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ABSTRACT

We study self-gravitating, hydrostatic spheres with a polytropic equation of
state P ∝ ργ (where γ is the specific heat ratio of the gas), considering structures
with γ ≈ 1 as a model for molecular cloud cores with small departures from isother-
mality. We derive the properties (i.e., mass, radius and center to edge density ratio)
as a function of γ for the maximal stable sphere through an application of “Bonnor’s
stability criterion”. We find that in the γ = 1→ 4/3 range the mass of the maximal
sphere (for a given central temperature) is almost constant, and that its radius and
center to edge density ratio are growing functions of γ. We therefore have maximal
stable, self-gravitating spheres with similar masses, but with increasing center to
edge density contrasts for increasing departures from isothermality.

RESUMEN

Estudiamos esferas auto-gravitantes hidrostáticas con una ecuación de estado
politrópica P ∝ ργ (donde γ es el cociente de calores espećıficos del gas), con-
siderando estructuras con γ ≈ 1 como modelos de núcleos moleculares con pequeñas
desviaciones del caso isotérmico. Derivamos las propiedades (masa, radio y cociente
de densidades centro a borde) como función de γ para la esfera estable máxima,
a través de una aplicación del “criterio de estabilidad de Bonnor”. Encontramos
que en el intervalo γ = 1 → 4/3 la masa the la esfera máxima (para una tem-
peratura central dada) es casi constante, y que su radio y cociente de densidades
centro a borde son funciones crecientes de γ. Por esto, tenemos esferas autogravi-
tantes máximas con masas similares pero con contrastes de densidad centro a borde
crecientes para mayores desviaciones respecto del caso isotérmico.

Key Words: ISM: clouds — ISM: kinematics and dynamics — stars: formation

1. INTRODUCTION

It is widely thought that the gravitational collapse
of dense molecular cloud cores results in the forma-
tion of stars (see, e.g., Shu 1977). Detailed calcu-
lations of the thermal structure of molecular cores
show that over a large radial range they have only
small temperature variations (see, e.g., Falgarone
& Puget 1985), so that their hydrostatic structure
can be modeled as an isothermal, self-gravitating,
sphere.

1Instituto de Ciencias Nucleares, UNAM, Ciudad de
México, México.

2Instituto de Radioastronomı́a y Astrof́ısica Teórica,
UNAM, Morelia, Michoacán, México.

3Instituto de Astronomia, Geof́ısica e Ciências At-
mosféricas, Universidade de São Paulo, SP, Brasil.

In this paper, we study self-gravitating spheres
with a polytropic equation of state (P ∝ ργ , where
P is the pressure, ρ the density and γ the specific
heat ratio of the gas) with γ values close to 1, meant
as models for cloud cores with small departures from
isothermality. We first compute the density profiles
of these hydrostatic structures, and then evaluate
their stability to radial perturbations.

We use the method of Bonnor (1956) for de-
termining the stability of the isothermal, self-
gravitating sphere. Bonnor (1956) considers a sphere
that has a fixed mass M and an outer radius Re at
which the self-gravitating structure is in contact with
a much hotter environment with a pressure Pe. He
then calculates the variation in the outer pressure (or
density) of this fixed mass sphere as a function of a
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56 RAGA ET AL.

changing outer radius Re (assuming that the inner
structure adjusts instantaneously to the steady, self-
gravitating configuration). If the outer density ρe
(or, alternatively the pressure Pe, which is a mono-
tonically increasing function of ρe) satisfies the con-
dition

dρe
dRe

< 0 , (1)

the sphere will be stable. In the case of the isother-
mal sphere, the sphere is stable for small radii, and
becomes unstable (i.e., dρe/dRe becomes positive)
at a radius RS . Isothermal spheres with Re > RS
are therefore unstable to radial perturbations.

Bonnor (1958) extended his analysis to the case
of self-gravitating spheres of arbitrary polytropic in-
dex n = 1/(γ − 1). He derived (from the numerical
density stratifications of Emden, 1907) the values of
the maximum stable radius Re for the cases with
n = 4, 4.5, 4.9, 5 and 6. Bonnor’s criterion has also
been applied to hydrostatic structures with thermal
properties calculated using an energy equation with
appropriate heat source and sink terms (see Falgar-
one & Puget 1985).

Bonnor (1958) finds that self-gravitating, poly-
tropic spheres with γ > 4/3 are inconditionally sta-
ble to radial perturbations. Because of this, in the
present paper we limit ourselves to polytropes with
1 ≤ γ < 4/3. The stability of polytropes with dif-
ferent γ values has been described more recently by
Horedt (2013).

An interesting problem is whether or not Bon-
nor’s stability criterion gives “correct” results,
where by “correct” we mean reproducible by time-
dependent, hydrodynamic collapse simulations. Un-
til quite recently, hydrodynamic simulations of the
collapse of isothermal spheres did not reproduce (at
least, not in a quantitative way) the results found
from Bonnor’s criterion. Hunter (2001) speculated
that this lack of agreement was probably the result
of a lack of accuracy in the hydrodynamic simula-
tions. More recently, Raga et al. (2013) computed
more precise simulations which reproduced the sta-
bility found from Bonnor’s (1956) criterion for the
collapse of the isothermal sphere. Even though it
has not yet been proven, in this paper we will assume
that Bonnor’s (1958) stability criterion for arbitrary
γ also predicts successfully the stability limits found
from time-dependent hydrodynamical collapse cal-
culations.

The paper is organized as follows. In § 2 we
present the Lane-Emden equation and give a sum-
mary of the analytic properties of its solutions for
specific heat ratios in the γ = 1 → 4/3 range. In

§ 3 we describe the density and mass distributions
obtained from numerical integrations of the Lane-
Emden equation. In § 4, we apply Bonnor’s (1958)
stability criterion to these solutions, and derive the
properties of the maximal stable sphere as a function
of γ. Finally the results are summarized in § 5.

2. THE LANE-EMDEN EQUATION

2.1. General Considerations

The hydrostatic equation for a self-gravitating, non-
magnetized spherical cloud is:

d

dR

(
R2

ρ

dP

dR

)
= −4πGρ , (2)

where R is the spherical radius, P the gas pressure,
ρ the density and G the gravitational constant.

We now assume that we have a polytropic law

P = Cργ , (3)

with constant C and γ. Then, equation (2) takes the
form

d

dR

(
R2ργ−2

dρ

dR

)
= −4πG

γC
R2ρ , (4)

which receives the name of “Lane-Emden equation”.
As we are thinking of modelling a gas cloud,

possible values of γ are 5/3 (for an atomic/ionic,
non-radiative gas), 7/5 (for diatomic molecules) and
1 (for an isothermal situation). Another interest-
ing value is 4/3, corresponding to a gas of ultra-
relativistic fermions (relevant for degenerate stellar
cores).

In a stratified cloud, there is in principle no rea-
son for C in equation (3) to be independent of ra-
dius (individual fluid parcels will evolve satisfying
equation 3, but do not necessarily share the same
value of C). A unique value of C is obtained for
a “well mixed” gas cloud, in which mixing due to
slow turbulent motions produces a stationary strat-
ification with a constant specific entropy. The ex-
istence of such a mixing is required for modelling
gas clouds with the polytropic Lane-Emden equation
(equation 4).

Finally, we should note that many times the solu-
tions to Lane-Emden’s equations are identified with
the “polytropic index” n = 1/(γ−1) (which appears
naturally under some traditional changes of variables
used for this equation). However, we will use γ (and
not n) throughout the present paper.
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STABILITY OF γ = 1 TO 1.4 SPHERES 57

2.2. The “Small R”, Non-Singular Solution

We assume that we have a non-singular, “flat-
topped” solution, with (dρ/dR)0 = 0 in the cloud
center. Proposing a second-order Taylor series for
the ρ as a function of R, inserting it in equation (4)
and equating terms with the same powers of R one
straightforwardly obtains:

ρ

ρ0
= 1−

(
R

Rc

)2

, (5)

where ρ0 is the central density and

Rc ≡

√
3γCργ−20

2πG
(6)

is the “core radius” of the density stratification.
For the variables r = R/Rc and ρ′ = ρ/ρ0 the

Lane-Emden equation takes the dimensionless form:

d

dr

[
r2 (ρ′)

γ−2 dρ′

dr

]
= −6r2ρ′ , (7)

with second-order solution ρ′ = 1− r2.
It is possible to construct higher order solutions

by proposing appropriate Taylor expansions for the
density as a function of radius. However, it is a
well known problem that for γ ≈ 1 the resulting
series solutions converge to the exact solution only
for R < Rc (see, e.g., Chandrasekhar 1967).

We should note that the core radius Rc used for
the adimensionalization (see equations 6 and 7) has a
clear dependence on γ. In order to compare solutions
with different γ values, it is possible to choose solu-
tions with the same central isothermal sound speed:

c0 =

√
P0

ρ0
=

√
Cργ−10 , (8)

where the first equality is the definition of the
isothermal sound speed and the second equality is
obtained using equation (3). Substituting into equa-
tion (6) we then obtain

Rc =

√
3γc20

2πGρ0
= γ1/2Rc,1 , (9)

where Rc,1 is the core radius of the isothermal
(γ = 1) solution with the same central sound speed
c0.

Therefore, for comparing solutions with different
γ values but with the same central temperature (cor-
responding to a sound speed c0), we plot the solu-
tions as a function of

R

Rc,1
= γ1/2

R

Rc
= γ1/2r , (10)

see equations (7) and (9).
The mass of the self-gravitating spheres as a func-

tion of the spherical radius is given by:

M(R) = 4π

∫ R

0

R′2ρ(R′) dR′ = 4πρ0R
3
cm(R/Rc) ,

(11)
where

m(r) =

∫ r

0

r′2ρ′(r′)dr′ (12)

is the dimensionless mass. It is straightforward to
see that γ3/2m(r) is the mass normalized to 4πρ0R

2
c,1

(where Rc,1 is the core radius of the γ = 1 solution,
see above).

2.3. The Singular Solutions

In order to obtain the singular solutions, one inserts
a proposed solution ρsing = A/Rp into the Lane-
Emden equation (4). Equating the resulting powers
of R and multiplying constants one obtains:

p =
2

2− γ
, (13)

A =

[
γC

2πG

4− 3γ

2(2− γ)2

]1/(2−γ)
. (14)

Introducing a similar power law into the dimension-
less Lane-Emden equation (7) one obtains:

ρ′sing =

[
4− 3γ

2(2− γ)2

]1/(2−γ)
r−2/(2−γ) . (15)

Clearly, these singular solutions exist only for
γ < 4/3.

From numerical solutions of the Lane-Emden
equation, it is found that for γ < 1.2 the non-singular
solution (with the small r solution ρ′ = 1 − r2 and
large r regime obtained by numerically integrating
equation 7) converges to the singular solution for
r � 1. For γ = 6/5 = 1.2 (corresponding to a
polytropic index n = 5), the Lane-Emden equation
has the analytic, non-singular solution

ρ′ =

(
1 +

r2

3

)−5/2
. (16)

This solution has a large r behaviour of the form
ρ′ ∝ r−5, clearly not matching the singular solution
(which for γ = 6/5 has a shallower ρ′ ∝ r−5/2 de-
pendence, see equation 15). The transition between
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58 RAGA ET AL.

the large r, singular solution convergence obtained
for γ < 6/5 and the γ = 6/5 solution (given by
equation 16) is explored in § 3.

For γ > 1.2, the numerical non-singular solution
of the Lane-Emden equation has a density that goes
to zero at a finite radius. Therefore, the non-singular
solution has a r � 1 convergence to the singular so-
lution only for γ < 6/5. The nature of this conver-
gence is described in the following subsection.

2.4. The γ < 6/5, r � 1 Convergence to the
Singular Solution

It is customary to write

ρ′(r) = ρ′sing(r) [1 + q(r)] , (17)

and use equation (7) to obtain a differential equa-
tion for the fractional deviation q(r) from the sin-
gular solution. Assuming that q(r), q̇ = dq/dr and
q̈ = d2q/dr2 � 1, this differential equation can be
linearized to obtain:

2(4− 3γ)

2− γ
(q +Rq̇) +R2q̈ = 0 , (18)

which for a > 3− 2
√

2 has the general solution

q(r) =
B

ra
cos(Γ ln r + φ) , (19)

where B and φ are arbitrary constants,

a = 2
4− 3γ

2− γ
, (20)

and

Γ =
1

2

√
6a− a2 − 1 . (21)

It is straightforward to see that the a > 3 − 2
√

2
condition (necessary for equation 19 to be valid, see
above) is satisfied for the γ = 1→ 1.2 range.

Therefore (for all values of γ in the 1 → 1.2
range) the large r convergence to the singular so-
lution is oscillatory (going as cos Γ ln r). This oscil-
latory behaviour has an amplitude that decreases as
r−a (see equations 19-21).

The linear problem which we have presented here
does not allow us to fix the values of the B and φ con-
stants (see equation 19). These constants have to be
determined by fitting equation (17), calculated with
the linear q solution (see equation 19), to the non-
singular solution calculated with a numerical integra-
tion of the Lane-Emden equation (see equation 7).
This fitting can be done to a quite high level of ac-
curacy (see, e. g., the work of Ito et al. 2018 for the
γ = 1 solution).

3. NUMERICAL INTEGRATIONS

We have numerically integrated the dimensionless
Lane-Emden equation (equation 7) starting from the
quadratic solution ρ′ = 1−r2 at small r. The results
obtained for several values of γ in the 1→ 1.2 range
are shown in log-log plots in Figure 1.

For r < 1, all of the logarithmic density distri-
butions are quite flat, with ρ′ ≈ 1. For r > 1, the
γ = 1 and 1.5 distributions start a steeper decrease,
and approach the corresponding singular solutions
(shown with the straight, dashed lines) with the os-
cillatory convergence described in § 2.3. These os-
cillations have larger amplitudes for solutions of in-
creasing γ.

The bottom panel of Figure 1 shows solutions
with γ ≈ 1.2 values. The singular γ = 1.2 solu-
tion (not distinguishable from the γ = 1.190 and
1.199 singular solutions at the resolution of the plot)
is shown with a dashed line, and the non-singular
γ = 1.2 solution (obtained either from the numerical
integration or from equation 16) is shown with the
red line. It is clear that the γ = 1.190 and γ = 1.199
solutions follow the (analytic) γ = 1.2 solution out to
rt ≈ 10 and 100 (respectively), and then have an os-
cillatory transition to the singular solution. We find
that the transition radius rt becomes progressively
larger as γ → 1.2. Solutions with γ ≈ 1.2 have been
previously studied by Horedt (2013).

Figure 2 shows logarithmic depictions of the ρ′(r)
solutions obtained for γ values in the 6/5 → 4/3
range. For all of the γ > 1.2 solutions we obtain den-
sities that go to zero at a finite dimensionless radius
rmax = Rmax/Rc (which can be straightforwardly
determined from the numerical integrations).

Finally, in Figure 3 we show the inner regions of
density ρ/ρ0 and mass γ3/2m (see equation 12) strat-
ifications with γ in the 1→ 4/3 range, as a function
of the radius γ1/2r = R/Rc,1, normalized to the core
radius of the γ = 1 solution (see equations 9-10).
The results shown illustrate the differences between
self-gravitating spheres with different γ, but with the
same central density ρ0 and isothermal sound speed
c0. We see that the lower γ solutions have lower den-
sities and masses within the core radius, and higher
densities and masses at large radii.

4. THE RADIAL STABILITY OF THE
SELF-GRAVITATING SPHERES

4.1. Bonnor’s Stability Criterion

For a polytropic, self-gravitating sphere of specific
heat ratio γ, Bonnor’s (1956, 1958) stability criterion
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Fig. 1. The solid lines show the dimensionless nonsingu-
lar density vs. radius solutions for the isothermal, γ = 1
case (top), for γ = 1.5 center, and for γ = 1.190, 1.199
and 1.200 (bottom). The dashed curves show the γ = 1,
1.15 and 1.2 singular solutions (in the top, center and
bottom frames, respectively). The color figure can be
viewed online.

Fig. 2. Dimensionless nonsingular density (ρ/ρ0) vs. ra-
dius (r = R/Rc, where Rc is the core radius defined in
equation 6) solutions for γ = 1.20, 1.21, 1.25 and 1.3̂.
While the γ = 1.20 solution goes out to infinite r, the
solutions for larger γ values reach zero densities at at an
outer radius rf (which decreases for increasing γ).

can be written as:(
2πG

3γC

)1/(2−γ)(
dρe
dRe

)
M=const.

=

reḟ(re)

1−
(

2−γ
4−3γ

)
r
( 4−3γ

2−γ )
e

f(re)
F (re)

− 2f(re)

2− γ
< 0 , (22)

where re = Re/Rc is the dimensionless outer radius
of the sphere,

f(r) = r2/(2−γ)ρ′(r) ; ḟ(r) =
df

dr
, (23)

and

F (r) =

∫ r

0

(r′)2(1−γ)/(2−γ)f(r′)dr′ . (24)

The derivation of equation (22) is completely anal-
ogous to the derivation of equation (17) of Raga et
al. (2013) for the γ = 1 case.

We then take the numerically derived ρ′(r) den-
sity stratifications described in § 3, calculate f(r),
ḟ(r) and F (r) (equations 23-24), and then evaluate
the term on the left-hand-side of the inequality of
equation (22) to find the smallest radius rs at which



©
 C

o
p

y
ri

g
h

t 
2

0
2

0
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
0

.5
6

.0
1

.0
7

60 RAGA ET AL.

Fig. 3. Bottom frame: inner region of the nonsingular
density vs. radius solutions for γ = 1.0, 1.1, 1.2. 1.3
and 1.3̂. The solutions for higher γ values have steeper
density decreases at larger radii. Top frame: dimension-
less mass γ3/2m = M/(ρ0R

3
c,1), where ρ0 is the central

density) as a function of radius. The mass distribution
has lower growths at large radii for higher γ values. Both
the mass and the density profiles are shown as a function
of γ1/2r = R/Rc,1 (where Rc,1 is the core radius of the
γ = 1 solution with the same central sound speed, see
the text).

the inequality is violated. In this way we derive the
radius rs = Rs/Rc of the maximal stable sphere for
a given value of γ.

4.2. The Maximal Stable Solutions

After determining the maximum radius for stability
rs = Rs/Rc from Bonnor’s criterion (equations 22-
24), we calculate the dimensionless mass ms = m(rs)
and center-to-edge density ratio ρ0/ρs = 1/ρ′(rs)
of the maximal stable solution. This exercise is re-

Fig. 4. Properties of the maximal stable solution as
a function of γ. Bottom frame: center to edge den-
sity ratio ρ0/ρs. Center: dimensionless outer radius
γ1/2rs = Rs/Rc,1. Top: dimensionless mass γ3/2ms (see
equation 12).

peated for several values of the specific heat ratio in
the γ = 1 → 4/3 range. For γ > 4/3, Bonnor’s sta-
bility criterion is satisfied for all radii of the density
stratifications (see also Bonnor 1958).

In Figure 4, we show the dimensionless mass
γ3/2ms = 3Ms/(4πρ0R

3
c,1) (see equations 11-12),

outer radius γ1/2rs = Rs/Rc,1, and center to edge
density ratio ρ0/ρs of the maximal stable solution as
a function of γ. We see that:

• ρ0/ρs grows as a function of γ, and reaches high
values for γ ≈ 1.3, finally diverging at γ = 4/3,



©
 C

o
p

y
ri

g
h

t 
2

0
2

0
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
0

.5
6

.0
1

.0
7

STABILITY OF γ = 1 TO 1.4 SPHERES 61

Fig. 5. Bottom frame: dimensionless maximum radius
γ1/2rmax = Rmax/Rc,1 as a function of γ. Top frame:
ratios Ms/Mmax and RS/Rmax of the mass Ms and ra-
dius Rs of the maximal stable solution to the maximum
mass Mmax and radius Rmax of the polytropic spheres
as a function of γ. We show the results obtained for
γ = (6/5)+ → 4/3, which have density distributions
which go to zero at a maximum radius Rmax.

• γ1/2rs monotonically grows as a function of γ,
and reaches a γ1/2rs ≈ 5.4 for γ = 4/3,

• the dimensionless mass γ3/2ms shows very small
variations for γ in the 1→ 4/3 range.

For the 6/5 < γ ≤ 4/3 range (with density strat-
ifications that end at an outer radius Rmax, see
§ 2 and Figure 3), we obtain numerically the di-
mensionless outer radius rmax = Rmax/Rc and the
mass mmax = m(rmax) (see equation 12) of the full
stratification. In Figure 5, we plot the outer radius
γ1/2rmax = Rmax/Rc,1 and the ratios Ms/Mmax and
Rs/Rmax between the mass/radius of the maximal

stable solution and the corresponding values of the
full stratification.

From Figure 5 we see that:

• the outer radius γ1/2rmax of the full stratifi-
cation decreases monotonically from its infinite
γ = 1.2 value to a value of ≈ 5.63 at γ = 4/3,

• the Rs/Rmax ratio increases from 0 (for γ = 1.2)
to 1 (for γ = 4/3), with a faster increase as
γ = 4/3 is approached,

• the Ms/Mmax ratio gradually increases from
≈ 0.65 (for γ = 1.2) to 1 (for γ = 4/3).

Therefore, we see that the fraction of the total ra-
dius and mass of the finite, γ > 1.2 self-gravitating
spheres that is stable increases with γ. The (radial
or mass) fraction that is stable tends to 1 as γ = 4/3
is approached.

5. SUMMARY

We have studied the non-singular density stratifi-
cations that are solutions to the polytropic Lane-
Emden equation for self-gravitating spheres. We
have first presented general analytical considerations
about the proper adimensionalisation of the den-
sity and radius (using the second-order, small ra-
dius approximation to the non-singular density strat-
ification), the derivation of the singular solutions,
and the convergence at large radius of the non-
singular to the singular solutions (which occurs only
for γ < 6/5). The results that have been presented
(see § 2) can be found in the previous literature (no-
tably, in Chapter IV of the book of Chandrasekhar
1967 and in the book of Horedt 2004).

We have then computed numerical integrations
of the Lane-Emden equation to obtain non-singular
density stratifications for γ in the 1 → 4/3 range
(see § 3). Solutions around γ = 1.2 show the curi-
ous transition between the γ < 1.2 density stratifi-
cations (which at large radii converge to the singular
solutions) and the γ = 1.2 stratification (which is
analytic, and differs quite dramatically from the sin-
gular solution at large radii). It is not clear whether
or not this rather curious mathematical feature has
any relevance for astronomical applications.

Finally, we have applied Bonnor’s stability cri-
terion (for self-gravitating solutions of arbitrary γ,
see equation 22) to our numerically obtained den-
sity stratifications. We find that for spheres with
γ = 1 → 4/3 but with the same central tempera-
ture (or isothermal sound speed), the maximal stable
sphere has (see Figure 4):
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• a center to edge density ratio that grows quite
substantially with increasing γ, diverging for
γ → 4/3,

• an outer radius that slowly grows with γ in the
1 → 1.2 range, and has a steeper growth for
γ → 4/3,

• an almost constant mass as a function of γ.

Also, for the finite, γ > 6/5 spheres, the maximal
stable sphere has a mass and radius that grow with
γ. For γ > 4/3, the whole finite sphere is stable.

Applying these results to molecular clouds cores,
we see that relatively small deviations from isother-
mality (which could be modelled with γ values some-
what larger than 1) are not likely to lead to the
formation of substantially different self-gravitating
structures, in the sense that the maximal stable so-
lutions will have almost the same mass (regardless
of the value of γ in the 1 → 4/3 range). The outer
radius of the maximal stable sphere grows for γ > 1,
reaching a factor 1.5 larger value for γ = 1.2. The
largest effect is found for the center to edge den-
sity ratio, which grows by a factor of ≈ 2 when γ is
changed from 1 to 1.2 and by a factor of ≈ 10 when
γ = 1.3.

Therefore, we conclude that small deviations
from isothermality will result in the production of
maximal stable spheres with approximately the same
mass, with somewhat larger outer radii, and with
substantially higher center to edge density ratios.
Clearly, it will be interesting to see whether the hy-
drodynamical collapse of the γ = 1 → 4/3 density
stratifications resembles the well studied collapse of
the isothermal (γ = 1) sphere.

We end by discussing the work of Kandori et al.
(2005), who use near-infrared images to derive the
column density distribution for a set of ≈ 10 Bok
globules. They carry out fits of the non-singular so-
lution of the isothermal Lane-Emden equation to the
derived structures. From these fits, they find the
center to edge density ratios and the dimensionless
outer radius ξmax (which, due to a different adimen-
sionalisation is a factor of

√
6 larger than the γ1/2rs

outer radius shown in our Figure 4) of the observed
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structures. Most interestingly, they find that while
some of the globules of their sample are close to the
stability limit, about half of them have center to
edge density ratios and outer radii larger than the
stability limit of the isothermal sphere. This result
leads them to conclude that these globules above the
isothermal stability limit are probably already col-
lapsing.

Our models provide a possible alternative expla-
nation for these results. As one can see from Fig-
ure 4, self-gravitating spheres with departures from
isothermality (modeled as spheres with γ > 1) have
maximal stable solutions with center to edge den-
sity ratios and dimensionless outer radii larger than
the ones of the maximal isothermal (γ = 1) solution.
The higher center to edge density contrast globules
observed by Kandori et al. (2005) could therefore
correspond to stable self-gravitating spheres with
such departures from isothermality.
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