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ABSTRACT

We consider 28 particle-based simulations aimed at comparing the gravita-
tional collapse of a spherically symmetric, uniform gas core in which two extreme
types of turbulent spectra of velocity have been initially induced, so that ∇ · ~v = 0
(14 simulations) and ∇×~v = 0 (14 simulations). For all the simulations, the ratios
of the kinetic energy and thermal energy to the gravitational energy were fixed at
β=0.21 and α=0.24, respectively. Most of the simulations finish by forming a single
protostar, except for two simulations that form a binary system of protostars. In
order to quantify the differences (or similarities) between the two types of simula-
tions, we calculate some integral properties of the resulting protostars, such as the
mass Mf and the ratios αf and βf .

RESUMEN

Consideramos 28 simulaciones de part́ıculas diseñadas para comparar el co-
lapso gravitacional de un núcleo de gas uniforme y esféricamente simétrico, en el
cual dos tipos extremos de espectros turbulentos de velocidad han sido inicialmente
inducidos, de modo que∇·~v = 0 (14 simulaciones) y∇×~v = 0 (14 simulaciones). En
todas las simulaciones las razones de enerǵıa cinética y enerǵıa térmica con respecto
a la enerǵıa gravitacional se han fijado en β=0.21 y α=0.24, respectivamente. La
mayoŕıa de las simulaciones terminan formando una sola protoestrella, excepto dos
simulaciones, en las se forma un sistema binario de protoestrellas. Con el propósito
de cuantificar las diferencias (o similitudes) entre los dos tipos de simulaciones, cal-
culamos algunas propiedades integrales de las protoestrellas resultantes, tales como
la masa Mf y las razones αf and βf .

Key Words: hydrodynamics — methods: numerical — stars: formation — turbu-
lence

1. INTRODUCTION

Turbulence can provide support to gas cores
against their gravitational collapse. Chandrasekhar
(1951) modeled turbulence support as an additional
pressure term in the equation of state in the clas-
sical Jeans gravitational instability theory, so that
the turbulent velocity dispersion enlarged the Jeans
length. Later, Bonazzola (1987) found that for large
n (n > 3) in the energy spectrum E(K) ≈ K−n,
the small scales can become unstable against grav-
itational instability, while the large scales can be-
come stable; this is just the opposite behavior to
that expected from the classical Jeans theory. Léorat
(1990) performed simulations of gravitational col-

lapse in which a turbulent forcing was injected at
small scales, and found an effective support.

Gas cores are in general embedded in larger gas
structures called gas clouds. If turbulence is also
present at the cloud scale, then the large and in-
termediate scales of turbulence can favor the frag-
mentation of the cloud, while the smaller scales still
provide core support, see Sasao (1973), Elmegreen
(1993) and Ballesteros et al. (1999).

With regard to numerical aspects, turbulence is
usually generated by a random driving force ~f . Ac-
cording to the Helmholtz decomposition theorem,
the vector field ~f can be decomposed into two ex-
treme parts, a divergence-free (or solenoidal) part
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and a curl-free (or compressive) part. Federrath et
al. (2010) presented a very detailed statistical com-
parison of the properties not only of the two types
of turbulence mentioned, but also of a mixed type
of turbulence that includes a desired ratio of both
solenoidal and compressive types. Federrath et al.
(2010) considered driven turbulence, where the forc-
ing term is included in the right hand side of the
Navier–Stokes equations and it is kept during the en-
tire evolution time of typical molecular clouds. Fur-
thermore, Federrath et al. (2010) also studied the
properties and consequences of all these types of
turbulence for star-formation theory, although their
simulations did not include self-gravity.

Observationally, it must be emphasized that
there is evidence suggesting the possibility that tur-
bulence on scales larger than the size of a molec-
ular cloud can significantly affect it; see Brunt et
al. (2009). Besides, some starless dense cores have
been observed, which clearly show inward motions,
so that they are likely to evolve toward the forma-
tion of one or more low-mass stars; see Tafalla et al.
(1998) and Tafalla et al. (2004). However, the inward
motions are complex and do not correspond to a ro-
tating core under collapse, but to a core where tur-
bulence provides support against gravity; see Caselli
et al. (2002). Besides, there are observations sug-
gesting that the mass structure of pre-stellar cores is
strongly centrally condensed, with a nearly uniform
density in their innermost region (ranging from a few
to 103 AU) and the outer region exhibiting a falling
density profile that varies with the radius as r−η,
with η a constant; see Myers (2005) and Bouwman
(2004).

In fact, the pre-stellar core L1544 has been well
observed by Tafalla et al. (2004), and also mod-
eled theoretically by, among others, Whithworth
& Ward-Thompson (2001), who computed analyt-
ically its evolution with the simplifying assumptions
of negligible pressure and rotation. Arreaga et al.
(2009) considered a rotating gas model to study the
effects of the extension of a gas envelope on a col-
lapsing central core that resembles the structure pro-
posed for the L1544 pre-stellar core. They found
that a sufficient rotational energy must be supplied
initially to favor a fragmentation of the core. It was
also modeled numerically by Goodwin et al. (2004a)
and Goodwin et al. (2004b), who considered the col-
lapse and fragmentation of a core whose collapse
was triggered by using only a divergence-free tur-
bulence type. In two related papers, Goodwin et al.
(2006) and Goodwin et al. (2004a) again considered
the influence of low levels of solenoidal turbulence

on the fragmentation and multiplicity of dense star-
forming cores. All these papers suggested that tur-
bulent fragmentation can be a natural and efficient
mechanism for forming binary systems. A step fur-
ther along this direction was achieved by Attwood et
al. (2009), who introduced an energy equation that
provided a more realistic description of the core ther-
modynamics, and compared their results with the
simulations made with the barotropic equations of
state reported by Goodwin et al. (2004a), Goodwin
et al. (2004b), and Goodwin et al. (2006).

Shortly afterwards, Walch et al. (2009) imple-
mented a mixed turbulence velocity spectrum, which
resulted in a ratio of solenoidal to compressive modes
of 2:1; a cubic mesh of 1283 grid elements was then
populated with Fourier modes with wave-numbers
K between Kmin and Kmax, so that the particles ob-
tained a velocity from a linear interpolation within
their corresponding grid element. Walch et al. (2009)
then calculated the collapse of a gas core of radius
R0 under the influence of modes with a peak wave-
length λmax that varied within the range R0/2, R0,
2R0 and 4R0. It must be emphasized that Walch et
al. (2009) observed core fragmentation only for the
models with R0/2 ≤ λmax ≤ 2R0.

In this paper we present a set of self-gravitating
simulations to follow the collapse of a core, in which
the initial density fluctuations come from random
collisions of particles whose velocities have been as-
signed according to a turbulent spectrum. We focus
here only on decaying turbulence (not driven). One-
half of the simulations are of the divergence-free tur-
bulence type, while the rest are of the curl-free tur-
bulence type. We extend the range of λmax, so that
here it goes from 1–4 R0 and 6–10 R0. All the mod-
els are calculated using a Fourier mesh that changes
not only in size, but also in the number of Fourier
modes, so that we consider a mesh of 643 or 1283

grid elements per model.

All the simulations have been calibrated so that
the values of the dimensionless ratios of thermal en-
ergy to gravitational energy, α, and kinetic energy
to gravitational energy, β, maintain values fixed at
0.24 and 0.21, respectively. These dimensionless ra-
tios have been very important in collapse simulations
since two decades ago, because theorists proposed
collapse and fragmentation criteria of rigidly ro-
tating cores by constructing configuration diagrams
in terms of α and β; see for instance Miyama et
al. (1984), Hachisu & Heriguchi (1984), Hachisu &
Heriguchi (1985) and Tsuribe et al. (1999a). From
these diagrams, it has also been possible to study
the formation of of low-mass binary stars. Thus, the
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characterization of our simulations in terms of α and
β will allow a comparison between the collapse of ro-
tating and turbulent cores.

For comparison with the turbulent models of
Goodwin et al. (2004a) and Goodwin et al. (2004b),
as well as with the rotating models of Arreaga et al.
(2009), Arreaga (2016), and Arreaga (2017), we im-
plement in this paper initial conditions to represent
only the central core, so that it resembles the dense
core L1544.

Finally we mention that computer simulations of
turbulence is a very active field of research; see for
instance the review of Padoan et al. (2014), in which
the authors reported recent advances of current sim-
ulations focusing on the connection of the physics of
turbulence with the star formation rate in molecular
clouds.

2. THE PHYSICAL SYSTEM AND THE
COMPUTATIONAL METHOD

2.1. The Core and the Initial Setup of the Particles

We consider the gravitational collapse of a vari-
ant of the so-called “standard isothermal test case”
which was first calculated by Boss & Bodenheimer
(1979) and later calculated by Burkert & Boden-
heimer (1993) and Bate & Burkert (1997).

In this paper, the core radius is R0 = 4.99 ×
1016 cm ≡ 0.016 pc ≡ 3335 AU and its mass is
M0 = 5M⊙. Thus, the average density and the
corresponding free fall time of this core are ρ0 =
1.91×10−17 g cm−3 and tff ≈ 4.8×1011 s≡ 15244 yr,
respectively.

We set Np particles on a rectangular mesh of side
length 2 R0 (the core diameter), to represent the
initial core configuration. We then partition the sim-
ulation volume into small elements, each with a side
length given by ∆x = ∆y = ∆z = R0 /Nxyz where
Nxyz is an integer given by 133, so that there are
1333 grid elements in the entire volume; at the cen-
ter of each small grid we place a particle, which is
next displaced from its initial location a distance of
the order ∆x/4.0 in a random spatial direction. The
boundary conditions applied to the simulation box,
both in the initial setup and during the time evo-
lution are named vacuum boundary conditions ( so
that we have a constant volume with non-periodic
boundary conditions).

It should be noted that we here consider only
a uniform density core, so that its average den-
sity is given by ρ0 or a number density of n0 =
9.5106 particles/cm3. This is a very dense core,
whose density is 10 times higher than that of the
“standard isothermal test case.”

Thus, for all the simulations, the particles have
the same mass, according to mi = ρ0 × ∆x∆y∆z
with i=1,...,Np, where Np=996 040. Then the mass
is given by mp=5.0 × 10−6 M⊙.

2.2. Evolution Code

The gravitational collapse of our models has
been followed by using the fully parallelized particle-
based code Gadget2; see Springel (2005) and also
Springel et al. (2001). Gadget2 is based on the
tree − PM method for computing the gravitational
forces and on the standard smoothed particle hy-
drodynamics (SPH) method for solving the Euler
equations of hydrodynamics. Gadget2 implements
a Monaghan–Balsara form for the artificial viscosity;
see Monaghan & Gingold (1983) and Balsara (1995).
The strength of the viscosity is regulated by the pa-
rameter αν = 0.75 and βν = 1

2
×αv; see equations 11

and 14 in Springel (2005). In our simulations we
fixed the Courant factor to be 0.1.

2.3. Resolution and Thermodynamics

Considerations

Following Truelove et al. (1997) and Bate &
Burkert (1997), in order to avoid artificial fragmen-
tation, any code for collapse calculation must have
a minimum resolution given in terms of the Jeans
wavelength λJ:

λJ =

√

π c2

Gρ
, (1)

where c is the instantaneous speed of sound and ρ is
the local density. To obtain a more useful form for
a particle based code, the Jeans wavelength λJ can
be transformed into a Jeans mass, given by

MJ ≡
4

3
π ρ

(

λJ

2

)3

=
π

5
2

6

c3
√

G3 ρ
. (2)

The values of the density and speed of sound must
be updated according to the following equation of
state:

p = c0
2 ρ

[

1 +

(

ρ

ρcrit

)γ−1
]

, (3)

which was proposed by Boss et al. (2000), where
γ ≡ 5/3, and for the critical density we assume the
value ρcrit = 5.0× 10−14 gr cm−3.

The smallest mass particle that a SPH calcu-
lation must resolve in order to be reliable is ex-
pressed in terms of the particle mass, mr, given by
mr ≈ MJ/(2Nneigh), where Nneigh is the number of
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neighboring particles included in the SPH kernel; see
Bate & Burkert (1997). Hence, a simulation satisfy-
ing all these requirements must satisfy

mp

mr
< 1.

Thus, for the turbulent core under consid-
eration we have Mj ≈ 1.1 × 10−3 M⊙ and
mr ≈ 1.4× 10−5 M⊙, since we took Nneigh = 40.
The ratio of masses is given by mp/mr=0.33 and
then the desired resolution is achieved in our simu-
lations.

2.4. The Turbulent Velocity of the Particles

To generate the turbulent velocity spectrum, we
set up a second mesh, in which the partition is de-
termined by the values of Nx, Ny and Nz, which
will initially be given by 64 and later on they will
be increased to 128, so that the total number of grid
elements will change from 643 to 1283. It should be
noted that the velocity vector of a particle changes
with the number of modes.

Let us denote the side length of this second mesh
by L0, so that it is proportional to the core radius
R0

L0 = CR ×R0 , (4)

where CR is a constant, the value of which will also
determine the collapse model under consideration,
see Table 1.

Thus, the size of each grid element is given
by δx = L0/Nx, δy = L0/Ny and δz = L0/Nz.
In Fourier space the partition is given by δKx =
1.0/ (Nx × δx) , δKy = 1.0/ (Ny × δy) and δKz =
1.0/ (Nz × δz).

Each Fourier mode has the components Kx =
iKx

δKx, Ky = iKy
δKy and Kz = iKz

δKz,
where the indices iKx

, iKy
and iKz

take values in
[−Nx/2, Nx/2], [−Ny/2, Ny/2] and [−Nz/2, Nz/2],
respectively. The magnitude of the wave number is

K =
√

K2
x +K2

y +K2
z . Then Kmax is proportional

to
√
3Nx

2L0
. A Fourier mode can equally be described

by a wavelength λ = 2π/K. Then we see that

λmax ≈ L0; λmin ≈ δx . (5)

We will consider two types of turbulence, so that
we will be able to compare how the nature of the
initial turbulent spectrum affects the core collapse.
The initial power of the velocity field will be given
by:

P ( ~K) =

〈

∣

∣

∣
~v( ~K)

∣

∣

∣

2
〉

≈
∣

∣

∣

~K
∣

∣

∣

−n

, (6)

where the spectral index n is a constant.

Let us first consider the Fourier transform F of
the velocity field, so that ~v(~r) = F [~v( ~K)] or explic-
itly:

~v(~r) =

∫

~v( ~K) exp
(

i ~K · ~r
)

d3K. (7)

It can then be shown that the velocity ~v( ~K) can be
written as:

~v( ~K) = −i ~KΦ( ~K) + i ~K × ~A( ~K) , (8)

where the scalar and vector potential functions are
given by:

Φ( ~K) = −i ~K · ~v( ~K) ,

~A( ~K) = i ~K × ~v( ~K) ,
(9)

so that their Fourier transforms are Φ(~r) = F [Φ( ~K)]

and ~A(~r) = F [ ~A( ~K)], respectively. According to the
Helmholtz decomposition theorem, the velocity field
in physical space will then be determined in general
by:

~v(~r) = −∇Φ(~r) +∇× ~A(~r) . (10)

2.4.1. Divergence-free Turbulence

Let us consider the case Φ( ~K) ≡ 0, which im-

plies that ~K · ~v( ~K) = 0. The velocity field can then

be written in terms of a vector potential ~A alone.
According to equation 10, ∇ · ~v(~r) = 0; this is the
divergence free turbulence spectrum, whose Fourier
transform can be approximated by the following dis-
crete summation:

~v(~r) ≈ Σ i ~K × ~A( ~K) exp
(

i ~K · ~r
)

. (11)

In order to have the power described in equa-
tion 6, we choose the vector potential ~A( ~K) given
by:

~A( ~K) =
∣

∣

∣

~K
∣

∣

∣

−n+2

2 ~CK exp (iΦK) , (12)

where ~C is a vector whose components are de-
noted by

(

CKx
, CKy

, CKz

)

, and take values obey-
ing a Rayleigh distribution. Hence, the magni-
tude of ~C is calculated by means of the formula
C = σ ×

√

−2.0× log (1.0− u), where u is a ran-
dom number in the interval (0, 1) and σ = 1.0 is
a fixed parameter. There must be one phase ΦK

for each component of the vector ~C, so that each of
(

ΦKx
,ΦKy

,ΦKz

)

takes random values in the interval
[0, 2π].
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TABLE 1

TURBULENT MODELS AND THEIR RESULTING CONFIGURATIONS

Model CR Nx = Ny = Nz Mmax vmax [km/s] Figure Turbulence Type Configuration

1 1 64 4.5 8.1 4 D-F S

2 2 64 4.48 7.8 5 D-F S

3 3 64 4.49 7.2 6 D-F S

4 4 64 4.48 6.3 7 D-F S

5 1 128 5.09 7.9 8 D-F S

6 2 128 4.84 7.1 9 D-F S

7 3 128 4.78 6.8 10 D-F S

8 4 128 4.6 5.9 11 D-F S

9 6 64 3.5 5.7 12 D-F S

10 8 64 3.5 7.0 13 D-F S

11 10 64 3.25 7.0 14 D-F S

12 6 128 3.9 11.1 15 D-F S

13 8 128 3.97 10.9 16 D-F S

14 10 128 4.04 9.7 17 D-F B

15 1 64 5.09 8.6 18 C-F S

16 2 64 4.19 9.5 19 C-F S

17 3 64 3.99 7.4 20 C-F S

18 4 64 3.82 6.6 21 C-F S

19 1 128 4.73 9.5 22 C-F S

20 2 128 4.9 9.2 23 C-F S

21 3 128 5.02 10.5 24 C-F S

22 4 128 4.3 5.7 25 C-F S

23 6 64 3.5 6.6 26 C-F S

24 8 64 3.0 7.4 27 C-F S

25 10 64 2.7 6.4 28 C-F S

26 6 128 4.11 5.9 29 C-F S

27 8 128 4.03 7.1 30 C-F B

28 10 128 3.43 6.0 31 C-F S

≈ Σ
N/2
−N/2

∣

∣

∣

~K
∣

∣

∣

−n−2

2

×



































[

Kz CKy
sin

(

~K · ~r +ΦKy

)

−Ky CKz
sin

(

~K · ~r +ΦKz

)]

for vx ,

[

−Kx CKz
sin

(

~K · ~r +ΦKz

)

+Kz CKx
sin

(

~K · ~r +ΦKx

)]

for vy ,

[

−Kx CKy
sin

(

~K · ~r +ΦKy

)

+Ky CKx
sin

(

~K · ~r +ΦKx

)]

for vz . (13)

Thus, following Dobbs et al. (2005), the compo-
nents of the particle velocity are given by the above
equation 13.

2.4.2. Curl-free Turbulence

On the other hand, let us consider the case in
which ~A( ~K) = 0, so that ~K × ~v( ~K) = 0. According
to equation 10, this velocity field satisfies ∇× ~v = 0

and for this reason we call it the curl-free turbulence
spectrum.

In order to have the power spectrum shown in
equation 6, we choose the scalar potential function
given by:

Φ( ~K) =
∣

∣

∣

~K
∣

∣

∣

−n+2

2

exp (iΦK) , (14)

where there is now only one wave phase random func-
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tion ΦK that takes random values in the interval
[0, 2π]. Therefore, the velocity field will be deter-
mined by:

~v(~r)≈Σ
Nx/2,Ny/2,Nz/2

−Nx/2,−Ny/2,−Nz/2

∣

∣

∣

~K
∣

∣

∣

−n−2

2 ~K sin
(

~K · ~r+ΦK

)

,

(15)
where the spectral index n will be fixed in our simula-
tions to be n = −1 and thus we will have v2 ≈ K−3;
see Arreaga & Klapp (2014).

In the two types of turbulence spectra, the SPH
particles have initially a Gaussian distribution of ve-
locity. Subsequently, by using all the simulation par-
ticles, we obtain that the average Mach number is,
remarkably, almost the same for all our simulations,
M=1.5. The velocity dispersion is also very simi-
lar for the two types of spectrum: σv= 0.21 km/s.
Following the definitions of skewness (or third mo-
ment) and kurtosis (or fourth moment) of a given
distribution, see Press et al. (1992), we observe dif-
ferences in the values of the skewness and kurtosis of
the velocity distribution spectra: 0.4 and 0.003 for
the divergence-free type and 0.38 and 0.03 for the
curl-free type, respectively.

2.5. Initial Energies

It is well known that the global dynamical evo-
lution of the core is determined by the ratio of the
thermal energy to the gravitational energy, denoted
by α and the ratio of the kinetic energy to the grav-
itational energy, denoted by β; see, for instance,
Miyama et al. (1984), Hachisu & Heriguchi (1984)
and Hachisu & Heriguchi (1985), who obtained a cri-
terion of the type αβ < 0.2 to predict the collapse
and fragmentation of a rotating isothermal core.

The gravitational and kinetic energies can be ap-
proximated in terms of the physical parameters of
the core considered in this paper:

Egrav ≈ − 3
5

GM2
0

R0
,

Ekin ≈ 1
2
M0〈V 〉2 , (16)

where G is Newton’s universal gravitation constant,
M0 is the mass, R0 is the radius, and 〈V 〉 the average
velocity. The thermal energy Etherm (kinetic plus
potential interaction terms of the molecules) can be
approximated by:

Ether ≈
3

2
N kB T =

3

2
M0 c

2
0 , (17)

where N is the total number of molecules in the gas,
kB is the Boltzmann constant, and T is the temper-
ature of the core.

These energies can be calculated in terms of the
SPH particles as follows:

Ether = 3
2

∑

i mi
pi

ρi

Ekin = 1
2

∑

i miv
2
i ,

Egrav = 1
2

∑

i miΦi (18)

where pi is the pressure and Φi are the values of the
pressure and gravitational potential at the location
of particle i, with velocity given by vi and mass mi;
the summations include all the simulation particles.

Now, the values of the speed of sound c0 and the
level of turbulence, which is adjusted by multiplying
the velocity vector by an appropriate constant, are
chosen so that the velocity field fulfills the following
energy requirements:

α ≡ Ether

|Egrav| = 0.24 ,

β ≡ Ekin

|Egrav| = 0.21 , (19)

where the energies entering in these ratios have been
calculated using the relations of equation 18.

The virial theorem states that if a cloud is in
thermodynamical equilibrium, then the dimension-
less energy ratios satisfy the following relation:

α+ β =
1

2
, (20)

which will be used in a plot of the next section. It
should be noted that we do not include a turbulence
term, γturb, as all the turbulent energy has already
entered in the kinetic ratio, β.

In order to compare our simulations with other
papers, we consider Equation 1 of Walch et al.
(2009), in which the turbulent energy of a core is
approximated by the sum of two terms: the first
one contains the FWHM velocity width reported by
André (2007) for the diazenylium molecule N2H

+,
and the second one depends on the thermal energy
kB T .

As we mentioned at the end of § 2.4, our simu-
lations have an average Mach number of 1.5, so by
using our value of c0=35 820 cm/s, we get that the
average velocity 〈v〉 = 0.53 km/s. However, an esti-
mate of the velocity dispersion used in observations,
denoted here by σe

v, can be obtained from the em-
pirical relation Ekin = M0 (σ

e
v)

2/2, and using equa-
tion 16 and the second relation of equation 19, we

obtain σe
v =

√

β6GM0

5R0
=0.57 km/s, which is of the

same order as 〈v〉, as expected. By using a mass of
29 uma for the diazenylium molecule and the value
of σe

v in equation 1 of Walch et al. (2009), we obtain
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for our simulations a ratio of the turbulent energy to
the gravitational energy of γturb = 0.11. In the sim-
ulations reported by Walch et al. (2009), the ratio
γturb = 0.010 was used.

2.6. The Models

The models considered in this paper are summa-
rized in Table 1, whose entries are as follows. Col-
umn 1 shows the model number; Column 2 shows
the value of the size constant CR as defined in equa-
tion 4; Column 3 shows the partition used in the
Fourier mesh, so that the total number of grid ele-
ments of the cubic mesh is the cube of that number;
we mentioned in § 2.5 that the average Mach num-
ber of the simulations are very similar; however, less
than 1 percent of the simulation particles can at-
tain very high velocities: Column 4 shows the peak
Mach number of the simulations at the initial time
(the snapshot zero); Column 5 gives the peak veloc-
ity found in the collapsed region where the resulting
protostar is formed; Column 6 shows the number of
the figure in which the model configuration is shown;
Column 7 shows the type of turbulence used to gen-
erate the initial velocity spectrum where the label
D-F means divergence-free and C-F means curl-free;
Column 8 shows the resulting configuration, where
the label S means a single protostar and B means a
binary system of protostars.

In order to further characterize our models,
we calculate the total angular momentum of each
model by using all the simulation particles, so that
~L =

∑Np

i=1 ~r × ~p, with the linear momentum ~p given
by ~p = mp ~v, where mp is the mass of the particle
and ~v its velocity; see § 2.1. Figure 1 shows the
specific angular momentum L/M0 (the total angular

momentum |~L| of the initial distribution of particles
divided by the core mass) against the model num-
ber. By looking at Figure 1, one can see that (i),
when the Fourier mesh size increases in terms of the
core diameter, so does the |~L|; and (ii), when the
number of Fourier modes increases from 643 to 1283,
|~L| decreases. The three horizontal lines in Figure 1
indicate the observed values for real cores with radii
varying within 1-5 × 1017 cm; see Goodman et al.
(1993); Bodenheimer (1995). In fact, the observed
values of L/M0 are higher than those of our models.
The two vertical lines in Figure 1 indicate the models
where we will observe binary formation; see § 3.

3. RESULTS

We first note that all the models considered in
this paper show a clear tendency to collapse within a
free fall time tff (defined in § 2.1) or a little after; see

 18
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 20

 20.5

 21

 21.5

 22

 0  5  10  15  20  25

lo
g 1

0 
( 

L/
M

0 
[ c

m
2 /s

 ])

model

our models
observed

Fig. 1. The initial specific angular momentum L/M0

against the model number. The horizontal lines indicate
the observed values of L/M0 for real cores; see Goodman
et al. (1993); Bodenheimer (1995).

Figures 2 and 3. This is to be expected because the
values chosen for the initial energies in equation 19
favor a core collapse.

We observe many different transient effects in the
first stage of the dynamical evolution of the models.
In spite of this, the outcome of most of the models
is a single protostar. But two models form a binary
protostar system. In order to illustrate the results,
the outcome of each model is shown in a mosaic com-
posed of three panels.

The first two panels are iso-density plots con-
structed using a small set of particles (around ten
thousand) located within a slice parallel to the equa-
torial plane of the spherical core. In order to com-
pare the models, these panels are all taken at the
same snapshot times: 0.06 tff and 0.67 tff . A bar lo-
cated at the bottom of these panels shows the range
of values for the log of the density ρ(t) at time t
normalized to the average initial density (that is
log10(

ρ
ρ0
), where ρ0 was defined in § 2.1 ) and the

color allocation set by the program pvwave version 8.

The third panel is also an iso-density plot, but in
this case all the particles are used in order to make
a 3D rendered image ( not only a slice ) taken at
the last snapshot available for each selected simu-
lation, so there is a variation in the snapshot time,
within 1.0–1.3 tff , depending on the model. A com-
parison of these final outcome configurations is pos-
sible at slightly different output times because the
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Fig. 2. Time evolution of the peak density ρmax of the divergence-free turbulence models.

configurations have already entered (or are about
to enter) a stable stage. The bar is also located
at the bottom of these panels, but now the val-
ues are the log of the column density ρ(t), cal-
culated in code units by the program splash ver-
sion 2.7.0. The density unit is given by uden=1.6
×10−17, so that the average density in code units is
ρ0/uden=1.19. The color bar shows values typically
in the range 0-6, so that the peak column density is
106 × uden = 1.6× 10−11 g cm−3.

It must be mentioned that the vertical and hor-
izontal axes of all the panels indicate the length in
terms of the radius R0 of the sphere (approximately
3335 AU). So, the Cartesian axes X and Y vary ini-
tially from -1 to 1. In order to facilitate a comparison
of the resulting last configurations, we use the same
length scale of 0.2 per side (approximately 667 AU)
in the third panels.

3.1. Models 1–4

By looking at the left and middle panels of Fig-
ures 4, 5, 6, and 7, which correspond to models 1, 2,
3, and 4, we note that as the wavelength of the initial
perturbation increases, so do the sizes of the initial
over-density clumps, and the number of clumps that
form across the core decreases.

Due to the loss of homogeneity in the initial dis-
tribution of the over-dense clumps, the protostar in
formation accretes mass from the surroundings in
an anisotropic manner; as a consequence, the proto-
star moves slightly from the center, in the south and
southwest directions, as can be seen in the right pan-
els of Figures 6 and 7, which correspond to models
3 and 4.

Figure 2 shows that for models 1–4, the larger the
initial perturbation size, the earlier the local peak
in the density curve occurs. Besides, we note that
the peak velocity in the collapsing region decreases
as the size of the initial perturbation increases; see
Column 5 of Table 1.
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Fig. 3. Time evolution of the peak density ρmax of the curl-free turbulence models.
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Fig. 4. Iso-density plots for model 1. The color figure can be viewed online.

3.2. Models 5–8

Here we re-calculate models 1–4, keeping all their
parameters unchanged except for the number of grid
elements of the Fourier mesh; see Column 3 of Ta-
ble 1. We first note that the number of small over-

density clumps formed at the initial snapshots in-
creases, but they are still homogeneously distributed
across the core volume; see the left panels of Fig-
ures 8 and 9 and compare them with those of models
2–3.
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Fig. 5. Iso-density plots for model 2. The color figure can be viewed online.
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Fig. 6. Iso-density plots for model 3. The color figure can be viewed online.
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Fig. 7. Iso-density plots for model 4. The color figure can be viewed online.
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Fig. 8. Iso-density plots for model 5. The color figure can be viewed online.
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Fig. 9. Iso-density plots for model 6. The color figure can be viewed online.

The loss of homogeneity in the initial distribution
of over-density clumps is noticeable in model 7, as
can be seen in Figure 10. A significant reduction
in the number of the initial over-density clumps can
also be seen in the initial snapshot of model 8; see the
left panel of Figure 10. However, by comparing this
panel with that of model 4, shown in Figure 7, we
see that there are slightly more over-density clumps
than those formed in model 4.

3.3. Models 9–11

In these models, the wavelength of the initial per-
turbation far exceeds the core radius; see Column 2
of Table 1. It can be seen in the left panel of Fig-
ure 12 that only two over-density clumps are clearly
visible in the equatorial slice of model 9. These per-
turbations are coupled to deform the central core
simultaneously in two orthogonal directions, see the
panel in the middle of Figure 12. By looking at the

right panel of Figure 12, we see the appearance of
small spiral arms around the protostar, indicating
that the protostar has gained a net angular momen-
tum as a consequence of the small number of coupled
perturbations that acted upon it initially. For model
10, we see that only one over-density is visible at the
initial snapshot shown in the left panel of Figure 13.
For this reason, the still forming protostar can be
seen to be highly deformed, mainly along a single di-
rection; see the left and middle panels of Figure 13.
Thus, the right panel of Figure 13 shows that the
still forming protostar drags a long tail of gas along
this single direction. The same behavior is mainly
observed for model 11; see Figure 14.

3.4. Models 12–14

For these models we use more Fourier modes to
re-calculate the models of § 3.3. Let us examine
model 12 shown in Figure 15 and compare it with
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Fig. 10. Iso-density plots for model 7. The color figure can be viewed online.

model 9 shown in Figure 12. We first note that there
is only one perturbation mode visible in the left panel
of Figure 15; despite this, there are a few dominant
directions along which the initial over-density grows;
see the middle panel of Figure 15. The velocity of
the collapsing peak is significantly greater in model
12 than that observed in model 9; see Column 5 of
Table 1. Because of this, it is very likely that the
protostar formed in model 12 has gained a net an-
gular momentum larger than that of the protostar
of model 9, as is suggested by looking at the right
panel of Figure 15.

The size of the initial over-density clump induced
by the perturbation mode of model 13 looks smaller
than that induced in model 10; compare Figure 16
with Figure 13.

In model 14 we observe the occurrence of frag-
mentation of the central core region, so that a binary
protostar system is formed.

3.5. Models 15–18

We consider now the set of models generated with
the curl-free turbulence spectrum. In the left panel
of Figure 18, we see that the number of over-density
clumps formed initially in model 15 is smaller than
the number observed in model 1, shown in the left
panel of Figure 4. The clumps seen in Figure 18
are also in fact larger that those seen in Figure 4.
Despite this, we still see that the curl-free turbu-
lence spectrum creates a homogeneous distribution
of over-density clumps. At time 0.67tff , when the
strong collapse is yet to begin, the spherical sym-
metry of the collapsing core is already visible in the
middle panel of Figure 18. For this reason, we see
that the resulting protostar accretes gas from the re-

maining core almost isotropically; see the right panel
of Figure 18.

When the size of the Fourier mesh begins to in-
crease in terms of the core radius, which is shown
in models 16–18, the initial over-density clumps are
formed thicker and their number is smaller than
those seen in model 15; see the left panels of Fig-
ures 19, 20 and 21. As a consequence, the homogene-
ity and isotropy of the over-density clump distribu-
tion is slightly lessened, and then some clumps grow
forming large filaments, as can be observed in the
right panels of Figures 20 and 21. All these models
finish with a single protostar formed in the collapsed
central region.

By comparing the left panels of Figures 19, 20
and 21, corresponding to models 16–18, with those of
models 2–4, shown in Figures 5, 6 and 7, we conclude
that when the Fourier mesh begins to increase, the
models generated with a divergence-free turbulence
lose the homogeneity and isotropy of the initial over-
density clump distribution earlier than those models
generated with a curl-free turbulence.

3.6. Models 19–22

When the number of Fourier modes increases,
then the number of over-density clumps induced ini-
tially also increases, so that an homogeneous distri-
bution of small length over-density clumps is formed;
see the left panel of Figure 22 and compare it with
the left panel of Figure 18. When the size of the
Fourier mesh increases, which is the case of models
20–22, then we observe the formation of a smaller
number of over-density clumps; see the left panels
Figures 23 and 24 and compare them with those of
Figures 19 and 20. However, for model 22, the length
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Fig. 11. Iso-density plots for model 8. The color figure can be viewed online.
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Fig. 12. Iso-density plots for model 9. The color figure can be viewed online.
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Fig. 13. Iso-density plots for model 10. The color figure can be viewed online.
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Fig. 14. Iso-density plots for model 11. The color figure can be viewed online.
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Fig. 15. Iso-density plots for model 12. The color figure can be viewed online.
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Fig. 16. Iso-density plots for model 13. The color figure can be viewed online.
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Fig. 17. Iso-density plots for model 14. The color figure can be viewed online.
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Fig. 18. Iso-density plots for model 15. The color figure can be viewed online.
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Fig. 19. Iso-density plots for model 16. The color figure can be viewed online.
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Fig. 20. Iso-density plots for model 17. The color figure can be viewed online.
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Fig. 21. Iso-density plots for model 18. The color figure can be viewed online.
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Fig. 22. Iso-density plots for model 19. The color figure can be viewed online.
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Fig. 23. Iso-density plots for model 20. The color figure can be viewed online.
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Fig. 24. Iso-density plots for model 21. The color figure can be viewed online.
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Fig. 25. Iso-density plots for model 22. The color figure can be viewed online.
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Fig. 26. Iso-density plots for model 23. The color figure can be viewed online.
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Fig. 27. Iso-density plots for model 24. The color figure can be viewed online.
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Fig. 28. Iso-density plots for model 25. The color figure can be viewed online.
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Fig. 29. Iso-density and plots for model 26. The color figure can be viewed online.
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Fig. 30. Iso-density plots for model 27. The color figure can be viewed online.
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Fig. 31. Iso-density plots for model 28. The color figure can be viewed online.
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of the over-density clumps begins also to increase; see
the left panel of Figure 25 and compare it with that
of Figure 21 of model 18.

We thus conclude that with a larger number of
modes, the loss of the homogeneity and isotropy of
the initial over-density clump distribution is more
delayed; see the left panels of Figures 23, 24, and 25.

We do not see any significant difference between
the initial panels of models 19–20 shown in Fig-
ures 22–23 and those of models 5–6 shown in Fig-
ures 8–9, so that the two types of turbulence spectra
are almost indistinguishable. However, by compar-
ing the initial over-density distribution of clumps for
models 21 and 22, shown in Figures 24 and 25, with
those of models 7 and 8, shown in Figures 10 and 11,
we see that the over-density clumps are in general
larger for the divergence-free turbulence type than
those generated with the curl-free turbulence type.

3.7. Models 23–25

When the size of the perturbation mode increases
further, as for models 23–25, then it is evident that
there are only two main directions along which the
initial over-density clump distributions grow: see the
left panels of Figure 26, 27 and 28. For this reason,
the deformation in the core shape is very significant;
see the right panels of Figure 26, 27 and 28. Despite
this, the final outcome of these models is still a single
protostar, which is displaced away from the central
region, as a consequence of the highly anisotropic
accretion of gas.

By comparing the initial clump distributions of
models 23–25 with those of models 9–11, shown in
Figures 12, 13 and 14, we note that the over-density
grows in orthogonal directions for these two sets of
models. This is expected according to equations 11
and 15, as the velocities are orthogonal vectors.

3.8. Models 26–28

When the number of Fourier modes increases, as
in models 26–27, which are shown in Figures 29, 30
and 31, in a set of models with a large number of
modes, as in models 23–25 shown in Figures 26, 27
and 28, then we observe that the core is more de-
formed, so that even core disruption can be achieved,
as was the case with model 27, in which a binary pro-
tostars system is formed.

The same behavior was observed in models 12–
14, shown in Figures 15, 16 and 17, in which we
see again the orthogonal directions of the growth of
the over-density clumps when compared with those
observed in models 26–28.

3.9. Integral properties

We present here some integral properties of the
resulting protostars, such as the mass and the values
of the energy ratios αf and βf . These properties are
calculated by using a subset of the simulation parti-
cles, which is determined by means of the following
procedure. We first locate the highest density parti-
cle in the collapsed central region of the last available
snapshot for each model; this particle will be the cen-
ter of the protostar. We then find all the particles
which (i) have density above some minimum value,
given by log10 (ρmin/ρ0) = 1.0 for all the turbulent
models; (ii) are also located within a given maximum
radius rmax from the protostar’s center.

All the calculated integral properties are reported
in Table 2, whose entries are as follows. The first col-
umn shows the number of the model; the second col-
umn shows the parameter rmax in terms of the initial
core radius R0; the third column shows the mass of
the protostar given in terms of M⊙; the fourth and
fifth columns give the values of αf and βf , respec-
tively.

There are two lines in Table 2 for models 14 and
27, as their outcomes are binary protostar systems,
so that each line indicates the properties of each com-
ponent of the binary protostar. For these resulting
binary systems, we simply define the binary separa-
tion as the distance between the centers associated
with each protostar. We find the the separation is
163 AU for each binary system.

We find that the average mass of the protostars
for models 1–13, excluding model 14, whose outcome
is a binary system, is 0.94 M⊙, with a standard devi-
ation of 0.47M⊙. Analogously, the protostar average
mass for models 15–26 and 28, excluding the mass
of the binary of model 27, is 0.67 M⊙, with a stan-
dard deviation of 0.34 M⊙. It must be emphasized
that these mass relations do not change much if we
include the mass of the protostars in the binaries.

In Figure 32 we show the mass of the protostars in
terms of the simulation model number. It seems that
there is nothing that allows us to clearly distinguish
the turbulent spectrum used initially; neither is there
any trend to assess the effect that the increase in the
number of Fourier modes can have on the resulting
protostar mass; see also Table 2. However, there
seems to be a tendency to low protostar masses for
higher model numbers in both turbulence spectra. If
this is true, then it would imply that the larger the
perturbation mode, the lower the protostar mass.

In Figure 33 we show that most protostars are
near or on their way towards virialization, as they
are close to the virial line; see § 2.5.It should be no-
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TABLE 2

PHYSICAL PROPERTIES OF PROTOSTARS

Model rmax/R0 Mf/M⊙ |αf | |βf |

1 0.008 0.75 0.36 0.10

2 0.01 1.1 0.21 0.25

3 0.017 1.09 0.19 0.26

4 0.01 0.88 0.19 0.24

5 0.005 1.7 0.35 0.21

6 0.005 0.57 0.39 0.082

7 0.008 0.67 0.27 0.26

8 0.01 0.65 0.23 0.24

9 0.007 0.43 0.31 0.079

10 0.008 0.6 0.28 0.12

11 0.007 0.58 0.31 0.12

12 0.013 2.0 0.22 0.27

13 0.004 1.2 0.38 0.1

14 0.0095 1.2 0.24 0.22

14 0.005 0.29 0.29 0.431

15 0.005 0.83 0.42 0.06

16 0.005 1.0 0.46 0.02

17 0.01 0.84 0.27 0.18

18 0.007 0.6 0.35 0.1

19 0.004 0.84 0.46 0.02

20 0.005 0.89 0.43 0.05

21 0.005 1.2 0.45 0.03

22 0.0095 0.54 0.28 0.16

23 0.016 0.94 0.2 0.26

24 0.0095 0.79 0.27 0.19

25 0.01 0.008 0.07 0.292

26 0.0095 0.2 0.32 0.12

27 0.008 0.5 0.3 0.12

27 0.007 0.17 0.23 0.383

28 0.015 0.005 0.10 0.39

ticed that this tendency of collapsing cores to evolve
toward the virial line was first pointed out by Boss
(1980) and Boss (1981). We also see that higher
values of αf and βf are obtained for the curl-free
turbulence type.

4. DISCUSSION

A large degree of similarity of the core collapses
is already noticeable by comparing Figures 2 and
3. In these figures, there is a local density peak in
the early evolution stage, which is a consequence of
the collisions of particles whose velocities have been
assigned randomly by means of a turbulent spectrum

 0
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M
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Fig. 32. Proto-stellar mass in terms of the simulation
model number.
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Fig. 33. Dimensionless energy ratios of the resulting pro-
tostars.

with a given number of Fourier modes in a Fourier
mesh of a given size. By looking at the third panel
of each of these figures, we note that the 643 modes
used in models 9–11 of the divergence-free turbulent
type and models 23–25 of the curl-free turbulent type
are equally insufficient to capture these local density
peaks.

The fact that these local peaks are of the same
order irrespective of the turbulence type indicates
that the initial density fluctuations are also of the
same order. Despite this, we find that the average
protostar mass of the divergence-free turbulent mod-
els is larger than of the curl-free turbulent models;
see § 3.9.

With regard to the peak velocity of the collapsing
core’s central region, we find a significant similarity
between the two turbulence types: the average col-
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lapsing velocity is 7.75 km/s for the divergence-free
type and 7.6 km/s for the curl-free type. However,
the interval of velocities of the former type of turbu-
lence is in general wider than that of the latter type
of turbulence.

Another very important issue to discuss is the
low level of fragmentation observed in the suite of
turbulent models. A first consideration is that we
do not use the sink technique introduced by Bate
et al. (1995), so that the simulations presented here
do not evolve further in time than tff . If we were
able to follow the simulations longer, we would pos-
sibly see the fragmentation of the spiral arms seen
surrounding some protostars or the fragmentation
of the highly deformed over-density clumps seen in
models with a large number of perturbation modes.

A second consideration was already mentioned
in § 2.1, that the core considered in this paper was
very dense and with a significant thermal support;
see also § 2.5. For these two reasons, we expect that
the turbulence spectra induced initially would find it
more difficult to compress the gas randomly across
the core. The density of the core in our simulations
is ten times larger than the central core considered
by Goodwin et al. (2004a), Goodwin et al. (2004b),
Goodwin et al. (2006); see also Attwood et al. (2009).
We suppose that fragmentation can be prevented in
a central core of higher density.

A third consideration is the stochastic nature of
the turbulent spectra. In this paper we fixed the seed
to generate random numbers, so that all the simula-
tions ran using the same seed. In other papers, it has
been shown that different random realizations of the
same simulation can have significant differences in
their outcomes; see for instance Walch et al. (2009),
who used four random seeds in their simulations.

A fourth consideration is that the turbulent ve-
locity fluctuations considered in this paper provide
the core with a net angular momentum; see § 2.6 and
Figure 1. We calculated the specific angular momen-
tum with respect to the origin of coordinates (shown
in Figure 1 ) and with respect to each of the X, Y
and Z axes, as well. We did not observe any signifi-
cant difference in these angular momentum calcula-
tions, but only small changes due to random velocity
fluctuations in a frame with spherical symmetry.

Let us now mention that for rotating cores, β,
defined in § 2.5, would correspond to the ratio of ro-
tational energy to gravitational energy, and a value
of 0.21 (see equation 19) can be considered high
with respect to observational values, because their
specific angular momentum varies within a range
1×1020−2×1022; see Goodman et al. (1993); Boden-

heimer (1995). For this reason, fragmentation can be
easily obtained from the collapse of this kind of ro-
tating cores; see Arreaga and Saucedo (2012) and
Arreaga (2016). As we mentioned in § 2.6, the level
of angular momentum initially given to our models
is low compared to typical values of rotating cores
and this is the key to understand why we observed
only two models with binary formation.

The protostar masses in the divergence-free tur-
bulence models are in the range 0.29–2 M⊙ while
for the curl-free models the masses vary within
0.2 − 1.2M⊙. These masses are in any case much
larger than those obtained from the collapse of a ro-
tating uniform core of similar total mass and ini-
tial energy ratios; see for instance Arreaga (2016)
and Arreaga (2017), where the masses generally ob-
tained by numerical simulations of binary formation
are around 0.01M⊙. Goodwin et al. (2004a) ob-
tained a wide distribution of protostar masses, with
a peak around 1 M⊙. Large masses, like the ones ob-
tained from turbulent models, are therefore in better
agreement with recent VLA and CARMA observa-
tions, which show that proto-stellar masses of sys-
tems such as CB230 IRS1 and L1165-SMM1 have
been detected in the range of 0.1− 0.25M⊙; see To-
bin at al. (2013).

The binary systems obtained in this paper have
a mass ratio of q14=0.24 and q27=0.34 for models
14 and 27, respectively. Goodwin et al. (2004a) ob-
tained a q distribution for wide binaries in the range
0.1–0.7 with a peak in the range 0.6–0.7; however, as
the binaries evolved, the peak of the q distributions
moved to smaller values. In any case, our q values
are in agreement with Goodwin et al. (2004a).

5. CONCLUDING REMARKS

In this paper we considered the gravitational col-
lapse of a uniform core, in which initially only two
types of turbulent velocity spectra have been initially
implemented.

It must be emphasized to all the simulations sat-
isfy the same energy requirements, contained in the
ratios α and β; see equation 19 of § 2.5. Therefore,
it is because of this last statement that we observe a
great similarity in the outcomes of the models, irre-
spective of the turbulence type considered.

Besides, as we mentioned at the end of § 2.5, the
models do not have different levels of turbulence, as
the ratio of the turbulent energy to the gravitational
energy was fixed at γturb = 0.11 for all the simula-
tions. It should also be noted that the differences
observed between the models can not be attributed
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to a different random realization of a given simula-
tion, as the random seed used to generate each model
was fixed at the same value for all the simulations.

For these reasons, we consider that we achieved
the main objective of this paper, namely that the dif-
ferent outcomes in the models are due to the change
in the number and size of the Fourier modes of the
two types of velocity spectra considered. By compar-
ing the plots shown in § 3, we are able to summarize
the following results:

1. The larger the wave length of the perturba-
tion mode, the longer the collapse; in fact, for
the models with the largest wavelength modes,
we observed a collapse delay up to 0.2 tff with
respect to the models with the shortest wave-
length modes.

2. We observe that a larger wavelength of the ini-
tial perturbation lengthens the initial over-dense
clumps, softens the density contrast, and de-
creases the velocity of the particles in the region
of collapse.

3. When the Fourier mesh size begins to increase
in terms of the core radius, then the divergence-
free turbulence type loses the homogeneity and
isotropy of the initial over-density clump distri-
bution earlier than does the curl-free turbulence.

4. The initial appearance of elongated clumps is
delayed by increasing the number of Fourier
modes.

5. Fragmentation can be induced by increasing the
number of perturbation modes.

6. The resulting protostars of all the models with
very large perturbation modes have a net angu-
lar momentum, which is also a consequence of
the highly anisotropic accretion of gas.

7. The protostars obtained from divergence-free
turbulence are more massive, in general, than
those from models with a curl-free turbulence.

8. In particular, the binary protostar system
formed from divergence-free turbulence is also
more massive than that formed from the curl-
free turbulence.

9. The larger the perturbation mode, the lower the
resulting protostar mass.

10. The protostar masses in turbulent models are
larger than those obtained from the collapse of

a rotating uniform core of similar total mass and
initial energy.

However, due to the stochastic nature of the tur-
bulent spectra, these observations must be vali-
dated by more simulations; therefore it is neces-
sary to perform a larger ensemble of simulations
to have a statistically representative sample of
results, which hopefully can help to validate our
results.
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provided by the Laboratorio Nacional de Su-
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