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ABSTRACT

We present a derivation based on the “center of mass formalism” of the
asymptotic behaviour of internal working surfaces produced in a variable Herbig-
Haro (HH) jet. We obtain the general solution for an arbitrary periodic ejection
time-variability, and then show examples for a limited set of functional forms for
the velocity and density time-evolutions. Finally, we derive a prescription for ob-
taining the time-averaged mass loss rate from observations of knots along an HH jet
(based on the asymptotic solution), and apply it to derive the mass loss rate of the
HH 1 jet.

RESUMEN

Presentamos una derivación basada en el “formalismo de centro de masa”
del comportamiento asintótico de superficies de trabajo internas producidas en un
yet Herbig-Haro (HH) variable. Obtenemos la solución general para una eyección
periódica arbitraria, y después mostramos ejemplos para un conjunto limitado de
formas funcionales para la evolución temporal de la velocidad y la densidad. Fi-
nalmente, derivamos una prescripción para calcular la tasa de pérdida de masa
promedio de observaciones de los nudos a lo largo de un yet HH (basada en la
solución asintótica), y la aplicamos para derivar la pérdida de masa del yet de
HH 1.

Key Words: Herbig-Haro objects — ISM: individual objects: HH 1 — ISM: jets
and outflows — ISM: kinematics and dynamics — stars: formation —
stars: winds, outflows

1. INTRODUCTION

The suggestion that the knotty structures in astro-
physical jets could be the result of a time-dependent
ejection was first made in the context of extragalac-
tic jets (see, e.g., Rees 1978; Wilson 1984; Roberts
1986). However, the theory of variable jets has
been mostly developed and applied in the context
of Herbig-Haro (HH) jets from young stars.

Raga et al. (1990) apparently first pointed out
in an explicit way that the structures observed in
HH jets could be easily modeled as “internal working
surfaces” produced by an ejection velocity variabil-
ity with a hypersonic amplitude (though the general
idea that HH knots are the result of a variability of
the ejection hovers around in the literature of the late
1980’s). Since then, a relatively large number of pa-

1Instituto de Ciencias Nucleares, UNAM, México.
2Inst. de Investigación en Ciencias F́ısicas y Matemáticas,

USAC, Guatemala.
3Instituto de Astronomı́a, UNAM, México.

pers has been written on numerical simulations and
analytic models of variable ejection HH jets, as well
as comparisons with observations (three relatively
recent examples are Teşileanu et al. 2014; Hansen et
al. 2017; Castellanos-Ramı́rez et al. 2018).

Kofman & Raga (1992) and Raga & Kofman
(1992) studied analytically the asymptotic regime
reached by internal working surfaces at large dis-
tances from the outflow source. They noted that
the internal working surface shocks (see Figure 1)
asymptotically have shock velocities that scale as
1/x and pre-shock densities with the same depen-
dence on distance x from the source. Approximating
the emission from these shocks with the predictions
from plane-parallel shocks, Raga & Kofman (1992)
showed that the asymptotic working surface model
predicts a [S II] line intensity vs. x decay that agrees
surprisingly well with observations of the HH 34 jet.
More recently, Raga et al. (2017) showed that the
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148 RAGA, CANTÓ, & CASTELLANOS-RAMı́REZ

successive knots along the HH 1 jet have the pre-
dicted [S II] intensity vs. position dependence, and
also that individual knots follow the predicted be-
haviour as a function of time, following the increase
in x that results from their motion away from the
outflow source.

Kofman & Raga (1992) and Raga & Kofman
(1992) found the asymptotic regime by considering
a “ram-pressure balance” equation of motion for the
internal working surfaces. This equation of motion is
valid for the case in which the gas that goes through
the working surface shocks is ejected laterally in an
efficient way, and does not remain within the work-
ing surface. Though these authors determined the
form of the position dependence of the shock veloc-
ities and pre-shock densities of the internal working
surfaces, they were unable to relate the proportional-
ity constants of these dependencies to the functional
form of the ejection velocity and density.

In this paper, we study the asymptotic regime (of
internal working surfaces at large distances from the
outflow source) using the “center of mass” equation
of motion of Cantó et al. (2000). This equation of
motion is valid for internal working surfaces in which
a large part of the gas passing through the shocks
stays within the working surface. The theoretical
attraction of this formalism is that it generally leads
to full (though possibly quite complex) analytic so-
lutions (see, e.g., Cantó & Raga 2003).

The paper is organized as follows. In § 2 we pro-
vide a summary of the “center of mass formalism”
of Cantó et al. (2000), giving the equation of motion
for the internal working surfaces and the free-flow
(velocity and density) solution for the continuous jet
beam segments between the working surfaces. In § 3,
we derive the full asymptotic solution for large dis-
tances from the outflow source. In § 4, we derive the
properties of the working surfaces for a limited set
of chosen ejection velocity and density variabilities.
In § 5, we calculate the Hα and red [S II] position-
dependent luminosities of the asymptotic working
surfaces. In § 6, we discuss the “inverse problem”
of taking the observed properties of a knot (in par-
ticular, the spatial velocity and line luminosity of a
given knot, and the knot position and knot spacing)
and deducing the mean mass loss rate of the out-
flow. In § 7, we use this inverse problem to deduce
the mass loss rate of the HH 1 jet. Finally, the results
are summarized in § 8.

Fig. 1. Schematic diagram of an internal working surface
produced by the interaction of slower material (of veloc-
ity u1 and density ρ1) with faster material (of velocity
u2 and density ρ2) ejected at later times. The working
surface has two shocks. the bow shock (blue, solid line)
and the “jet shock” (double, solid red line). The dashed
lines represent the outer boundary of the jet beam. The
color figure can be viewed online.

2. EQUATION OF MOTION FOR AN
INTERNAL WORKING SURFACE

This section is a short summary of the “center of
mass equation of motion” for working surfaces de-
rived by Cantó et al. (2000). The idea embodied by
this formalism is as follows:

• in a hypersonic jet (or wind), in the absence
of shocks the fluid parcels are free-streaming,
preserving their initial ejection velocity u0,

• when shocks form due to “catching up” of faster
parcels ejected at later times with slower parcels
ejected at earlier times, “internal working sur-
faces” are formed (see Figure 1). These working
surfaces are assumed to be compact (with ex-
tents along the outflow direction which can be
neglected), so that each of them has a single,
time-dependent distance from the source xws,

• if one assumes that all of the mass entering
through the two working surface shocks stays
in a region close to the working surface (an as-
sumption that is correct for a spherical wind,
and might also be appropriate for radiative jets),
then:



©
 C

o
p

y
ri

g
h

t 
2

0
2

1
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
1

.5
7

.0
1

.1
0

ASYMPTOTIC INTERNAL WORKING SURFACES 149

• with this “mass conservation” condition, a
working surface can be seen as a particle formed
by the coalescence of fluid parcels, with the mass
and momentum of the coalesced parcels. Then,
the position xws of the working surface will be
equal to the position xcm of the center of mass
of the fluid parcels if they had continued free-
streaming without coalescing.

Cantó et al. (2000) showed that this center of mass
can be calculated as a function of the ejection ve-
locity and density history in a direct way, leading to
analytic solutions for the time-dependent positions
and velocities of the successive internal working sur-
faces. Here, we summarize their results.

Let us assume an arbitrary, periodic variation
u0(τ), ρ0(τ) of the ejection velocity and density.
This periodic ejection variability produces a chain of
internal working surfaces, and we consider the time-
dependent position

xcm(t) =

∫ τ2
τ1
x(t, τ)ρ0(τ)u0(τ)dτ∫ τ2
τ1
ρ0(τ)u0(τ)dτ

, (1)

of the centre of mass of the material within one of the
working surfaces. In this equation, t is the present
time, and τ ≤ t is the “ejection time” at which the
fluid parcels were ejected. The position x(t, τ) of
the free-streaming fluid parcels is given by the free-
streaming flow condition

x(t, τ) = (t− τ)u0(τ) . (2)

The τ1 and τ2 values in equation (1) are the ejection
times of the fluid parcels which are now entering the
working surface from the downstream and upstream
directions (respectively), and correspond to two suc-
cessive roots of the equation:

xcm = (t− τ1,2)u0(τ1,2) . (3)

We also note that the density of a free-streaming
jet with a position-dependent cross section σ(x) is
given by:

σ(x)ρ(x, t) =
σ0ρ0(τ)u0(τ)

u0(τ)− (t− τ)u̇0(τ)
, (4)

where σ0 and ρ0(τ) are the ejection cross section
and density, respectively, and u̇0(τ) = du0/dτ . This
solution for the density can be straightforwardly ob-
tained by inserting the free flow condition (2) into
the appropriate continuity equation.

3. THE ASYMPTOTIC REGIME

For large distances from the source, most of the
ejected material has already entered the working sur-
faces, so that the ejection time-interval of the mate-
rial entering the working surface from the upstream
and downstream directions becomes τ2 − τ1 ≈ τp,
where τp is the period of the ejection variability. In
this regime, the τ1 → τ2 interval of the integrals can
therefore be replaced by the −τp/2→ τp/2 interval.
Equation (1) then becomes:

xcm = (t− τa)va , (5)

where

va =

∫ τp/2
−τp/2 ρ0(τ)u2

0(τ)dτ∫ τp/2
−τp/2 ρ0(τ)u0(τ)dτ

, (6)

is the (constant) asymptotic velocity of the working
surface and

τa =

∫ τp/2
−τp/2 τρ0(τ)u2

0(τ)dτ

va
∫ τp/2
−τp/2 ρ0(τ)u0(τ)dτ

, (7)

is an average ejection time of the material that lies
within a given internal working surface. Clearly,
by choosing to carry out the integrals over the
−τp/2→ τp/2 range we are choosing the internal
working surface formed by the material ejected in
this ejection time interval.

Therefore, regardless of the form of the periodic
ejection velocity and density variability, at large dis-
tances from the source the working surfaces travel at
a constant velocity, which is given by equation (6).
It is also possible to obtain the shock velocities of
the working surface shocks in the following way.

At large distances from the source, the material
in the continuous segments of the jet corresponds to
a small range of ejection times around τn, where the
index n numbers the successive continuous segments.
The ejection time τn is determined by the condition

u0(τn) = va , (8)

where one has to choose the root with u̇0(τn) < 0,
and va is given by equation (6). Clearly,

τn+1 = τn + τp , (9)

and the free-streaming flows on the two sides of the
working surface have linear velocity vs. position re-
lationships, giving velocities

u1 =
xcm
t− τn

, u2 =
xcm

t− τn+1
, (10)
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immediately down- and up-stream of the working
surface.

Using equation (9), we have

t− τn+1 = (t− τn) (1− ε) , with ε =
τp

t− τn
, (11)

with ε� 1 in the asymptotic regime.
We can then use equations (5), (10) and (11) to

calculate the velocity jump accross the working sur-
face:

∆u = u2 − u1 =
v2
aτp
xcm

, (12)

where we have carried out a first order expansion in
ε (see equation 11).

Also, the free-streaming flow density integral (4),
when evaluated in τn gives:

ρ1,2 ≈
ρ0(τn)σ0

σ(xcm)
[
1− (t− τn)d lnu0

dτ (τn)
] , (13)

where we can calculate both upstream and down-
stream densities using τn, given that in the asymp-
totic regime we have ε � 1 (see equation 11). In
this equation, σ0 is the ejection cross section and
σ(xcm) the cross section at the position of the work-
ing surface. Equation (13) can be further simplified
by noting that

−(t− τn)
d lnu0

dτ
(τn) ≈ t− τn

τp
= ε−1 , (14)

and therefore, in the asymptotic, ε � 1 regime the
first term in the denominator of equation (13) can
be neglected. In this way, we obtain

ρ1,2 ≈ −
ρ0(τn)σ0u0(τn)

σ(xcm)u̇0(τn)(t− τn)
, (15)

with equal densities on both sides of the internal
working surface. The fact that the densities on both
sides of the working surface asymptotically approach
each other, and that the velocity of the working sur-
face becomes constant, implies that the shock ve-
locities of the two working surface shocks also have
the same value. Therefore, the velocity jump ∆u
across the working surface (see equation 12) is di-
vided into two shocks of velocities ∆u/2. In this
way, we see that as the working surface travels away
from the outflow source at the asymptotic velocity
va, the shocks have velocities that decrease as 1/xcm
(see equation 12).

Combining equations (5), (15) and (8) we obtain:

ρ1,2 =
Σ

xcmσ(xcm)
, (16)

where

Σ ≡ −ρ0(τn)σ0
v2
a

u̇0(τn)
, (17)

is a (positive) constant, σ(xcm) is the cross section of
the jet (at the position of the working surface) and
ρ0 and u̇0 are calculated at the time τn at which the
material of the asymptotic segments of continuous
jet beam were ejected, which is given by equation (8).

4. EXAMPLES FOR A SINUSOIDAL U0(τ) AND
TWO SIMPLE FORMS OF ρ0(τ)

4.1. Ejection Velocity Variability

For the ejection velocity, we choose a sinusoidal vari-
ability:

u0(τ) = v0 + ∆v0 sinωτ , (18)

with mean velocity v0, half-amplitude ∆v0, fre-
quency ω and period τp = 2π/ω. The half amplitude
∆v0 lies in the 0→ v0 interval.

4.2. Constant Ṁ

We first choose a density variability such that the
jet has a time-independent Ṁ . The ejection density
then is:

ρ0(τ) =
Ṁ

σ0u0(τ)
=

Ṁ

σ0 (v0 + ∆v0 sinωτ)
, (19)

where σ0 is the ejection cross section, and where we
have used equation (18) for the second equality.

With the chosen u0(τ) and ρ0(τ) (equations 18
and 19, respectively), from equation (6) we obtain

va = v0 , (20)

from equation (8) we obtain

τn = τp/2 + nτp , (21)

and from equation (17) we obtain

Σ =
Ṁv0τp
2π∆v0

. (22)

In this way, we can calculate the shock veloci-
ties ∆u/2 (see equation 12) and pre-shock densities
ρ1 = ρ2 (see equation 16) of the asymptotic working
surfaces as a function of their position xcm, the jet
cross-section σ(xcm), the (time-independent) mass
loss rate Ṁ , and the period τp, mean velocity v0 and
half-amplitude ∆v0 of the ejection velocity variabil-
ity.
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4.3. Constant ρ0

We now consider the case of a time-independent ejec-
tion density ρ0. Then, the time-averaged mass loss
rate of the ejected jet is Ṁ = σ0ρ0v0, where σ0 is
the ejection cross section and v0 is the mean velocity
of the jet (see equation 18).

Using equation (18) and setting a time-
independent ρ0, from equation (6) we obtain

va = v0

[
1 +

1

2

(
∆v0

v0

)2
]
, (23)

from equation (8) we obtain

τn =
τp
2
− τp

2π
sin−1

(
∆v0

2v0

)
+ nτp , (24)

and from equation (17) we obtain

Σ =
Ṁv0τp
2π∆v0

g

(
∆v0

v0

)
, (25)

with

g

(
∆v0

v0

)
=

[
1 + 1

2

(
∆v0
v0

)2
]2

√
1− 1

4

(
∆v0
v0

)2
. (26)

If we consider the ∆v0/v0 → 0 lower limit of the
velocity amplitude, we regain the results obtained
for the constant mass loss rate case (see § 4.2). If we
consider the ∆v0/v0 → 1 upper limit, we obtain:

va =
3v0

2
, (27)

τn =
5τp
12

+ nτp , (28)

and

Σ =
3
√

3Ṁv0τp
4π∆v0

. (29)

Therefore, in the ∆v0/v0 → 1 large amplitude limit
the constant ρ0 case gives an asymptotic velocity va
for the working surfaces which is a factor 3/2 larger
than the one of the constant mass loss case, and a
“density constant” Σ larger by a factor 3

√
3/2.

5. THE EMISSION OF ASYMPTOTIC
WORKING SURFACES

We now estimate the Hα and red [S II] luminosities
of the asymptotic working surfaces as:

Lline = 8πσIline(npre, vs) , (30)

where σ is the cross section of the jet at the po-
sition of the working surface, npre = ρ1,2/(1.3mH)
(where ρ1,2 is the pre-working surface shock density,
see equation 16), vs = ∆u/2 is the shock velocity
(see equation 12), and Iline is the line flux emerging
from one of the two shocks (the factor 8π account-
ing for the fact that we have 2 shocks radiating into
4π sterad).

As described in Appendix A, we use the plane-
parallel, steady shock models of Hartigan et al.
(1987) to determine the functional form:

Iline = nprefline(vs) , (31)

with fline = fHα or f[SII] determined from fits to
the predictions of the plane-parallel shock models
(see equations A38 and A39 of Appendix A).

Combining equations (30), (31), (16) and (25),
we obtain:

Lline =
4Ṁv0τp

1.3mH∆v0
g

(
∆v0

v0

)
fline(vs)

xcm
, (32)

where Ṁ is the time-averaged mass loss rate (see
equation 25) and vs = ∆u/2 is given by equa-
tion (12). Equation (32) is equivalent to equa-
tion (34) of Raga & Kofman (1992), but includes
a more general form for the shock velocity depen-
dence of the emission and a full determination of the
constants.

For a sinusoidal ejection velocity variability and
a density variability such that the mass loss rate is
time-independent (see § 4.2), the position-dependent
luminosity of the working surface in the Hα and [S II]
lines can be obtained by setting f = fHα or f = fSII
(see equations A38 and A39 in Appendix A, respec-
tively) and g(∆v0/v0) = 1 (see equation 22).

For the case of a constant density ejec-
tion, the Hα and [S II] luminosities can be
obtained using the g(∆v0/v0) function of equa-
tion (26). For ∆v0/v0 � 1, this function has a value
g(∆v0/v0) ≈ 1.

6. THE INVERSE PROBLEM

Several HH outflow systems show chains of quasi-
periodic, aligned knots within ≈ 1017 cm (≈ 104 AU)
of the outflow source. These knots generally have
spatial velocities in excess of ≈ 150 km s−1 (deter-
mined from radial velocity and proper motion stud-
ies), and have very low excitation emission line spec-
trum, with high red [S II]/Hα and [O I] 6300/Hα line
ratios. These line ratios imply relatively slow shock
velocities (of ≈ 20-30 km s−1).
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In the case of the HH 1 jet, this very low excita-
tion is present in all of the observed knots along the
HH 1 jet, including the knots that lie closer to the
outflow source (observed in the IR, see, e.g., Table 2
of Nisini et al. 2005). The knots formed by a velocity
variability with a half-amplitude ∆v0 produce inter-
nal working surfaces that rapidly reach peak shock
velocities vs ≈ ∆v0 (before reaching the asymptotic
regime described in § 3), as shown, e.g., by Raga
& Cantó (1998) and Cantó et al. (2000). There-
fore, the low excitation of all knots along the HH 1
jet (and in particular, the ones closer to the outflow
source) indicates that the ejection time variability in
HH 34 has a small ∆v0/v0 (where v0 is the mean
ejection velocity, and ∆v0 is the half-amplitude of
the variability, see, e.g., equation 18). A similar sit-
uation is found for the HH 1 jet, and for other jets in
which all of the knots along the chains close to the
outflow source have a very low excitation spectrum
(e.g., HH 34, see Podio et al. 2006.

In this section we show how observational deter-
minations of the knot spacing ∆x, and the luminos-
ity Lline of a given emission line and spatial velocity
va of a knot at position xws can be used to constrain
the average mass loss rate of the ejection. We will
identify the observed position xws of the knot with
the xcm center of mass position that comes out of our
model, so that in the following we will set xcm = xws.

For a low-amplitude sinusoidal ejection velocity
variability, both the constant mass loss rate and con-
stant ejection density cases (see § 4.2 and § 4.3) give:

va ≈ v0 ; ρpre ≈
Ṁv0τp

2π∆v0xwsσ(xws)
, (33)

where va is the asymptotic working surface velocity,
and xws is the position of a given working surface.
The line emission of the working surface is then given
by equation (32) with g(∆v0/v0) = 1.

For a periodic ejection velocity, all of the work-
ing surfaces in the asymptotic regime move with the
constant velocity va. Therefore, if we observe the
spatial velocity va (determined from proper motion
and radial velocity measurements) and knot spacing
∆x, we can obtain the variability period as

τp =
∆x

va
. (34)

We now observe the flux of a given emission line, and
using the distance to the object and the extinction
(which we assume has also been determined) we can
calculate the luminosity Lline of the line. If the ob-
served knot lies at a distance xws from the outflow
source, we first use equation (12) to calculate the

shock velocity of the two working surface shocks:

vs =
∆u

2
=
v2
aτp

2xws
=
va∆x

2xws
. (35)

With our empirical determinations of Lline, τp and
vs, we then invert equation (32) (setting g = 1, see
above) to calculate the average mass loss rate

Ṁ =
1.3mHLline∆v0 xws

4v0τpfline(vs)
, (36)

where in Appendix A we give analytic forms for the
fline(vs) functions for the Hα and red [S II] emission.
Clearly, in order to calculate the mass loss rate, we
need to know the value of the half-amplitude ∆v0 of
the ejection velocity variability. If we cannot deter-
mine this parameter from other observations, we can
set ∆v0 ≈ vs.

7. AN APPLICATION TO THE HH 1 JET

As an example we consider the “HH 1 jet”, which
points from near the source of the HH 1/2 out-
flow system towards HH 1. Raga et al. (2017)
and Castellanos-Ramı́rez et al. (2018) argue that
the intensity vs. position dependence of the knots
at distances > 5′′ from the source can be modelled
as coming from working surfaces in the “asymptotic
regime”.

We calculate the mass loss rate of the HH 1 jet
using the calibrated line fluxes of knot G by Nisini et
al. (2005). At the time of their observations, the G
knot was at xG = 6.5′′ = 3.9×1016 cm from the out-
flow source. From the HST images shown in Raga et
al. (2017), we see that the separation between suc-
cessive knots is ∆xG ≈ 2′′ = 1.2×1016 cm. Also, the
proper motion velocity of knot G is vG = 287 km s−1,
which is very close to its full spatial velocity because
the outflow lies at a very small angle with respect to
the plane of the sky.

First, with the xG, ∆xG and vG values, we
use equations (34) and (35) to obtain a period
τp = 13.3 yr and a shock velocity vs = 44.2 km s−1.

Then, taking the knot G line fluxes from Nisini
et al. (2005), applying a reddening correction
with their Av = 2.0 extinction (taking a stan-
dard, E(B − V )/Av = 3.1 extinction curve) and as-
suming a distance of 400 pc to HH 1, we ob-
tain LHα = 1.77× 10−4L� and L[SII] = 5.19 ×
10−4L�. Using equation (36) with ∆v0 = vs,
we obtain ṀHα = 7.76 × 10−8M�yr−1 and
Ṁ[SII] = 8.07× 10−7M�yr−1 from the observed Hα
and [S II] emission of knot G, respectively.
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These two mass loss rate estimates can be com-
pared with the estimates of Nisini et al. (2005). who
(using different methods) find Ṁ ≈ 6.9 × 10−8 →
2.4 × 10−7M� yr−1 for knot G of the HH 1 jet. Of
our two estimates, we favour the 8.07×10−7M� yr−1

estimate obtained from the [S II] luminosity. This
is because the [S II] emission is produced closer to
the shock than Hα, and the [S II] prediction from
stationary, 1D shock models is therefore more likely
to be applicable to the time-dependent, multidimen-
sional jet flow.

8. SUMMARY

We have applied the “center of mass equation of mo-
tion” to find the asymptotic behaviour (at large dis-
tances from the outflow source) of the internal work-
ing surfaces produced by an arbitrary, periodic out-
flow variability with an ejection velocity u0(τ) and
a density ρ0(τ). We find the complete asymptotic
solution, giving the constant, asymptotic velocity va
and the position-dependent shock velocities and pre-
shock densities of the working surfaces.

We obtain the same position-dependencies that
have been found by Raga & Kofman (1992) using
the “ram-presure balance” equation of motion for the
working surfaces. However, Raga & Kofman (1992)
were unable to find the relation between the propor-
tionality constants (for the density and shock veloc-
ity vs. position) and the ejection variability.

With our full asymptotic solution, we compute
the knot properties for two chosen combinations of
u0(τ) and ρ0(τ) (see § 4). We also discuss the “in-
verse problem” of finding the properties of the ejec-
tion from the observational characteristics of the jet
knots (see § 5). In particular, we derive a very sim-
ple expression for estimating the time-averaged mass
loss rate of the ejection as a function of the position
x, the separation ∆x between successive knots, the
spatial velocity va and the luminosity Lline (in Hα
or in the red [S II] lines) of a given knot.

We apply this “inverse problem” to observations
of the HH 1 jet (line intensities and extinctions of
Nisini et al. 2005 and proper motions of Raga et al.
2017), and find mass loss rates which are similar to
the ones of Nisini et al. (2005). This result is nothing
short of surprising, given the fact that our mass loss
rate determination is completely model-dependent,
and comes from a rather eclectic collection of ob-
servational characteristics (e.g., including the knot
spacing).

This success of obtaining the previously deter-
mined mass loss rate is interesting in two different
ways:

• it shows in a quite definite way that the inter-
pretation of the chain of knots of the HH 1 jet
as internal working surfaces formed by a quasi-
periodic outflow variablity is apparently correct,

• it gives us a new method for determing mass
loss rates of outflows from young stars, using the
spatial velocity, knot spacings and the intensity
in a single emission line of the knots along the
HH jet.

Less optimistically, we note that we have deter-
mined (through the use of the asymptotic working
surface model) the mass loss rate of the HH 1 jet
from the Hα and [S II] luminosities, obtaining
Ṁ = 7.8× 10−8 and 8.1×10−7M�yr−1, respectively,
which differ by one order of magnitude. This re-
sult is in agreement with the results of Nisini et al.
(2005) partly because they also obtain a range of
mass loss rate determinations which also differ (from
each other) by an order of magnitude. This is clearly
not a very good situation.

In our “asymptotic working surface model” mass
loss rate determinations, the obvious possible reason
for the discrepancy between the Hα and [S II] results
is the modelling of the emission with steady, plane-
parallel shock models. As has been already noted
in the early literature on modelling HH objects (see
Dopita et al. 1982), the cool tail of the recombina-
tion region does not have time to develop fully in
HH shock waves. The resulting “truncation” of the
cooling region has a stronger effect on the predicted
Hα emission than on the forbidden lines (Raga & Bi-
nette 1991), so that the mass loss rate deduced from
the [S II] luminosity (i.e., Ṁ = 8.1 × 10−7M�yr−1)
is likely to be more reliable.

Also, not only the shocks in working surfaces
have non-steady state recombination regions, but
also they are not likely to be plane. This is seen in
numerical simulations of variable jets (see, e.g., Raga
et al. 2007) as well as in high angular resolution ob-
servations of HH jets (see, e.g., Reipurth et al. 2002).
It is therefore to be expected that analyses with the
assumption of the emission being produced by plane,
steady, shocks will not give fully consistent mass loss
rate determinations using different emission lines.

We end by noting that there is a lot of indirect
evidence that the knot structures along HH jets are
the result of a variable ejection. This evidence is pro-
vided by the surprising success of variable jet mod-
els at reproducing the observed morphologies, the
proper motions and the time-evolution of HH jets
(see, e.g., Castellanos-Ramı́rez et al. 2018). How-
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ever, convincing observations of a variable ejection
from the outflow sources (i,e., in the spectra of the
young stars or the protostars ejecting the HH jets)
that can be directly linked to structures along the
jets have been elusive. Some observations of the
so-called “HH microjets” (with distance scales of
≈ 1016 cm and timescales of ≈ a few years) might be
showing such a connection (see, e.g., Agra-Amboage
et al. 2011). However, for obvious reasons such ob-
servations have not been made for the larger scale
“normal” HH jets (with distance scales ≈ 1017 cm
and timescales from several decades to ≈ 1000 yr).

Because of this general lack of direct link to the
time-dependence of the outflow source, the details
of the ejection variability cannot be determined di-
rectly and have to be chosen in a way that results
in the production of a jet with the observed char-
acteristics. In particular, while the mean velocity
and characteristic period of the variability produc-
ing a chain of knots can be satisfactorily constrained
by observations of the spatial motion (radial veloc-
ities+proper motions) and knot spacing, estimates
of the amplitude of the ejection velocity variability
depend on less convincing arguments about the ex-
citation of the emission line spectrum of the knots
closer to the outflow sources (see § 7).

This work was supported by the DGAPA
(UNAM) grant IG100218. AC was supported by a
DGAPA (UNAM) postdoctoral fellowhip. We thank
Pierre Lesaffre (the referee) for helpful comments.

APPENDIX

A. FITS TO THE LINE EMISSION OF
PLANE-PARALLEL SHOCKS

We approximate the Hα and [S II] 6716+30 (which
we will call “[S II]”) line emission of the working
surface shocks with the plane-parallel, steady shock
models of Hartigan et al. (1987). These lines show
the well known scaling:

Iline = nprefline(vs) , (A37)

where Iline is the intensity in a given line emerging
from the front of the shock, npre is the pre-shock
ion+atom number density (which in the following
we assume is in units of cm−3), and fline(vs) is a
function of the shock velocity vs which is obtained
from the detailed 1D, stationary shock models. For a
gas with 90% H and 10% He, npre = ρpre/(1.3mHH)
(with mH being the hydrogen mass), where ρpre is
the pre-shock density.

Fig. 2. Predictions of the Hα (crosses) and red [S II]
intensities (open circles) as a function of shock velocity
vs from the models of Hartigan et al. (1987). The solid
and dashed lines show the analytic fits of equations (A38)
and (A39), respectively.

In Figure 2, we show the values of
fHα = FHα/npre and f[SII] = F[SII]/npre for
the vs = 20→ 100 km S−1 models of Hartigan et al.
(1987). For the shocks in the vs = 20 → 80 km s−1

range, the Hα flux closely follows the power law:

log10 fHα = 3.57 log10 vs − 11.84 , (A38)

with vs in km s−1 and fHα in erg cm s−1.
The red [S II] emission has a more complicated

dependence with vs, and in order to fit it with power
laws one has to specify limited shock velocity ranges.
We fit a cubic polynomial to the “log-log” relation
in the vs = 20→ 80 km s−1 range, obtaining:

log10 f[SII] =4.28 (log10 vs − 1.59)
3

+

0.70 log10 vs − 7.67 , (A39)

with vs in km s−1 and f[SII] in erg cm s−1. This
relation provides a smooth interpolation between the
predictions of the 20→ 80 km s−1 shock models (see
Figure 2).
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J. Cantó and A. Castellanos-Ramı́rez: Instituto de Astronomı́a, Ap. 70-468, 04510 Cd. Mx., México.
A. C. Raga: Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510
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