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ABSTRACT

We present a simple model, as a pedagogical exercise, in order to obtain in-
frared transition energies for heteronuclear diatomic molecules, based on rotational
and vibrational Hamiltonians. Our calculations allow us to identify CO absorption
lines that are present in the atmosphere spectra acquired in astronomical observa-
tories.

RESUMEN

Presentamos un modelo sencillo, a manera de ejercicio pedagógico, con el
fin de obtener las enerǵıas de transición en infrarojo de moléculas heteronucleares,
basados en Hamiltonianos de rotación y vibración. Nuestros cálculos permiten
identificar ĺıneas de absorción de CO presentes en los espectros de la atmósfera,
adquiridos en observatorios astronómicos.

Key Words: line: identification — methods: analytical — molecular data

1. INTRODUCTION

Infrared (IR) spectroscopy is a useful tool in study-
ing systems at temperatures around 102 K. Objects
at these temperatures such as protoplanetary, accre-
tion, and protostellar disks, significantly radiate in
this region of the electromagnetic spectrum. Com-
monly, IR studies are conducted in ground-based
observatories; thus, the observed spectrum presents
lines of both the astronomical source and the ter-
restrial atmosphere. Therefore, including the atmo-
spheric absorption is a crucial step towards any study
involving IR astronomical spectra in order to avoid
misidentifications with the atmospheric absorption
lines. This implies dealing with the atmosphere,
which is made up of a large quantity of gas molecules
at temperatures of the same order as those of the ob-
served sources.

The Earth’s atmosphere is mostly composed of
N2 (78.09 %) and O2 (20.95 %), both accounting
for almost 99% of the average composition of the
dry atmosphere (Cox 2000). These homonuclear3

diatomic molecules are inactive in the IR because
of their null electric dipole moment. In fact, ac-

1Department of Physics and Astronomy, University of Wa-
terloo, Canada.

2Universidad de los Andes, Departamento de F́ısica,
Colombia.

3A molecule composed of only one type of chemical ele-
ment.

cording to Gross selection rules (Atkins & de Paula
2014), fundamental vibrational transitions are for-
bidden for these molecules and no IR contribution
is observed. On the other hand, atmospheric het-
eronuclear molecules such as CO, CO2 and H2O, are
some of the ones responsible for the major features
of the IR absorption atmospheric spectrum, due to
rotational and vibrational transitions.

The spectrum theory of diatomic molecules is
presented in detail in classical books (Kronig 1930;
Herzberg 1950) and also in physical chemistry texts
(Atkins & de Paula 2014). As the atmosphere
is composed of diatomic and polyatomic gases,
aerosols, dust, pollutants and other constituents,
studying its spectrum is a complex task. The
variable concentration of CO and CO2 due to its
major sources: anthropogenic, biological, oceanic,
combustion, photochemical, and the strongly vari-
able concentration of the water vapor due to atmo-
spheric and oceanic conditions, cause the IR spec-
trum of the terrestrial atmosphere, called the tel-
luric4 spectrum, to change in time scales of sec-
onds and up to months. Currently, simulating the
atmospheric molecular transitions requires the de-
velopment of complex algorithms5 which consider

4In latin tellus mean “Earth”.
5In this regard, HITRAN is one of the databases with

greater use. https://hitran.org/.
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the different quantum interactions present in these
molecules (Rudolf et al. 2016; Ulmer-Moll et al. 2019,
and references therein).

The aim of the present work is to obtain, as a
pedagogical exercise, analytical expressions for the
IR transition energies of heteronuclear atmospheric
molecules using undergraduate quantum mechanics,
and to show that these transitions produce bands in
the IR spectra. The organization of this study is as
follows: in § 2 we present the Hamiltonians that de-
scribe the simplest approximation to the vibrational
and rotational transitions of molecules. In § 3 we
compute vibration and rotation transitions, using a
more realistic Hamiltonian through a Morse poten-
tial. In § 4 we present our results, showing that CO
IR transitions form bands. Finally, in the last section
we give the main conclusions of this work.

2. MODELING VIBRATION AND ROTATION
OF DIATOMIC MOLECULES

To describe the energy spectrum of a diatomic
molecule the vibrational and rotational degrees of
freedom are considered. Studies of degrees of free-
dom considering complex models are discussed by
Stuart (2004). In this section, we present the vi-
brational and rotational Hamiltonians for a system
without and with an interaction term between each
degree of freedom.

2.1. Vibrational Hamiltonian

A diatomic gas molecule has a spectrum originated
in part by the vibrational motion. Because these
vibrations are not completely harmonic, there must
be introduced correction terms that account for the
non-harmonic behavior of the molecule. As a first
approximation, one can add to the potential an extra
term proportional to x̂3. This procedure is similar to
taking a smooth potential and performing a Taylor
expansion around its minimum value, as made fre-
quently in the quantum mechanics text books (see
for example Cohen-Tannoudji et al. 1977). This cor-
rection is known as the anharmonic oscillator poten-
tial. Following this approximation, the vibrational
Hamiltonian can be written as:

Ĥvib =
p̂2

2µ
+

1

2
µω2x̂2 +

1

2
G1µω

2x̂3 + · · · , (1)

where µ is the reduced mass of the system, ω is the
oscillation frequency and G1 is a small parameter

related to the first correction of the potential. Higher
order correction terms are described by the factors
Gi>1.

Remembering the results for the regular quan-
tum harmonic oscillator, we use the creation â, an-
nihilation â† and number N̂ = â†â operators, with
their usual commutation relations. The canonical
definition of this operators is given by the following
relations:

â =

√
µω

2h̄

(
x̂+

i

µω
p̂

)
, â† =

√
µω

2h̄

(
x̂− i

µω
p̂

)
,

x̂ =

√
h̄

2µω

(
â+ â†

)
.

For the anharmonic Hamiltonian, the term cor-
responding to x̂3 can be computed:

(â+ â†)3 = (â+ â†)(â2 + (â†)2 + 1 + 2N̂)

= â3 + (â†)3 + â+ 2â† + (â+ â†)(2N̂)

+N̂(â+ â†).

Hence, the cubic term given by equation (1) can
be rewritten in the following way:

1

2
G1µω

2x̂3 =

[
1

2
G1µω

2

(
h̄

2µω

)3/2
](

â3 + (â†)3 + â

+2â† + (â+ â†)(2N̂) + N̂(â+ â†)

)
.

To continue, the action of the correction term
over | n〉 is obtained:

x̂3 | n〉 ∝
√
n(n− 1)(n− 2) | n− 3〉〉

+
√

(n+ 1)(n+ 2)(n+ 3) | n+ 3〉
+
(√
n+ 2n

√
n+ (n− 1)

√
n
)
| n− 1〉

+
(
2
√
n+ 1 + 2n

√
n+ 1 + (n+ 1)

√
n+ 1

)
| n+ 1〉.

Given the small size of the correction G1 term,
perturbation theory can be applied. Notice that this
Hamiltonian does not present a first order correction
to its energy levels. We invite the readers to calculate
the second order perturbation theory correction (see
Cohen-Tannoudji et al. 1977) to find the following
results for the energy:

E ∝ n(n− 1)(n− 2)

3h̄ω
− (n+ 1)(n+ 2)(n+ 3)

3h̄ω

+
9n3

h̄ω(n− n+ 1)
+

9(n+ 1)3

h̄ω(n− n− 1)
,

E ∝ −
[

1

h̄ω

](
30n2 + 30n+ 11

)
. (2)
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Plugging back these correction terms into the cor-
rected energy term, a new energy spectrum is found.

Ĥvib | n〉 = h̄ω
(
n+ 1

2

)
| n〉

−
[

1
h̄ω

](
1
2G1µω

2
(

h̄
2µω

)3/2
)2

(
30n2 + 30n+ 11

)
| n〉. (3)

This Hamiltonian describes the degrees of free-
dom corresponding to the vibrational nature of
molecules.

2.2. Rotational Hamiltonian

When a molecule rotates, the centrifugal force pulls
the atoms apart causing an increase in its moment
of inertia and decreasing the rotational constant as-
sociated to this energy term. This effect couples
both types of interactions, vibration and rotation.
In order to understand this interaction, the follow-
ing analogy can be useful: a pair of masses (atoms
of a diatomic molecule) are attached at the ends of a
spring, so that the masses can vibrate along the line
between them. The spring is fixed at some point
to the center of a rotating disk. The system has
no friction. Due to rotation, the Coriolis force de-
flects the masses, changing the vibration frequency
of the spring, reflecting an interaction between rota-
tion and vibration in this mechanical system. This
is analogous to the interaction between rotation and
vibration in diatomic molecules.

Returning to the effect of the centrifugal force on
the coupling of the rotation and vibration interac-
tions and, therefore, on the rotational Hamiltonian,
a term named centrifugal diatomic distortion is de-
fined as

D =
4

ω2

(
B

hc

)3

, with B =
h̄2

2µr2
.

The r variable describes the inter-nuclear distance
between the atoms composing the molecule. The
rotational Hamiltonian is now the following:

Ĥrot =
1

2I
L̂2 +DL̂4, (4)

where L̂ is the angular momentum operator
(L̂ = r̂ × p̂) and I is the moment of inertia. The cor-
rected Hamiltonian in equation (4) shares the same
eigenstates | l,m〉 that are used in the rotational
uncorrected Hamiltonian, where D = 0. Thus the
action of the Hamiltonian over these eigenstates pro-
duces:

Ĥrot | l,m〉 = Bl(l + 1) | l,m〉+ l2(l + 1)2D | l,m〉.
(5)

3. HAMILTONIANS FOR DIATOMIC
MOLECULES

3.1. Model 1: Combined Hamiltonian

Before using the vibration and rotation Hamiltoni-
ans given by equations (1) and (4), it is necessary
to find an appropriate basis which diagonalizes the
Hamiltonians in the corresponding Hilbert space.
If these Hamiltonians are defined as Ĥrot(Li) and
Ĥvib(pi, xi), we can ensure the commutation relation[
Ĥrot, Ĥvib

]
= 0. Hence we can simply add both

terms and describe the total eigenvectors as a tensor
product | n, l〉 = | n〉 ⊗ | l〉. The quantum number
m has been left out since the total Hamiltonian does
not present a dependency on it. The energy of such
a system is given by:

Ĥtotal | n, l〉 =
(
Ĥrot + Ĥvib

)
| n, l〉

=

[
h̄ω
(
n+ 1

2

)
− G2

1h̄
2

32µ

(
30n2 + 30n+ 11

)
+Bl(l + 1) + l2(l + 1)2D

]
| n, l〉. (6)

This description supposes that the movement of the
rotation and the vibration are described in the same
coordinates where the Hamiltonians commute. If
the vibrations were considered along a different di-
rection, these would affect the separation radius of
the molecule, changing the moment of inertia of the
system. These corrections cannot be ignored and
correction terms must be added. This coupling is
studied in the following section.

By taking into account both interaction terms,
rotation and vibration, a net Hamiltonian can be
studied. This Hamiltonian is fully described by the
quantum numbers n and l. This fact is a consequence
of the commutation relation [Ĥrot, Ĥvib] = 0, which
states that a common basis describes the eigenstates
of both terms. Through this identification, the en-
ergy levels are found to be:

En,l = h̄ω

(
n+

1

2

)
− G2

1h̄
2

32µ

(
30n2 + 30n+ 11

)
+ Bl(l + 1) + l2(l + 1)2D. (7)

Tables 1 and 2 give the vibrational and rotational
transitions for an initial state | n, l〉. The energy
transitions displayed above only show a change of
state in a single Hamiltonian (vibrational or rota-
tional). All the other transitions are described by the
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TABLE 1

ALLOWED TRANSITIONS FOR VIBRATIONAL
HAMILTONIAN

∆n (∆l = 0) ∆E = Ef − Ei

∆n = −2 −2h̄ω + (G2
1h̄

2/32µ) (−120n+ 60)

∆n = −1 −h̄ω + (G2
1h̄

2/32µ) (60n)

∆n = +1 +h̄ω − (G2
1h̄

2/32µ) (60n+ 60)

∆n = +2 +2h̄ω + (G2
1h̄

2/32µ) (120n+ 180)

combination of transitions between both quantum
numbers given by the selection rules ∆n = ±1,±2
and ∆l = ±1,±2.

Notice that each initial state | n, l〉 has 24 possible
final states given the corrections proposed by this
model. It is worth mentioning that this correction is
very restrictive as the rotation is fully confined to one
direction. Moreover, the energy constant associated
with this rotational degree of freedom is greater than
that found in any other direction.

3.2. Model 2: Morse Potential

The Morse potential is commonly used to describe
the vibrational behavior of diatomic molecules. Its
asymptotic behavior, given by the maximum energy
of vibrations (the dissociation energy, DE , related
to the depth of the potential well) more accurately
describes the physics of diatomic molecules than the
quantum harmonic oscillator.

V (r) = DE

(
1− e−a(r−r0)

)2

. (8)

In the above expression, r0 is the equilibrium bond
distance and a is a constant related to the strength of
the bond. By using this expression, the Schrödinger
equation can be perturbatively solved obtaining the
following n-dependent energy spectrum

En = h̄ω

(
n+

1

2

)
− h̄2ω2

4DE

(
n+

1

2

)2

. (9)

3.3. Rotation-Vibration Interaction

In § 3.1 we have described the energy spectrum of
a diatomic molecule when both vibrations and rota-
tions are present in the system. In such a way, the
Hamiltonian can be split into two non-interacting
terms, which share a common basis. However, this

is not the general case as vibrations can affect the
way the rotational spectrum is defined. This effect
can be understood by considering the moment of
inertia of a single molecule: given the vibration of
the molecule, the length of the bond separating the
molecules will change. Therefore, in order to intro-
duce the radial separation (r), the constants B and
D appearing in the rotational Hamiltonian are now
considered as functions of this variable:

B(r) =
h̄

4πcµr2
, (10)

D(r) =
h̄3

4πckµ2r6
. (11)

Under the assumption that the vibration frequency
is much greater than the rotational frequency, the
average separation radius can be computed, and the
effective separation can be described. To compute
this effective separation, we consider the average ra-
dius in the wave function describing the oscillatory
movement:

〈r〉 =

∫
ψ†vib r ψvib dr . (12)

Following the same procedure, the quantities B(r)
and D(r) are defined through their mean values in a
full period of oscillation:〈

1

r2

〉
=

∫
ψ†vib

1

r2
ψvib dr ,〈

1

r6

〉
=

∫
ψ†vib

1

r6
ψvib dr .

Through this approximation, one obtains the fol-
lowing new constants related to the unperturbed
terms, Be and De, presented in § 2.2 for the rota-
tional Hamiltonian:

Bn = 〈B(r)〉 = Be − αe
(
n+

1

2

)
,

Dn(r) = 〈D(r)〉 = De − βe
(
n+

1

2

)
, (13)

where the subindex e refers to the constants given
in the equation (4). The new constants, αe and βe,
are the ones which introduce the interaction of these
two Hamiltonians. These values have been reported
by Le Floch (1991).

3.4. Rotational and Vibrational Hamiltonian with
Morse Potential

To better describe the energy spectrum of a diatomic
molecule, we should use a total Hamiltonian that in-
cludes a term related to the Morse potential (given in
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TABLE 2

ALLOWED TRANSITIONS FOR ROTATIONAL HAMILTONIAN

∆n,∆l ∆E = Ef − Ei

∆n = 0, ∆l = −2 B(−4l + 2) +D(−10l3 + 11l2 − 12l + 4)

∆n = 0, ∆l = −1 −2Bl − 4Dl3

∆n = 0, ∆l = +1 B(2l + 2) +D(4l3 + 12l2 + 12l + 4)

∆n = 0, ∆l = +2 B(4l + 6) +D(12l3 + 47l2 + 72l + 36)

equation 8) and other term related to the rotational
and vibrational coupling (involving the expressions
given in equation 13). Obtaining this total Hamil-
tionian, Ĥtotal = Ĥmorse + Ĥrot is left as an exercise
for the reader, as well as the equation for energy in
terms of the quantum numbers n and l:

En,l = h̄ω

(
n+

1

2

)
− h̄2ω2

4DE

(
n+

1

2

)2

+Bnl(l + 1) +Dnl
2(l + 1)2 ,

(14)

where the first two terms are the given by equa-
tion (9) and the last two terms are the rotational-
vibrational energy discussed in § 3.3. Reordering
terms, we obtain:

En,l =
[
h̄ω
(
n+ 1

2

)
+Bel(l + 1)

]
−
[
h̄2ωχ

(
n+ 1

2

)2
+Del

2(l + 1)2
]

−
(
n+ 1

2

) (
αel(l + 1) + βel

2(l + 1)2
)
, (15)

where ωχ = ω2(4DE)−1. In the expression above,
the first term corresponds to the energies of the har-
monic oscillator and rigid rotor, the second one re-
flects corrections to the energy given by anharmonic-
ity and centrifugal distortion, and the last term cor-
responds to rotation-vibration interaction.

As an exercise, we propose that readers work on
some of the following ideas that could improve the
presented models:

-Include higher order correction terms in the an-
harmonic oscillator. (These corrections make possi-
ble several other transitions given by the selection
rules).

-Include higher order corrections in the rotational
Hamiltonian, which would have the same effect as
the corrections of the anharmonic oscillator.

-Include molecular interactions, which would
take place in a diatomic gas.

Fig. 1. Computed IR spectrum of the CO molecule.
Fundamental and first overtone transitions are present
around 2.35µm and 4.67µm, respectively. Bands are
clearly appreciated.

4. DISCUSSION

In the previous section we presented a model consid-
ering rotational and vibrational Hamiltonians with a
Morse potential as a first approximation for diatomic
molecules without molecular interactions. Using
equation (14) with the transition values ∆n and
∆l of 0,±1,±2, we obtained the wavelengths cor-
responding to IR transitions. Our calculations, in
spite of not having the amplitude of probability for
every transition, expose the complexity of the IR
spectrum. We have used equation (14) rather than
equation (7) since this model does not include the
mixed energy terms.

We apply the results found to the CO molecule,
as shown in Figure 1. Molecular constants for the
CO were taken from Le Floch (1991) and are re-
ported in Table 3. Experimental measurements of
these constants using a near-IR spectrophotometer
were presented by Mina-Camilde et al. (1996).

The CO spectrum shown in Figure 1 illustrates
that IR transitions form bands. Our model illus-
trates how complex it is to obtain the infrared spec-
trum of heteronuclear diatomic molecules: every
transition will depend on the initial state of vibration
and rotation, i.e., both quantum numbers n and l.
Note that the parameters used in the Hamiltonians
depend on the moment of inertia, mass and internu-
clear distance and on the existence of mixed terms
in the energy given by equation (15).
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TABLE 3

MOLECULAR CONSTANTS FOR CO

Be × 101 (cm−1) De × 10−5 (cm−1) αe × 10−1 (cm−1)

0.193128081434 0.6121593342 0.1750399404

βe ×10−9 (cm−1) ω (cm−1) ωχ (cm−1)

-0.9316227 2169.81259421 13.287834373

Fig. 2. Line identification. KS− and M−band telluric spectra (black) are shown in the bottom and upper panels,
respectively. In both panels we show the CO absorption lines identified with our computed wavelengths (blue). Fun-
damental mode transitions occur in the KS−band. First overtone transitions are present in the M−band. The color
figure can be viewed online.

We compare our theoretical CO IR wavelengths
with those of the high resolution (R = 40000) tel-
luric spectrum6 created from data made available by

6These NSO/Kitt Peak FTS IR telluric spec-
tra produced by NSF/NOAO are available at https:
//www.eso.org/sci/facilities/paranal/decommissioned/isaac/
tools/spectroscopic standards.html.

the NSO/Kitt Peak Observatory, in the KS− and
M−bands.

Although the atmosphere spectrum presents mul-
tiple absorption lines of CO, CO2 and H2O, we have
identified several CO lines in the observed telluric
spectrum using our computed CO lines as the ref-
erence spectrum. This identification was produced

https://www.eso.org/sci/facilities/paranal/decommissioned/isaac/tools/spectroscopic_standards.html
https://www.eso.org/sci/facilities/paranal/decommissioned/isaac/tools/spectroscopic_standards.html
https://www.eso.org/sci/facilities/paranal/decommissioned/isaac/tools/spectroscopic_standards.html
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by means of the IRAF7 task identify of the pack-
age onedspec (devoted to reduction and calibration
of spectra) reaching an average precision of 0.003
per cent with respect to our theoretical wavelengths.
We also made a linear regression between our wave-
lengths and those identified in the telluric spectrum.
The slope of the regression is equal to one, the in-
tercept is zero (with a precision of 10−7) and the
R2 coefficient is one (with a precision of 10−11).
This linear regression shows that our computed CO
wavelengths agree with those identified in the telluric
spectrum.

Figure 2 illustrates the KS− and M− bands
IR telluric spectra, where CO absorption lines are
clearly identified with our computed lines. In these
regions the absorption features present in the atmo-
sphere are caused by water vapour, carbon dioxide
and greenhouse gases.

5. CONCLUSIONS

In order to analyse the IR spectra of astronomi-
cal sources it is important to identify the telluric
features that are produced by the terrestrial atmo-
sphere. In this work we present a quantum mechan-
ics model, useful to obtain analytical expressions for
the transition energies of heteronuclear atmospheric
molecules. The Hamiltonian used includes the rota-
tion and vibration of diatomic molecules, as well as
the interactions between them. We showed that it is
possible, with this model, to identify transitions of
CO molecule that are present in the KS− and M−
bands.
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18A-10, Bloque Ip, A.A. 4976 Bogotá, Colombia (josegarc, bsabogal@uniandes.edu.co).
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