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Received November 29 2018; accepted June 5 2019

ABSTRACT

The recent success of the dark matter model has proven to be an invaluable
tool for describing the formation, evolution and stability of galaxies. In this work
we study the enhancement function, F , of the gravitational lensing of gravitational
waves by galactic dark matter halos and show how this function may be used to
distinguish between halo models. In particular we compare an isothermal sphere
with an NFW type density distribution, both of which are assumed to be spherically
symmetric, and find that our technique clearly distinguishes between the models.

RESUMEN

El éxito reciente del modelo de materia oscura ha probado ser una herramienta
invaluable para describir la formación, evolución y estabilidad de galaxias. En este
trabajo estudiamos la función de amplificación, F , del lente gravitacional de las
ondas gravitacionales por halos galácticos de materia oscura y mostramos como
esta función puede usarse para distinguir entre modelos de halos. En particular,
comparamos una esfera isotérmica con una distribución de densidad tipo NFW,
ambas asumidas esféricamente simétricas, y encontramos que esta técnica distingue
claramente entre los modelos.

Key Words: dark matter — galaxies: halos — gravitational lensing — gravitational
waves

1. GENERAL

Recent successes in gravitational wave detection,
(Abbott et al. 2016), together with the well docu-
mented effect of gravitational lensing (GL) (Bate et
al. 2018), have given strength to the idea of using
general relativity to describe the gravitational field.
One of the first complete treatments of the combina-
tion of these effects, i.e. the gravitational lensing of
gravitational waves has been discussed by Schneider
et al. (1992), it is from this source that we take most
of our notation and the geometrical interpretation.

For this work we compare the amplitude φ of
a gravitational wave when it propagates through a
weak gravitational field |U | << 1 in a flat spacetime
metric, see e.g. Schutz (2009):

ds2 = −(1+2U)dt2+(1−2U)(dx2+dy2+dz2), (1)

that is, a Minkowski spacetime plus a slight dis-
turbance. The amplitude φ itself satisfies the wave

1Departamento de Investigación en F́ısica, Universidad de

Sonora, México.
2Departamento de F́ısica, Universidad de Sonora, México.

equation (Peters 1974),

(∇2 + ω2)φ = 4ω2Uφ; (2)

while the deflection potential under the thin lens ap-
proximation is totally defined by its 2-dimensional
lensing potential (Moylan et al. 2008),

ψ(~x) = 2

∫

U(~x, z)dz, (3)

that lies between the source and the observer. This
integral is carried out over the optical axis.

Due to the fact that we limit our analysis to the
case in which the wave length, λ, of the gravitational
wave is larger than the Schwarzschild radius of the
thin lens, we must use wave optics instead of geo-
metric optics, as in Takahashi (2004). In this frame-
work, the change in the amplitude is quantified via
the enhancement factor or complex amplification fac-
tor (Nakamura & Deguchi 1999):

F =
φL

φ
, (4)
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where φL is the lensed wave amplitude and φ is
the wave amplitude before lensing. We consider the
magnitude of this function as a function of frequency
ω and show that we can use it to distinguish between
dark matter halo models.

In order to adjust our results to the frequency
sensitivity of LIGO, we will limit our study to grav-
itational waves emitted by the source at around
200 Hz, or ω = 400π rad

s
(Moylan et al. 2008).

If we wish to consider the cosmological effect on
our results a further correction implies replacing ω
with ω(1 + z), as discussed by Yoo et al. (2007) and
Takahashi & Nakamura (2003), which is beyond the
scope of this particular study.

The paper is organized as follows, after this brief
introduction, in § 2 we summarize the basic theory
of lensing, such as the geometry involved and the re-
lated distances in this phenomenon, the wave optics
related to the problem (such as the enhancement fac-
tor and the time delay). § 2.1 is a very short review
on constructing the thin lens potential for a spher-
ical isothermal matter distribution, while § 2.2 re-
views the same for a Navarro, Frenk and White type
halo, including a simple but very effective method to
fix the gauge for time delay. We close with a discus-
sion on the effectiveness of the method to distinguish
between dark matter halo models.

2. THE ENHANCEMENT FACTOR AND HALO
MODELS

We now turn our attention to the particular prob-
lem of quantifying the amount of enhancement due
to our specific halo models. In each case the geomet-
rical situation is that of a source of gravitational ra-
diation far behind a galactic halo distribution (where
the space-time is deformed) and an observer on the
earth, which is itself at a great distance from the
halo. Since the astronomical distances are so huge
we use the thin lens approximation for the halo. The
approximate lens geometry is illustrated in Figure 1.

The enhancement factor F discussed above is de-
fined via Kirchhoff’s diffraction integral, which is ob-
tained in Schneider et al. (1992):

F (w, η) =
Ds

DdDds

∫

R2

eiwtd(ξ,η)d2ξ. (5)

Here, the function F is integrated in the lens plane,
ξ is the impact parameter on the lens plane and η,
the source displacement on the source plane. As de-
fined in Schneider et al. (1992), td is known as the
Fermat potential or more commonly the time delay,
and carries the information of the lens potential:

Fig. 1. The standard geometry for GL. A mass distribu-
tion located at Dd, a gravitational wave source located
at Ds and the distance Dds between lens and source; all
measured from the observer. The color figure can be-
viewed online.

td(ξ, η) =
DdDs

2Dds

(

ξ

Dd

− η

Ds

)2

− ψ̂(ξ)+ φ̂m(y), (6)

where ψ̂(ξ) is the deflection potential due to the dark

matter halo (the thin lens potential) and φ̂m(η) is a
gauge that must be chosen such that the minimal
value of time delay is zero (Takahashi 2004). From
this point on, it is more convenient to work with di-
mensionless quantities, so we introduce the following
variable changes:

x=
ξ

ξ0
, y=

Dd

ξ0Ds

η, ω=
Ds

DdsDd

ξ20w, T=
DdDds

Dsξ
2
0

td,

(7)
as discussed in Takahashi (2004) and Nambu (2013);
ξ0 is a length scale that reduces to the Einstein ra-
dius on the lens plane). With these changes, the
enhancement function becomes

F (ω, y) =
ω

2πi

∫

x2

eiωT (x,y)dx2, (8)
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with the time delay

T (x, y) =
1

2
(x− y)2 − ψ(x) + φm(y), (9)

where

(ψ(x), φm(y)) =
DLDLS

(DSξ
2
0)

(ψ̂(ξ), φ̂m(η)).

We can now explore different forms for the gravi-
tational potential of the dark matter halo. The only
assumption we make is that it has complete spher-
ical symmetry. When this is the case, equation (8)
becomes

F (w,y)=−iwe 1

2
iwy2

∫

∞

0

xJ0(wxy)e
iw[ 1

2
x2

−ψ(x)+φm(y)]dx,

(10)
where J0 is the Bessel Function of zeroth order.

To test weather our method can distinguish be-
tween halo models we will develop the enhance-
ment function for two different mass distributions:
a singular isothermal sphere (hereafter SIS) and one
which reproduces the density distribution found in
N-body dark matter simulations as discussed by
Navarro et al. (1997, hereafter NFW).

2.1. SIS Case

The singular isothermal sphere is a very useful
mass distribution model used for both stellar and
galactic clusters as gravitational lenses. SISes are
characterised by their surface mass density

∑

(ξ) =
σ2
v

2ξ
, (11)

where ξ is a radial coordinate in the lens plane and
σv is the velocity dispersion of the constituents of the
halo. As Schneider et al. (1992) point out, this model
was motivated to match the flat rotation curves of
spiral galaxies for ξ >> 1, but breaks down for low
values of ξ due to the divergence at ξ = 0. Using this
density distribution we obtain the deflection poten-
tial, which can be found in Takahashi & Nakamura
(2003):

∇2
xψ(x) =

2Σ(ξ)

Σcr
, (12)

where Σcr is the critical surface mass density, as de-
scribed by Bartelmann (1996).

This procedure leads to a thin lens potential,
ψ(x) = x and requires the additional phase, φm(y) =
1
2 + y, such that the minimum of the time delay is
zero. In Figure 2 we reproduce the results found by

Fig. 2. Behavior of the enhancement factor |F | vs
frequency ω, the dimensionless frequency, given by
ω = Ds

DdsDd

ξ20w, where w its the original frequency of the
source for the SIS thin lens.

Takahashi & Nakamura (2003) for the SIS matter
distribution. There we have plotted the norm of the
enhancement function, or amplification factor, |F |
as a function of frequency scaled to the Eisenstein

radius, ξ0

(

ω = Ds

DdsDd

ξ20w
)

.

As we can see, the closer the source is from the
optic axis, the enhancement effect on the amplitude
of the gravitational wave is more effective. For di-
rect comparison, we take the same values chosen by
Takahashi & Nakamura (2003) for the distance be-
tween source and lens, namely: y = 0.1, y = 0.3,
y = 1.0 and y = 3.0. For low frequencies this en-
hancement factor is very low due to the diffraction
effect (and we can also notice some noise due to our
numerical method).

As the frequency increases, and for y > 0.3, we
notice a considerable amount of dampening, in spite
of the fact that no multiple images should form.
These results allow us to calibrate our numerical pro-
cedure and motivate us to continue the study for
other halo models.

2.2. NFW Case

One of the most successful density distributions
found in high resolution N-body simulations is the
NFW model (Navarro et al. 1997), which corre-
sponds to a two-power density model:

ρ(r) =
ρ0

( r
a
)(1 + r

a
)2
. (13)
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Fig. 3. Behavior of the enhancement factor |F | vs
frequency ω, the dimensionless frequency, given by
ω = Ds

DdsDd

ξ20w, where w is the original frequency of the
source for the NFW thin lens.

Here a and ρ0 are the pair of parameters that
completely define the halo structure (and, as it turns
out, ρ0 is defined by the cosmology). Since we are
interested in proving that our method may clearly
distinguish between the models, we consider for this
purpose the scaled radius x = r

a
. Although the spe-

cific form of the density distribution for realistic dark
matter halos is yet to be confirmed, this can be re-
garded as a good initial test for the purpose of our
studies.

We will again use (12) to obtain the deflection po-
tential, assuming that the lens surface mass density
is completely defined by (13). In this way, we find
the NFW potential, in accordance with Bartelmann
(1996):

ψ(x) =















1
2

[

(

ln x
2

)2 −
(

arctanh
√
1− x2

)2
]

, x ≤ 1.

1
2

[

(

ln x
2

)2
+
(

arctan
√
x2 − 1

)2
]

, x ≥ 1.

(14)
In order to obtain the time delay T (x, y), we must

first fix the phase, φ(y), such that the minimum of
the time delay is zero. In contrast with the SIS case
there is no simple algebraic means of doing the full
calculation for arbitrary values of y; thus, we proceed
to set the particular values that are of interest for
this experiment (y = 0.1, y = 0.3, y = 1.0 and

TABLE 1

THE PARAMETER y*

y φm(y)

0.1 0.0243401

0.3 0.0764808

1.0 0.288078

3.0 0.878223

*Which relates the axial distance from the source of grav-
itational waves and the corresponding values of φm(y)
needed for the minimum of the time delay T (x, y) to be
zero.

y = 3.0), and find the numerical value that makes
zero the minimum of the time delay T (x, y). Table 1
shows the particular values obtained for our selection
of y.

Using these values for φm(y), we may now evalu-
ate the diffraction integral (10) for the NFW model
in the same way as before. Our results are shown
in Figure 3, where we maintain the same frequency
and enhancement range for a direct comparison.

For the NFW model we can appreciate, as in the
SIS case, that the amplification in the wave ampli-
tude starts at around ω = 0.1. We notice that there
is a clear difference between the models. For NFW
type halos, the enhancement is less noticeable and
there are fewer oscillations. We also notice consider-
able more dampening in this case. To confirm this
behavior we plot, in Figure 4 the enhancement in
a frequency range 0.01 < ω < 1000. Here we can
clearly see a more dramatic dampening behavior for
the NFW model. We also notice that the amplifi-
cation factor is always |F | > 1, which only happens
in this model. This implies that the interference be-
tween lensed gravitational waves is always construc-
tive.

3. CONCLUSIONS

In this paper we have shown that a detailed study
using more realistic dark matter halos could provide
a distinct signal for gravitational wave enhancement.

This result shows that we may use gravitational
lensing of gravitational waves as a further probe for
the dark matter structure in observed galaxies (or
clusters of galaxies). When we compare the enhance-
ment factor for this type of radiation, the more con-
centrated NFW profile can lead to a factor of up
to 50%, when compared with lensing by a SIS type
halo.
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Fig. 4. As in Figure 3, with modified ranges in frequency,
ω, and amplification factor, |F |, to show the distinct
behavior of the NFW model.

For this reason we propose the following obser-
vation: if we find suitable gravitational wave sources
(GWS) far from any galactic field we could compare
the amplitude of this radiation with the amplitude
of similar sources found behind galaxy clusters. If
we were able to find a sufficiently numerous popu-
lation of GWS, we could compare these populations
and find an empirical enhancement factor. This in
turn would allow us to fine tune dark matter halo
parameters.

As it is early days for GWS detection, we will
continue to study the behavior of this radiation in
the hope of finding further signals that may be mea-
sured as more and more data become available.
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