.5 kpc, where r is the maximum radius of
a given particle. Finally, the criterion to classify or-
bits as loop type was that the particle orbit remains
confined to one side of the bar. Particles not follow-
ing any of our three criteria were called unclassified
(NC). These criteria were used for all disk particles
at intervals of 1 Gyr.

Furthermore, we note that the bar appears
around 1.5 Gigayears for the s37 z10MX model, and
around 1 Gigayear for other models. Hence we made
the orbital analysis from T = 1 to T = 5 Gigayear for
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Fig. 17. Morphological evolution of six particles of the s37 z10M model. At each row, we plot the orbit of the same
particle in four different time intervals. The orbit classification is given on the upper right corner. We observe that a
particle is confined to an orbit type morphology, but it can change during the entire evolution.

all barred models. These results are shown in Fig-
ure 18. This figure shows the statistical classification
of the three types of orbits weighted by the percent-
age of disk mass. The general behavior is similar
for the all barred models. For example, as the bar
forms, the number of compact orbits increases, and
that of the loop orbits increases more. The number
of bar orbits remains approximately constant after
the second Gigayear.

These models have the same initial conditions;
the only difference is the number of particles, which
defines their mass. This difference causes slight dif-
ferences on how the noise affects the evolution of the
models (Sellwood 2003). For example, we find that
model s37 z10MS has more compact orbits than the
other models, the number of loop orbits is almost
equal to that of the fiducial models, and the number
of bar orbits is approximately 4% fewer than that of
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Fig. 18. Morphological classification for all disk parti-
cles orbits at four time intervals. The left panel shows
the compact type orbits, the middle panel the loop type
orbits, and the right panel the bar type orbits. At the
end of our calculations (5 Gigayears) these three types of
orbits encompassed approximately one-third of the disk
mass (see text).

the fiducial model. The largest model (s37 z10MX)
keeps its compact orbits around 4% along its entire
evolution. This model has 1.5% fewer loop orbits
and 3% fewer bar orbits than the fiducial model af-
ter the second Gigayear. Finally, we can see that
another large model, s37 z10MXS, closely resembles
the fiducial model, with differences in the number of
all type of orbits around 1%.

In general, the compact type orbits increase in
number to encompass up to 5% of the disk mass, the
loop type orbits increase in number to around 10%
of the disk mass, and the bar type orbits increase
in number to encompass around 15%, 13%, 12%
and 16%. for the fiducial, s37 z10MX, s37 z10MS,
and s37 z10MXS models, respectively. Finally, the
three geometrically classified types of orbits, the ones
trapped in the Lagrangian points L3, L4, and L5,
encompass approximately one-third of the disk total
mass for these bar models.

3.3. Toomre Stability Parameter Q

We have already discussed that the thickness of
the disk zd affects the formation of non-axisymmetric
structures. For example, Figure 4 shows that the
models with a very thin disk (e.g. s27 z05D or
s27 z05X) form stronger structures than do models
with thicker disks, demonstrating that the local in-
stabilities of the disk also depend on its thickness.

Fig. 19. The evolution of the Q parameter as a function
of radius for all unbarred models. The Q parameter is
shown at T=0, 2.5, and 5 Gigayears (see text).

It is known that the stability of the disk is mea-
sured by the Toomre parameter Q in the standard
first order perturbation scheme, where the disk is
considered to be very thin and self-gravitating (Bin-
ney & Tremaine 1987; Bertin & Lin 1996). However,
the thickness of the disk is also related to its stabil-
ity (Q), and it is convenient to study Q for different
values of the vertical scale height zd.

The measure of Q as a function of radius at
three different times (0, 2.5, and 5 Gigayears) for un-
barred models is shown in Figure 19, evidencing that
the models with low/high velocity dispersion have
low/high values of Q. Additionality, we note that
the hotter models, in the upper panels, keep Q ap-
proximately constant throughout at time, while the
initially colder models, in the bottom panels, show
an increasing Q. Furthermore, this depends strongly
on the initial disk thickness zd. For example, the in-
crease of Q for model s27 z05D (or s27 z05X) is more
conspicuous than that for model s27 z20D, which has
a thicker disk. Hence, the stability of the disk should
depend on the velocity dispersion in the z compo-
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Fig. 20. Evolution of the Q parameter as a function of
radius for the barred models. The Q parameter for all
barred models has small values at the beginning of the
simulation, but it increases considerably due to the bar
and spirals formation.

nent (σz), the vertical scale height zd, and the mass
of the disk. These results have also been discussed
in Klypin et al. (2009).

We also measured the evolution of Q for barred
models; these results are shown in Figure 20. We
can see in this figure that Q is small at the begin-
ning of the simulation, but that it increases quickly
due to the bar and spiral formation. However, as
the bar reaches its saturation and evolves far from
the linear regime, the increase of Q does not affect
the bar evolution nor the maintenance of the spiral
structures.

Additionally, we remark that the models with
small and large number of particles and the same
initial conditions heat the disk in a similar way (see
Figures 19, and 20). Sellwood & Carlberg (2014)
explained that this behavior is due more to the spi-
ral activity than to two-body relaxation (Fujii et al.
(2011)). It also depends on the softening parameter:
if this is quite small, then the two body-relaxation
could be important in the evolution of the model

(Sellwood 2013), and the disk could quickly heat.
See also (Romeo 1998) for an extensive study on the
softening choice.

4. SUMMARY AND CONCLUSIONS

We performed a series of 3D fully self-consistent
N-body simulations with 1.2 and 8 million parti-
cles. The initial conditions were chosen to follow the
Kuijken-Dubinski models. We ran a grid of models
with different disk radial velocity dispersion σR, disk
scale height zd, number of particles N , and disk mass
MD. We analyzed the growth of spiral structures by
using one and two dimensional Fourier transforms
(FT1D and FT2D). The FT’s give the amplitude,
the number of arms, and the pitch angle of a partic-
ular spiral structure.

The FT1D proved to be a powerful tool to un-
derstand the growth of the spiral structures. The
results of the FT1D show that the spiral structures
emerge in the intermediate portion of the disk, where
initially the Q parameter has its minimal value, and
that these structures grow towards the outer parts
of the disk with more intensity than inwards, due to
the steep increase of Q towards smaller radii.

The plots of the FT2D amplitude as a function
of time and pitch angle showed that the general mor-

phology of our modeled galaxies is due to the super-

position of structures with different values of p, m,

and angular velocity.
We measured the angular velocity of all amplified

patterns, and the results showed that these patterns
are very well confined between the main resonances
given by the Ω ± κ/m curves. Moreover, we found
that different structures with either different or the
same mode m and frequency p, and different pattern
speeds can evolve in the same region of the disk at
the same time. It is important to note that very often
two or three different spiral structures can coexist in
the same region of the disk.

Masset & Tagger (1997) showed a signature
of non-linear coupling between the bar and spiral
waves, or between spiral waves from modes m = 0
to m = 4. Similarly Sellwood (2011) showed that the
bisymmetric spirals were not a single long-lived pat-
tern, but rather the superposition of three or more
waves which can grow and decay with time. We have
shown that not only the spirals can overlap with dif-
ferent modesm, but also with different frequencies p.
Thus, the general morphology of our modeled galax-
ies is due to the superposition of structures with dif-
ferent values for p, and m, i.e., different pitch angles
and number of arms.
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We remark again that the mass ratios MD/MG,
MB/MG, MH/MG, and the initial conditions of
models with small and large number of particles
are equal, but the mass of the particles is different.
Therefore, the evolution of these models is affected
by noise (Sellwood 2003, Weinberg & Katz 2007a,b).
For example, the bar in the model s37 z10M is
formed earlier than in models s37 z10MX, probably
due to our use of the same softening for all models.
The noise increases more in models with fewer par-
ticles than in those with more particles. It is clear
that by adding particles to the models the noise is
reduced, and then the apparition of a bar or spirals is
delayed (Sellwood 2003). However, all models have a
similar behavior during all times, which means that
the general behavior of the models is more affected
by the spiral and/or bar activity than by the noise
(Sellwood 2003).

Finally, we made an orbital analysis in the bar
reference frame for those models where a bar formed.
We proposed a very simple geometrical classifica-
tion for three types of orbits: compacts, along the
bar, and trapped near the Lagrangian points L4 and
L5. Our main outcome was that after the bar for-
mation, the number of compact orbits increases to
reach around 5% of the disk mass; the loop like or-
bits increase to around 10% of the disk mass for all
models; and the number of bar like orbits increases
to attain around of 15%, 13%, 12% and 16% for fidu-
cial, s37 z10MX, s37 z10MS, and s37 z10MXS mod-
els, respectively. Thus, we found that these three

geometrically classified types of orbits, which are the

ones trapped near the Lagrangian points L3, L4, and

L5, encompass approximately one-third of the disk

total mass for the barred models. Furthermore, a

particle can change its orbit morphology during its

evolution.
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Roca-Fàbrega, S., Valenzuela, O., Figueras, F., et al.
2013, MNRAS, 432, 2878

Romeo, A. 1998, A&A, 335, 922

Saha, K. & Elmegreen, B. G. 2016, ApJ, 826, L21

Sellwood, J. A. 2003, ApJ, 587, 638

. 2011, MNRAS, 410, 1637

. 2013, ApJ, 769, L24



©
 C

o
p

y
ri

g
h

t 
2

0
1

7
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

GROWTH OF STRUCTURES IN PURE STELLAR DISKS 273

. 2013, Planets, Stars and Stellar Systems.
Volume 5: Galactic Structure and Stellar Populations,
923

Sellwood, J. A. & Carlberg, R. G. 1984, ApJ, 282, 61
Sellwood, J. A. & Binney, J. J. 2002, MNRAS, 336, 785
Sellwood, J. A. & Carlberg, R. G. 2014, ApJ, 785, 137
Speights, J. C. & Westpfahl, D. J. 2012, ApJ, 752, 52
Tremaine, S. & Weinberg, M. D. 1984, MNRAS, 209, 729

Leonardo Chaves-Velasquez, Ivânio Puerari, and Diego Valencia-Enŕıquez: Instituto Nacional de Astrof́ısica,
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