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ABSTRACT

We present an analytic model of a collimated ejection with a “single pulse”
Gaussian ejection velocity. This flow produces a dense “head” (the leading working
surface) joined to the outflow source by a “tail” of lower velocity material. For times
greater than the duration of the ejection pulse, this tail develops a linear radial
velocity vs. position structure. This “head/tail plasmon” structure is interesting
for modelling astrophysical “bullets” joined to their outflow sources by structures
with “Hubble law” radial velocity dependencies. We study the case of a Gaussian
ejection velocity law with a constant and a Gaussian ejection density history, We
compare these two cases, and find that the main effect of the different ejection
density histories is to change the mass and the density stratification of the plasmon
tail.

RESUMEN

Presentamos un modelo anaĺıtico de una eyección colimada con una velocidad
de eyección en forma de un único “pulso”. Este flujo produce una “cabeza” densa
(la superficie de trabajo) unida a la fuente por una “cola” de material de menor
velocidad. Para tiempos mayores que la duración del pulso, esta cola desarrolla una
dependencia lineal de velocidad radial vs. posición. Esta estructura de “plasmón
cabeza/cola” es interesante para modelar “balas” astrof́ısicas unidas a su fuente por
estructuras con velocidades radiales con forma de “ley de Hubble”. Estudiamos el
caso de una velocidad de eyección Gaussiana y con una historia de densidad de
eyección constante o Gaussiana. Comparamos estos dos casos, y encontramos que
el efecto más importante de las dos formas de la densidad de eyección es cambiar
la masa y la estratificación de la densidad en la cola del plasmón.

Key Words: hydrodynamics — ISM: Herbig-Haro objects — ISM: jets and outflows
— planetary nebulae: general — shock waves — stars: winds, outflows

1. INTRODUCTION

Collimated ejections from stars sometimes show high
velocity clump structures which are joined to the
source by a fainter emitting region with a “Hubble
velocity law” of increasing radial velocities with dis-
tance. This type of structure is seen in some plan-
etary nebulae; examples are described by Alcolea et
al. (2001) and Dennis et al. (2008).

There is also the remarkable “Orion fingers” mul-
tiple outflow from the Orion BN-KL region (e.g,
Allen & Burton 1983; Zapata et al. 2011; Bally et al.
2017). This outflow has ≈ 100 collimated features

1Instituto de Ciencias Nucleares, UNAM, México.
2Instituto de Astronomı́a, UNAM, México.
3Facultad de Ciencias, UNAM, México.

radiating away from the BN-KL multiple stellar sys-
tem. These features have CO emission with Hubble
law, linear radial velocity vs. position structures,
ending in compact clumps (seen in H2 and optical
atomic/ionic lines). Rivera-Ort́ız et al. (2019a, b)
have modeled these structures as dense clumps trav-
elling semi-ballistically away from the source region.

In a recent paper, Raga et al. (2020) have pre-
sented a model for a “single pulse ejection” jet, which
results in the production of a dense “head” joined to
the outflow source by a “tail” which develops a lin-
ear, Hubble law velocity structure for times greater
than the duration of the pulse. This “head/tail plas-
mon” flow is clearly promising for modelling the ob-
jects described above.
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234 RAGA ET AL.

Raga et al, (2020) studied the problem of a col-
limated flow produced by a parabolic, single pulse
ejection velocity variability. They also assumed the
mass loss rate to be time-independent during the
duration of the pulse (so that the ejection density
is proportional to the inverse of the ejection veloc-
ity). With these assumptions, they obtained a fully
analytic model, and also presented an axisymmetric
numerical simulation of the flow.

In the present paper, we extend the work of Raga
et al. (2020) to a different functional form for the
ejection velocity pulse, which we now assume to have
a Gaussian time-dependence. We also study two dif-
ferent forms for the ejection density history: a time-
independent density, and a Gaussian density history
(with the same time-width as the velocity pulse).

The paper is organized as follows. In § 2 we de-
scribe the time and position for the formation of the
leading working surface of the flow. In § 3 we de-
scribe the method for determining the motion of the
leading working surfaces, and apply it to the case of
constant ejection density. The solutions obtained for
different values of the environment to outflow density
ratio are presented in § 4. Solutions for the case with
a Gaussian ejection velocity variability are presented
in § 5. The velocity and density structures of the tails
(for the Gaussian plasmons with constant and with
Gaussian ejection density histories) are modeled in
§ 6. Finally, the results are summarized in § 7.

2. THE FORMATION OF A WORKING
SURFACE

In regions without shock waves, a 1D, hypersonic jet
flow follows the free-streaming solution

u(x, t) =
x

t− τ
= u0(τ) , (1)

where u(x, t) is the velocity (along the outflow axis)
as a function of distance x from the source at an
“evolutionary time” t, τ is the “ejection time” at
which the fluid parcel at position x was ejected, and
uo(τ) is the velocity with which it was ejected.

From equation (1), one can straightforwardly de-
rive the relation:

∂u

∂x
=

u̇0(τ)

(t− τ)u̇0(τ)− u0(τ)
. (2)

where u̇0 = du0/dτ . The fluid parcels ejected close
to a time τ will catch up with each other to form a
discontinuity when ∂u/∂x → ∞. The condition for
the formation of a discontinuity therefore is that the
denominator of equation (2) becomes zero (of course

Fig. 1. Schematic diagram showing the structure of a
“head/tail plasmon” produced by a single pulse ejection
velocity variability. The rising velocity wing of the ejec-
tion pulse piles up into the leading head, and part of the
decreasing velocity wing fills up the region between the
head and the outflow source. The color figure can be
viewed online.

provided that the ejection velocity is not constant, so
that the numerator of equation 2 is non-zero). From
this, we find that the time at which the flow ejected
at a time τ forms a discontinuity is:

tcol =
u0(τ)

u̇0(τ)
+ τ . (3)

We now propose a Gaussian form for the ejection
velocity:

u0(τ) = v0 e
−(τ/τ0)2 , (4)

where τ0 is the dispersion and v0 the peak velocity,
The time for the formation of a discontinuity (equa-
tion 3) is then:

tcol = − τ
2
0

2τ
+ τ . (5)

It is clear that for the flow ejected at large negative
times the formation of a discontinuity occurs at a
time tcol = τ (corresponding to the τ → −∞ limit of
equation 5). Therefore, the discontinuity is formed
at the position of the outflow source (x = 0), and
remains there until τ approaches τ0 (see equation 4)
and the ejection velocity begins to have significant
values.

As discussed, e.g., by Raga et al. (1990), the dis-
continuities formed by an ejection velocity variability
in a hypersonic jet correspond to two-shock “work-
ing surfaces”. The motion of the “head” (leading
working surface) of the flow produced by a Gaussian
ejection velocity pulse is described in the following
section. The region between the head and the out-
flow source is filled by material from part of the de-
creasing velocity wing of the ejection velocity pulse
(see the schematic diagram of Figure 1).
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GAUSSIAN PULSE PLASMON 235

3. THE MOTION OF THE PLASMON HEAD

Under the assumption of a cylindrical flow, the po-
sition xcm of the center of mass of the material that
has entered the working surface at the head of the
plasmon (see equation 1 of Raga et al. 2020) is given
by:

xcm =

∫ τ
−∞ ρ0xju0dτ

′ +
∫ xcm
0

ρaxdx∫ τ
−∞ ρ0u0dτ ′ +

∫ xcm
0

ρadx
, (6)

where ρa is the (possibly position-dependent) envi-
ronmental density, u0(τ ′) and ρ0(τ ′) are the ejection
velocity and density (respectively), xj is given by:

xj = (t− τ ′)u0(τ ′) , (7)

and the integration limit τ is the root of:

xcm = (t− τ)u0(τ) . (8)

Following Cantó et al. (2000) and Raga et al. (2020),
instead of inverting equation (8), we will use τ (i.e.,
the ejection time) as independent variable, and find
xcm (from equation 6) and the evolutionary time t
(from equation 8) as a function of τ .

We now consider a Gaussian ejection velocity
variability (see equation 4), a constant ejection den-
sity ρ0 and a uniform ambient density ρa. Equa-
tion (6) then takes the form:

ρax
2
cm

2ρ0
+ xcm

[
I1 −

1

u0(τ)
I2

]
= τ I2 − I3 , (9)

where

I1 =

∫ τ

−∞
u0(τ ′)dτ ′ =

√
πv0τ0
2

[
1 + erf

(
τ

τ0

)]
,

I2 =

∫ τ

−∞
u20(τ ′)dτ ′ =

√
π

2

v20τ0
2

[
1 + erf

(√
2τ

τ0

)]
,

I3 =

∫ τ

−∞
τ ′u20(τ ′)dτ ′ = −v

2
0τ

2
0

4
e−2(τ/τ0)

2

,

(10)

and

erf x =
2√
π

∫ x

0

e−x
′2
dx′ , (11)

is the error function.
From equations (9-10) we obtain the quadratic

equation for xcm:

σ

(
xcm
v0τ0

)2

+ b

(
xcm
v0τ0

)
= c , (12)

with

σ ≡
√

2

π

ρa
ρ0
, (13)

b=
√

2

[
1 + erf

(
τ

τ0

)]
− e(τ/τ0)

2

[
1 + erf

(√
2τ

τ0

)]
,

(14)

c =

(
τ

τ0

)[
1 + erf

(√
2τ

τ0

)]
+
e−2(τ/τ0)

2

√
2π

. (15)

4. SOLUTIONS FOR DIFFERENT σ VALUES

4.1. The σ = 0 “Free Plasmon”

The σ parameter is the ratio between the environ-
mental and ejection densities, multiplyed by a factor
of order one (see equation 13). For the “free plas-
mon”, σ → 0 case, equation (12) has the solution:

xcm
v0τ0

=

(
τ
τ0

) [
1 + erf

(√
2τ
τ0

)]
+ e−2(τ/τ0)2

√
2π

√
2
[
1 + erf

(
τ
τ0

)]
− e(τ/τ0)2

[
1 + erf

(√
2τ
τ0

)] .
(16)

Numerically, we find that the denominator → 0 as

τ → τa = 0.4953τ0 , (17)

and then xcm → ∞ at τ = τa. This result implies
that none of the material from the τ > τc wing of
the ejection pulse (see equation 4) ever reaches the
working surface. Therefore, the leading head has to
asymptotically approach a velocity

va = u0(τa) = 0.7825 v0 . (18)

Using the appropriate integrals from equation (10),
we find that the mass of the plasmon as a function
of τ is:

Mp(τ) =
M0

2

[
1 + erf

(
τ

τ0

)]
, (19)

where M0 is the mass of the ejection pulse. Evalu-
ated at τa (see equation 17) we obtain an asymptotic
mass Masym = 0.753M0. In other words, ≈ 75% of
the mass of the pulse is incorporated into the head of
the plasmon, and ≈ 25% remains in the “tail” that
joins the outflow source and the head.

4.2. Solutions for σ > 0

For σ > 0, the position xcm of the head of the plas-
mon can be straightforwardly obtained by inverting
equation (9), and evaluating the integrals (see equa-
tion 10) as a function of the ejection time τ . Also,
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236 RAGA ET AL.

Fig. 2. Dimensionless position (top) and velocity (bot-
tom) of the plasmon head as a function of evolutionary
time for σ = 0 (black curve), 0.1 (cyan), 1.0 (blue), 10
(red) and 100 (green). The solid curves show the re-
sults for the constant ejection density problem, and the
dashed curves show the Gaussian ejection density case
(with σ1 values equal to the σ values given above). The
color figure can be viewed online.

calculating the evolutionary time t as a function of
τ (see equation 8), we can obtain xcm(t). Doing the
appropriate time derivatives (analytically or numeri-
cally), we can also obtain the velocity vcm = dxcm/dt
of the plasmon head.

The results obtained for different values of σ are
shown in Figure 2. It is clear that for σ = 0 the plas-
mon reaches the asymptotic velocity va (see equa-
tion 18). For σ > 0, vcm reaches a maximum value
and then decreases as a funciton of time as the plas-
mon head incorporates more environmental material.

For σ > 0, the head of the plasmon has a mass
given by the contribution from the ejection pulse (see
equation 19) and also a contribution from the envi-
ronment:

Ma(τ) = M0
σ√
2

xcm(τ)

v0τ0
, (20)

where M0 is the mass of the ejection pulse and σ is
given by equation (13).

Fig. 3. Dimensionless mass (top) of the “constant density
plasmon” head Mh (solid curves) and tail Mt (dashed
lines), and fraction of environmental mass within the
head (bottom). The results obtained for models with
σ = 0 (black curves), 0.1 (cyan), 1.0 (blue), 10 (red) and
100 (green) are shown. The color figure can be viewed
online.

The mass in the tail (i.e., in the continuous beam
segment between x = 0 and xcm) is:

Mt(τ) =
M0

2

[
erf

(
t

τ0

)
− erf

(
τ

τ0

)]
, (21)

In Figure 3 we plot the mass Mt of the tail, the
total mass Mh = Mp +Ma of the plasmon head and
the fraction Ma/Mh of this mass that corresponds to
the swept-up environment as a function of the evo-
lutionary time t for models with different σ values.

5. THE CASE OF A GAUSSIAN EJECTION
DENSITY VARIABILITY

Let us now consider an ejection with a Gaussian ve-
locity variability (see equation 4) and also with a
Gaussian density variability:

ρ0(τ) = ρ0 e
−(τ/τ0)2 , (22)

of the same shape. In this equation, ρ0(τ) (in bold-
face) is the time-dependent ejection density, and ρ0
is the peak density.
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Inserting the ejection velocity (equation 4) and
density (equation 22) variabilities into equation (6),
we obtain an equation of the same form as (9), but
with

I1 =

√
π

2

v0τ0
2

[
1 + erf

(√
2τ

τ0

)]
,

I2 =

√
π

3

v20τ0
2

[
1 + erf

(√
3τ

τ0

)]
,

I3 = −v
2
0τ

2
0

6
e−3(τ/τ0)

2

.

(23)

Combining equations (9) and (23), we obtain the
quadratic equation for xcm:

σ1

(
xcm
v0τ0

)2

+ b1

(
xcm
v0τ0

)
= c1 , (24)

with

σ1 ≡
√

3

π

ρa
ρ0
, (25)

b1 =

√
3

2

[
1+erf

(√
2τ

τ0

)]
− e(τ/τ0)

2

[
1+erf

(√
3τ

τ0

)]
,

(26)

c1 =
τ

τ0

[
1 + erf

(√
3τ

τ0

)]
+
e−3(τ/τ0)

2

√
3π

. (27)

The position xcm and velocity dxcm/dt as a func-
tion of t obtained for different σ1 values are shown in
Figure 2. It is clear that for all σ1 values, the plas-
mon head is faster than the “constant density plas-
mon” with σ = σ1 (see equations 13 and 25). For
σ1 = σ > 0, the “Gaussian density” and “constant
density” plasmons converge to the same velocity for
t� τ0.

Also, using the appropriate integral from equa-
tion (23), we find that the contribution from the
ejection pulse to the mass of the plasmon head as
a function of τ is:

Mp,1(τ) =
M0

2

[
1 + erf

(√
2τ

τ0

)]
, (28)

where M0 is the mass of the ejection pulse. The
mass in the tail (i.e., in the continuous beam segment
between x = 0 and xcm) is:

Mt,1(τ) =
M0

2

[
erf

(√
2t

τ0

)
− erf

(√
2τ

τ0

)]
, (29)

Fig. 4. Dimensionless mass (top) of the “Gaussian den-
sity plasmon” headMh (solid curves) and tailMt (dashed
lines), and fraction of environmental mass within the
head (bottom). The results obtained for models with
σ1 = 0 (black curves), 0.1 (cyan), 1.0 (blue), 10 (red) and
100 (green) are shown. The color figure can be viewed
online.

The head of the plasmon has a mass given by
the contribution from the ejection pulse (see equa-
tion 28) and a contribution from the environment:

Ma,1(τ) =

√
2

3
M0σ1

xcm(τ)

v0τ0
, (30)

where M0 is the mass of the ejection pulse and σ1 is
given by equation (25).

In Figure 4 we plot the mass Mt,1 of the tail, the
total mass Mh,1 = Mp,1 +Ma,1 of the plasmon head
and the fraction Ma,1/Mh,1 of this mass that corre-
sponds to the swept-up environment as a function
of the evolutionary time t for models with different
σ1 values. The results are qualitatively similar to
the ones obtained for the constant ejection density
plasmon (see Figure 2).

6. THE VELOCITY AND DENSITY
STRUCTURE OF THE TAIL

We now calculate the density along the plasmon tail.
To this effect, we use the solution to the continuity
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238 RAGA ET AL.

Fig. 5. Velocity (top) and density (bottom) vs. position
along the plasmon tails, for evolutionary times t/τ0 = 0,
1, 3, 5 and 7 (the curves are labeled with these times).
The curves end in an open circle, which indicates the
position (and in the top diagrams, the velocity) of the
plasmon head. The results obtained for the constant
ejection density case are shown in the left frames, and
the ones obtained for the Gaussian ejection density on
the right. The color figure can be viewed online.

equation of a free-streaming, plane-parallel flow:

ρ =
ρ0(τ)u0(τ)

u0(τ)− (t− τ)u̇0(τ)
, (31)

where u̇0(τ) = du0/dτ (see, e.g., Raga & Kofman
1992). For our Gaussian u0(τ) (see equation 4) we
then have:

ρ(x, t) =
ρ0(τ)

1 + 2(t− τ)τ/τ20
, (32)

where x, t and τ are related to each other through
the free-streaming condition (equation 1).

In Figure 5, we show the free streaming velocity
and density along the tail of the constant ejection
density (see § 4) and Gaussian ejection density (§ 5)
free plasmons (i.e., with σ = 0) for different evolu-
tionary times. As shown by Raga et al. (2020, who
studied a plasmon with a parabolic ejection veloc-
ity), for t > τ0 the plasmon tail develops a “Hubble
law” linear velocity vs. position dependence.

For both plasmon solutions, the density along the
tail has its peak value approaching the position of the
plasmon head (at all times shown in Figure 5). At
t = τ0, the constant ejection density plasmon tail has
a second peak at x = 0, and develops a flat density
vs. position structure at larger evolutionary times.
At x = 0, the Gaussian ejection density plasmon

has a density that → 0 at larger evolutionary times,
leading to steeper density vs. position dependencies.

7. SUMMARY

As a follow up to the paper of Raga et al. (2020),
who studied the flow resulting from an ejection ve-
locity pulse with a parabolic time-dependence (and
a time-independent mass loss rate), we consider ejec-
tion pulses with different time histories.

In particular, we study the flow resulting from
a collimated ejection velocity pulse with a Gaus-
sian time-dependence, considering the cases of a con-
stant ejection density and a density with a Gaussian
time-dependence (with the same width as the ejec-
tion velocity), moving into a uniform environment.
Using the “center of mass formalism” of Cantó et
al. (2000), we derive full analytic solutions (given in
terms of the error function) for both cases.

We calculate the position and velocity of the plas-
mon head as a function of time, and obtain very
similar results for the constant and Gaussian ejection
densities (Figure 2). The two cases produce an initial
acceleration of the plasmon head, followed by a con-
vergence to a constant velocity (for the σ = 0, “free
plasmon” case) or by a gradual velocity decrease for
cases with substantial environmental braking (i.e.,
for σ > 0).

We also calculate the mass in the head and tail
of the plasmon as a function of evolutionary time.
We find that:

• for the constant ejection density plasmon: when
σ = 0 the mass of the head is ≈ 3 times the tail
mass for large evolutionary times. For σ > 0,
the tail has less mass, and the head much larger
masses (in part, due to the accumulation of en-
vironmental material in the head).

• for the Gaussian ejection density plasmon: the
tail has somewhat larger masses. For times
t ≈ τ0, we find that the σ = 0 solution has
tail masses ≈ 2 times the head mass, but for
t� t0 this proportion is reversed.

Finally, we calculate the velocity and mass as a
function of position for the σ = 0 plasmons (see Fig-
ure 5). We recover the result of Raga et al. (2020)
that for t > τ0 the tail has a velocity structure that
approaches a linear “Hubble law” velocity vs. po-
sition. For the density structure, we see that there
is a peak just before the head of the plasmon. In
the rest of the tail, there are substantial differences
between the constant and Gaussian ejection density
cases, with the former case having zero density at
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x = 0, and the latter case having a density ≈ 2 times
lower than the peak density (at the position just be-
fore the head).

Therefore, we find that the assumption of a con-
stant or a Gaussian time-dependent ejection density
does not affect the dynamical characteristics of the
“head/tail plasmon” in a substantial way. The main
differences between these two cases are the mass and
the density distribution within the plasmon tail.

We should note that the dynamical characteris-
tics of the plasmons studied in this paper are also
very similar to the ones of the “parabolic velocity
pulse” plasmon studied by Raga et al. (2020). From
this, we conclude that at least at large evolutionary
times (i.e., for t > τ0) the dynamics of the head/tail
plasmon are mostly independent of the details of the
velocity and density ejection histories. The only im-
portant effect of different forms of the ejection is to
change the mass content and density stratification of
the material in the plasmon tail.

Now, the way forward to study the head/tail
plasmon flow is with full axisymmetric or 3D numer-
ical simulations of the flow. This will allow, among
other things, an evaluation of the observational char-
acteristics of the flow and of the stability of the plas-
mon head at large evolutionary times. Also, it would
be interesting to extend the present work to the rel-
ativistic case, since it would have clear applications
to microquasars and gamma-ray bursts.
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México, Ap. 70-543, 04510 CDMX, México (raga@nucleares.unam.mx).
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