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ABSTRACT

In the present work, in order to estimate the semi-amplitude of the radial
velocity, we evaluate the contribution of the Doppler beaming effect to the phase
curves of the all confirmed extrasolar planets (2776, September 2019), observed so
far by the Kepler telescope. By modeling the tiny photometric variations (reflection,
ellipsoidal and Doppler beaming effects) of the light curves, we found that the best
observational data are in close agreement with the theoretical and published values
of the amplitudes only for exoplanets: KOI-13b and TrES-2b. The derived values
for the radial velocity also are in good agreement with those published by some
authors. Furthermore, we found it necessary to introduce a third harmonic (3φ)
contribution into the KOI-13b and HAT-P7b light curve models, in order to decrease
the residuals.

RESUMEN

En el presente trabajo, con el fin de estimar la semi-amplitud de la velocidad
radial, evaluamos la contribución del efecto Doppler beaming a las curvas de fase
de todos los planetas extrasolares confirmados (2776, septiembre de 2019), obser-
vados hasta ahora por el telescopio Kepler. Modelando las pequeñas variaciones
fotométricas (reflexión, efectos elipsoidales y de enfoque Doppler) de las curvas de
luz, encontramos que los mejores datos observacionales están en acuerdo con los
valores teóricos y publicados de las amplitudes solo para los exoplanetas: KOI-13b
y TrES-2b. Los valores derivados para la velocidad radial también concuerdan con
los publicados por algunos autores. Además, encontramos que es necesario intro-
ducir una tercera contribución armónica (3φ) en los modelos de curva de luz para
KOI-13b y HAT-P7b, con el fin de reducir los residuos.

Key Words: methods: data analysis — planets and satellites: detection — relativis-
tic processes — techniques: radial velocities

1. INTRODUCTION
Wolszczan and Frail studying the radio pulsar
PSR1257+12 deduced the presence of two orbiting
Earth-mass bodies (Wolszczan & Frail 1992): this
was the first widely-accepted discovery of an exo-
planet. Later, in 1995, Mayor and Queloz, using the
radial velocity method, discovered the first exoplanet
orbiting a solar type star, 51 Peg (Mayor & Queloz
1995). With this latter discovery began an entirely
new field of astronomy: the study of exoplanets.
So far, applying different observational methods the
number of confirmed exoplanets has reached 4276

1Departamento de Física, Facultad de Ciencias, Escuela
Politécnica Nacional, Quito, Ecuador.

2Observatorio Astrónomico de Quito, Escuela Politécnica
Nacional, Quito, Ecuador.

(https://exoplanetarchive.ipac.caltech.edu, septem-
ber 2020). These observations have given us new
insight on the extraordinary diversity of exoplane-
tary systems in our Milky Way (planets are found
with very different masses, sizes and spatial distri-
butions).

Among the available methods used to detect and
characterize exoplanets, two techniques appear to be
most effective: the transit photometry and the ra-
dial velocity. First, the transit photometric method,
which is especially efficient, is used to detect tiny de-
creases (1 to 100 ppm) of the luminosity in the light
curve of the central star. These correspond to the
primary (transit) and secondary (occultation) star-
planet eclipses. It allows us, in particular, to obtain
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124 BARBIER & LÓPEZ

an estimation of the planet’s radius. Second, also
when the star´s orbit is inclined, the star exhibits a
periodic Doppler shift, so that in the stellar spectrum
we are able to measure the blue and red shifted lines
and, therefore, to estimate the star radial velocity
curve. This is the so-called radial velocity method
that allows us to obtain an estimation of the planet’s
mass. Combining these two methods provides a bet-
ter characterization of an exoplanet.

Also, high-precision photometry from the Kepler
mission has enabled us to study small-scale variable
photometric effects that arise from the exoplanet mo-
tion around its host star; for example, stellar bright-
ness also varies between eclipses due to three pho-
tometric effects that are: reflected light (as plane-
tary contribution to the system light curve), the el-
lipsoidal variations (tidal ellipsoidal distortion) and
the Doppler beaming (arising from modulation of the
stellar flux by interactions with the orbiting planet).
The magnitude of these effects is very weak, com-
monly, less than 100 ppm (Loeb & Gaudi 2003).
Until the launch of CoRot and Kepler telescopes,
the precision required to study these small-scale in-
teractions was not available.

The photometric variation of the light curve
due to these three effects, without considering the
eclipses, is referred hereafter as the planetary phase
curve. An important advantage of phase curve anal-
ysis is that it permits a full characterization of the
physical and orbital parameters of an exoplanet.
Several groups have been working in this way, char-
acterizing individual exoplanets from their phase
curves, e.g., planets discovered by the CoRot tele-
scope, like CoRot-1b (Snellen et al. 2009) and plan-
ets discovered by the Kepler telescope like KOI-13b
(Shporer et al. 2011; Mazeh et al. 2012), TrEs-2 (Bar-
clay et al. 2012; Kipping & Spiegel 2011), Kepler-41b
(Quintana et al. 2013), HAT-P-7b (Mislis et al.
2012; Welsh et al. 2010; Van Eylen et al. 2012) and
Kepler-5b, Kepler-6b, Kepler-8b studied by Esteves
et al. (2013), who also studied the phase curves for
some of the above mentioned planets focusing on
those planets with a ratio a

R∗
< 10, where a is the

semi-major axis of the orbit and R∗ is the stellar
radius.

Regarding the Doppler beaming effect, it is the
result from the reflection movement of a host star
due to the interaction with an orbiting companion.
In the composite phase curve, considering all photo-
metric effects, the introduction of the beaming effect
yields asymmetries in the whole pattern due to the
sinusoidal variation.

Fig. 1. Small scale photometric variations of a phase
curve as a function of the radial semi-mayor axis of the
planet orbit. The color figure can be viewed online.

In this contribution, we do not estimate the mass
of the planet, although it could be done in a simple
way. Instead, we focus on evaluating the Doppler
beaming effect over each of all confirmed exoplan-
ets, discovered so far by the Kepler telescope. In
this way, we derive the planet radial velocity only
for those planets which exhibit Doppler luminosity
variations greater than 1 ppm. The Doppler beaming
effect and the radial velocity for the selected plane-
tary systems were theoretically evaluated using the
parameters given in Table 1. In addition, they were
also estimated from the observational data (experi-
mental phase curve) using a fitting model. Finally,
the obtained radial velocity values were compared
with those found in the literature.

2. PHASE CURVE MODELING

Loeb & Gaudi (2003) have demonstrated that the
small photometric variations of the phase curve arise
from three different effects: the reflection and/or
emission, the ellipsoidal and the Doppler beaming
effect. Since the reflection and the planet thermal
emission are degenerate at low eccentricities, these
two planetary effects are difficult to distinguish. For
this reason, both effects are added and considered
hereafter together as only one planetary effect; the
reflection effect, sometimes called the phase function.
The first two effects vary as a−2 and a−3, respec-
tively and the third as a−1/2, where a is the radial
semi-major axis of the planet orbit (see Figure 1).

In what follows, we describe these three effects
denoting the mass and radius of the star, Sun, planet
and Jupiter as: M∗, R∗, Msun, Rsun, MP , RP , MJ ,
RJ , respectively. The period of a planetary orbit
is denoted by Porb, a and i are the semi-major axis
of the planet orbit and its inclination with respect
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KEPLER PLANETARY SYSTEMS 125

TABLE 1

EXOPLANET PARAMETERSa

Kepler Orbit Orbit Planet mass Stellar Stellar mass
Exoplanet period P inclination i Mp temperature

(days) ◦ (MJ ) (K) (Msun)
HAT-P7 2.204 83.14 1.78 6350 1.47
Kepler-423b 2.68 87.828 0.595 5560 0.85
Kepler-5b 3.55 89.14 2.11 6297 1.37
Kepler-75b 8.88 89.12 10.1 5200 0.91
Kepler-8b 3.522 83.978 0.59 6213 1.21
KOI-13b 1.763 83.77 9.28 7650 1.72
Tr-ES-2b 2.470 83.87 1.19 5850 0.98

aPublished values (http://exoplanetarchive.ipac.caltech.edu).

to the observation plane. Vr and K are the radial
velocity and the semi-amplitude of the radial velocity
and G and c are the gravitational constant and the
speed of light.

2.1. Reflection Effect

This photometric effect, in essence, is an atmospheric
phenomenon rather than a gravitational one. It
mainly depends on the planet reflective capability.
When a planet has a large albedo and is orbiting
around a luminous star, its light variations are eas-
ier to detect in the visible range. Although the effect
is small, it is significant for short-period planets in
close orbits around their host stars. This is directly
related to the fact that the stellar flux received by
the planet decreases with distance as 1

r2 . Planets
in close orbits are also heated by their stars, mak-
ing their thermal radiation detectable. Thus, giant
planets like Jupiter, with an orbital period of few
days, are easier to detect by space telescopes like
Kepler, since these planets collect more light from
their host stars. As mentioned above, the reflection
of incident stellar radiation off the planetary surface
and/or atmosphere and the planet thermal emission
are not easy to distinguish between them. For this
reason, they are considered here as just one effect;
the reflection effect. As the reflection picks up at su-
perior conjunction (occultation) and reaches a min-
imum at inferior conjunction (transit), it is reason-
able to modulate it by a cosinusoidal function of the
phase angle φ, which describes well the planet po-
sition. The amplitude of the reflected light alone is
given by: ARefl = Ageo (

Rp
a

2
), where Rp is the plan-

etary radius, and Ageo is the geometrical albedo.
Following the model described in Mazeh et al.

(2012), Sudarsky et al. (2005) and Burrows & Or-
ton (2009), the normalized photometric flux varia-

tion due to reflection is given by:

∆F

Fo
= ARefl

[
sin θ + (π − θ) cos θ

π

]
, (1)

where the amplitude for the reflection effect, includ-
ing the planetary thermal emission, is expressed as
(Mazeh et al. 2012; Mazeh & Faigler 2010; Shporer
et al. 2011):

ARefl = αRefl0.1

(
Rp
a

)2

sin i, (2)

or in ppm units:

ARefl =57αRefl sin i

(
M∗

Msun

)−2/3 (
Porb
day

)−4/3

×

×
(
Rp
RJ

)2

[ppm]. (3)

Here, αRefl is the reflection coefficient which de-
pends on the albedo (αRefl is of order unity), θ de-
fined by θ = |φ − π|, is the complementary angle of
φ, being φ the orbital phase angle.

The amount of reflected light does not change
during their orbit for planets with circular face-on
orbits from Earth’s point of view; therefore, their
reflected radiation is not detected.

In summary, planets in close orbits around their
host star, larger planets, and planets with higher
albedo, are easier to detect as they reflect more light.

2.2. Ellipsoidal Effect

The ellipsoidal effect has its origin in the gravita-
tional deformation of the host star by an orbiting
planet (tidal distortion). Planetary gravitational
tidal forces produce stellar distortions that cause
photometric variations of the light curve of exoplan-
etary systems. This effect was presented by Loeb &

http://exoplanetarchive.ipac.caltech.edu
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126 BARBIER & LÓPEZ

Gaudi (2003) and Drake (2003). Pfahl et al. (2008)
provide a detailed theoretical investigation of the el-
lipsoidal deformation of the host star.

Following Morris (1985), we describe the flux
variation of the light curve due to the ellipsoidal
effect. He proposed a model for the normalized
flux variation that includes the first three cosinu-
soidal harmonics of the phase angle φ(t), as follows:
∆F
Fo

= f2 cos(2φ)+f1 cos(φ)+f3 cos(3φ); here, f1, f2

and f3 are the cosinusoidal amplitudes. From the re-
sults obtained by Esteves et al. (2013), we note that
the last two terms contribute less than 10% to the to-
tal ellipsoidal variations; so they are not considered
in our calculations (Mazeh & Faigler 2010).

The ellipsoidal variations are a gravitational ef-
fect which produces a double peak of equal height
at the quarter phases of the orbit, contributing to
an overall bi-modal feature in the light curve. Then,
the tidal ellipsoidal normalized flux variation can be
modulated in a cosinusoidal manner as:

∆F

Fo
= AEllip cos(2φ), (4)

where the ellipsoidal amplitude is given by Shporer
et al. (2011):

AEllip = αEllip
Mp sin i

M∗

(
a

R∗

)−3

sin i, (5)

or, in ppm units:

AEllip =13αEllip sin i

(
R∗

Rsun

)3 (
M∗

Msun

)−2

×

×
(
Porb
day

)−2 (
Mp sin i

MJ

)
[ppm]. (6)

Mp, M∗ are the planetary and stellar masses, a, Porb
and i are the semi-major axis, period and inclina-
tion of the planetary orbit, respectively. αEllip =

= 0.15 (15+u)(1+g)
(3−u) is a coefficient which depends on

the linear gravitational g and on u, the limb darken-
ing coefficients of the host star (see Mazeh & Faigler
(2010) for further details).

The effect of the stellar ellipsoidal distortions on
the light curve can be larger than the relativistic
beaming effect, which is often small, but the varia-
tion of the phase curve component is twice as fast.
Furthermore, as seen in the relationships for cal-
culating the ellipsoidal amplitude, the gravitational
distortion of the star by the planet is larger if it has
a low semi-major axis to stellar radius ratio and the
density of the star is low. So, this ellipsoidal method

can be used efficiently to find planets in evolved stars
outside the main sequence. In contrast, the ellip-
soidal effect is negligible for low mass planets far
from the host stars.

2.3. Doppler Beaming Effect and Radial Velocity
Estimation

The first theoretical contribution was presented by
Hills & Dale (1974) and the first observational con-
tribution by Maxted et al. (2000). Loeb & Gaudi
(2003) were first to present the photometric effect
in the context of exoplanet characterization. As the
star and planets are orbiting around the system’s
barycenter, the host star will periodically advance
toward, and recede from, an observer. Thus, the
brightness of the host star will vary sinusoidally at
the orbital frequency of the planet (a stellar wobble
is induced by the planet). Then, as the star moves
toward an observer, there is an increase in the ob-
served flux, and as it recedes the observed flux de-
creases. It varies with the period of the orbit, but
is off by a phase from the reflected light, since the
maximum boosting occurs when the planet is in its
first quarter phase and the star is moving toward the
observer. The relativistic Doppler beaming (boost-
ing), now is a detectable photometric variation effect,
thanks to the high-precision photometry of space
telescopes like Kepler (down to ≈ 10 parts per mil-
lion). It is not an ideal method for discovering new
planets, since the effect is small, even smaller than
the emitted and reflected starlight from the planet.
However, with the light variations due to relativistic
beaming, it is easier to detect massive planets near
their host stars, since these factors increase with the
movement of the star (due to the motion around the
center of mass of an exoplanet system). Like the ra-
dial velocity method, this can be used to determine
the orbital eccentricity and the minimum mass of
the planet ( which is impossible to do from reflected
light alone); but the Doppler beaming effect does not
require a spectrum of the star, so it can be used to
study more distant stars.

The Doppler beaming effect (DBE) itself has two
contributions: the first one is actually the same
Doppler beaming effect which increases the lumi-
nosity toward the direction of the radial velocity of
the star. The second one is the Doppler shift of the
star spectrum in the Kepler observation band. These
two effects could be described by the following equa-
tions (Rybicki & Lightman 1979). First, considering
a spherical star that radiates isotropically (or nearly
isotropically) in the particle rest frame, the relativis-
tic transformation of the received bolometric flux is
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KEPLER PLANETARY SYSTEMS 127

given by:

F

Fo
=

1

γ4(1− β cos θ(t))4
, (7)

where γ = 1√
(1−β2)

and β = v
c is the velocity of

star in units of c, being c the speed of light. The
angle θ(t) is the angle between the stellar velocity
and the line of sight. From here, as the planet moves
slowly compared with the speed of light, in the non-
relativistic limit, the stellar normalized boosted flux
is given by (Ben Placek and Kevin H. Knuth, 2015):

∆F

Fo
= (3− αBeam)

vr
c
, (8)

where αBeam is the photon-weighted integrated
bandpass beaming factor, vr the radial velocity of
the host star which varies in a sinusoidal manner as
vr = K sin(φ), with K the semi-amplitude of the ra-
dial velocity given by (Cumming et al. 1999):

K =

(
2πG

Porb

)1/3
Mp sin(i)

(M∗ +Mp)
−2/3

(
1− e2

)−1/2
. (9)

Or, considering that MP << M∗ and the eccen-
tricity e = 0 for a circular orbit, in a first approxi-
mation, we can rewrite the previous expression as:

K=28.4

(
M∗

Msun

)−2/3(
Porb
yr

)−1/3
Mp sin(i)

MJ

[
m s−1

]
.

(10)
This relation, in this work, is evaluated using the

well-known physical parameters, to make an analyt-
ical estimation of the radial velocity.

From here, the normalized flux variation for the
Doppler beaming effect can be written as (Loeb &
Gaudi 2003; Shporer et al. 2011):

∆F

Fo
= ABeam sin(φ), (11)

where the beaming amplitude is found to be (Shporer
et al. 2011):

ABeam =(3− αBeam)
K

c
, (12)

ABeam =2.7 αBeam

(
M∗

Msun

)−2/3 (
Porb
day

)−1/3

×

× Mp sin(i)

MJ
[ppm]. (13)

Therefore, the amplitude of the effect can be used to
estimate the mass of the planet if the host star mass

is known. The amplitude of the observed Doppler
beaming photometric variation depends on the band-
pass through which the planetary system is observed.
The actual value of αBeam (the average spectral in-
dex) depends on the telescope band pass as well as
on the type of the observed star. It can be written
as αBeam ∝ d ln(Fν)

d ln(ν) . Considering a black-body ef-
fective temperature Teff , we can compute αBeam by
αBeam = ex∗(3−x)−3

ex−1 (Loeb & Gaudi 2003), where
x = hν

k Teff
and h and k are, respectively, the Planck

and Boltzmann constants.
It is worth noting that the radial velocity can

be estimated from the Doppler beaming amplitude.
Therefore, the mass of the planet also can be esti-
mated from the amplitude of the Doppler boosting,
as this effect is proportional to the radial velocity.
Finally, it is also important to keep in mind that the
Doppler variations for short period (P ∼< 0.2 yr) and
massive (M sin i ∼> MJ) planets should be a signif-
icant contributor to the variability of the exoplane-
tary phase curve signal (Loeb & Gaudi 2003).

3. KEPLER PLANETARY SYSTEMS

We analyze all the quarters of the Kepler short and
long cadence data for all the planets which exhibit a
phase curve.

We start by computing the Doppler beaming
effect, explained in § 2.3, for all confirmed exo-
planets observed by the Kepler telescope (2776 ob-
jects). For that, we use the published data available
at https://exoplanetarchive.ipac.caltech.edu. We
found just 60 objects in which a Doppler beaming
amplitude is detectable. Currently, the Kepler pho-
tometric instrument is sensitive enough to detect
Doppler variations equal or greater than 1 ppm; this
was not possible in past space missions.

During the mission, Kepler took 30 seconds short
cadence (SC) integrations with its 42-CCD photome-
ter (Borucki et al. 2010). For each exoplanet system,
10 to 50 photometric measurement files are available,
corresponding to observations from 2009 to 2019.
Details of the process of data reduction are explained
below.

3.1. Removal of Systematics

First, in order to improve the signal to noise ratio,
we treat the photometric data eliminating the jumps
between the quarters and correcting for systematics.
Since photometric variations are normally small for
the primary and secondary eclipses, and even less

https://exoplanetarchive.ipac.caltech.edu
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128 BARBIER & LÓPEZ

between eclipses (due to the above mentioned photo-
metric effects), we do not expect to have abrupt sig-
nal changes in the observed data. Then, in each data
file a central moving median and a central moving
average have been applied to eliminate bad points
and to smooth the curve. We tested different com-
binations of these two steps, using 3 to 101 points,
looking for the most suitable combination to smooth
the curve without affecting the particularities of the
signal (primary eclipse). A central moving median of
40 orders with a central moving average of 10 orders
produced the best results. This procedure provided
a light curve that had between 3 to 20 eclipses, de-
pending on the planetary period and the available
Kepler files. Finally, the phase curve for each plane-
tary system was obtained by adding the light curve
over parts of a period, applying the folding phase
method. The phases φ = 0 in the primary eclipse
and φ = π in the secondary, are taken as the start-
ing points. The last step consists of removing the
primary and secondary eclipses to obtain only the
light variation curve between eclipses, which is the
phase curve to be modeled.

Finally, we apply small-scale photometric vari-
ation models to find the best fitting curves to our
observational data.

3.2. The Data Analysis: Phase Curve Fitting

The fitting model for a given light curve, essentially
involves tuning the amplitude values for each of the
three effects mentioned earlier, i.e., ARefl, AEllip,
and ABeam, in order to find the best fit to the corre-
sponding photometric data of our selected planetary
systems.

As was shown in the previous section, the small-
scale photometric variations of these planets are pro-
portional to trigonometric functions of the phase φ
which ranges from 0 to 2π; 0 corresponds to the tran-
sit and π to the occultation.

For the normalized phase curve, adding the con-
tribution of all phase effects, the following expression
describes the pattern for the relative flux variation:

F =A0+ARefl cos(φ)+AEllip cos(2φ)+ABeam sin(φ).
(14)

A0 is expected to be of the order of unity, ABeam
positive, ARefl and AEllip negative.

Only the planets with the correct amplitude ef-
fect (7 planets out of the original 60), have been pre-
sented in this work. The theoretical values for the
amplitude ABeam have been obtained from the eval-
uation of the relations exhibited in the Phase Curve

Fig. 2. KOI-13b phase curve fitting. The color figure can
be viewed online.

Modeling § 2, using the parameters (mass, radius,
and inclination) given in Table 1.

In Figure 2, we present the composite phase curve
for KOI-13b. For this planetary system the reflection
contribution is dominant, but it is modulated by the
bimodal ellipsoidal effect.

The Doppler beaming effect is also appreciable by
the asymmetries in the total phase curve. However,
the residual was not small enough to be considered
as a good fit.

A result with a smaller residual (see Table 2) is
obtained by incorporating, a priori, additional har-
monics in 2φ and 3φ. Harmonics of higher order also
have been considered, but no appreciable contribu-
tions was found.

Therefore, the models described below have been
applied to KOI-13 and the other planets of our se-
lected sample (Figure 3):

Model 1: Reflection effect + DBE + Ellipsoidal effect

Model 2: Reflection effect + DBE + Ellipsoidal effect
+ sin(2φ)

Model 3: Reflection effect + DBE + Ellipsoidal effect
+ sin(2φ) + cos(3φ) + sin(3φ)

In Figure 4 the phase curves with their best fit-
ting models are presented for each of the six plane-
tary systems that were analyzed in this contribution.

In Table 3 we show, together with the published
values, the theoretical and estimated Doppler ampli-
tudes ABeam, along with the values deduced for the
radial velocity K.

4. RESULTS AND DISCUSSION

Unlike other works in the literature, in this contri-
bution we have compared the radial velocity values
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TABLE 2

STANDARD RESIDUAL ERRORS FOR DIFFERENT MODELS

Kepler Model 1: Model 2: Model 1 Model 3: Model 2
Exoplanet Three effects + sin(2φ) + 3φ term
HAT-P-7b 2.227e-06 1.953e-06 1.731e-06
Kepler-423b 2.075e-05 2.032e-05 1.99e-05
Kepler-5b 1.613e-05 1.602e-05 1.588e-05
Kepler-75b 0.0001155 0.0001146 0.0001141
Kepler-8b 2.663e-05 2.663e-05 2.662e-05
KOI-13b 4.458e-06 2.531e-06 1.116e-06
TrES-2b 3.28e-06 3.249e-06 3.229e-06

TABLE 3

DOPPLER BEAMING AMPLITUDE AND RADIAL VELOCITY

Kepler Theoretical Theoretical Calculated Calculated Published Published
Exoplanet ABeam

a K a ABeam
b K b ABeam K

(ppm) (m.s−1) (ppm) (m.s−1) (ppm) (m.s−1)

HAT-P-7b 2.75 213.33 5.19 ± 1.99 402.43 ± 155.43 5.8 ± 0.19 3 211.8 ± 2.6 8

Kepler-423b 1.41 98.88 12.74 ± 2.36 873.36 ± 159.49 NA 96.7 ± 11.8 11

Kepler-5b 2.96 227.77 4.74 ± 3.22 366.84 ± 247.08 NA 227.5 ± 2.8 10

Kepler-75b 19.94 1283.04 384.4 ± 290 24731 ± 18575.44 NA 1288 ± 24 12

Kepler-8b 0.90 68.94 0.29 ± 26 – 2.5 ± 1.2 3 NA
KOI-13b 11.85 1084.47 11.70 ± 4.2 1100.73 ± 376.02 7.14 ± 0.24 3 ≤ 10009

8.6 ± 1.1 1

10.4 ± 1.1 1

5.28 ± 0.44 4

TrES-2b 2.51 181.14 2.33 ± 4.39 167.51 ± 31.29 2.4 ± 0.3 3 181.3 ± 2.6 6

0.22 ± 0.88 2

0.23 ± 0.89 2

0.31 ± 0.88 2

0.78 ± 0.85 2

0.79 ± 0.86 2

3.44 ± 0.35 5

aTheoretical Doppler beaming values.
bDoppler beaming values derived from a fitting model; observational data.
1Mazeh et al. (2012), 2Kipping & Spiegel (2011), 3Esteves et al. (2013), 4Shporer et al. (2011), 5Barclay et al. (2012),
6O’Donovan et al. (2006), 7Quintana et al. (2013), 8Winn et al. (2009), 9Santerne et al. (2012), 10Koch et al. (2010),
11Endl et al. (2014), 12Hébrard et al. (2013).

obtained from the theory of the Doppler beaming
effect with the experimental ones, and also with ex-
perimental results reported by other authors. We
note that our theoretical values for K (radial veloc-
ity) are in good agreement with those calculated via
the radial velocity (RV) method. We found that,
in most of the cases, our estimations for the Doppler
Beaming effect are better than those previously pub-
lished.

In Table 3 are shown the Doppler amplitudes
(theoretical, calculated and published), as well
as the calculated radial velocities, for the plane-
tary systems: HAT-P-7b, Kepler-423b, Kepler-5b,

Kepler-75b, KOI-13b, TrES-2 (exoplanet with coher-
ent phase curves and coherent amplitude signs, for
each of the three photometric effects). Kepler-8b,
with an incorrect amplitude sign for the reflection
effect, but not for the beaming effect, has also been
included in the list because it is a very well-studied
planetary system. All these exoplanets exhibit a
transit depth, but not necessarily an occultation. We
also note that for the other planets, like Kepler-41b,
Kepler-43b, Kepler-44b and Kepler-6b, there are
transit and occultation depths, but the signs of the
amplitudes for at least one of the three effects are
incorrect.
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(a) KOI-13b: Model 1

(b) KOI-13b: Model 2

(c) KOI-13b: Model 3

Fig. 3. KOI-13b planetary light curve, phase curve, fit-
ting model, and residuals for each of the three models
indicated in the text. The color figure can be viewed
online.

Our results reveal that for the KOI-13 planetary
system, the fit becomes much better by adding into
the fitting model the sin(2φ) term and the cosine
and sine of 3φ, (see Figure 3); the model-curve fits
relatively well, and the experimental points and the
distribution of the residuals decrease (Table 2). The

physical reason for including additional harmonics
in the fitting model could be related to the so-called
dilution effect (Szabo et al. 2011), which takes place
in a planetary system with a binary host star, as
in the case of KOI-13. From the residual plot for
KOI-13, it is clear that there is a signal at 3φ. Thus,
it is reasonable to include in the fitting model the
3φ harmonics in order to get a better fit. On the
other hand, adding the 4φ harmonics to the model
does not result in further improvements. The resid-
ual standard error value remains close to that previ-
ously obtained ( 1.082× 10−6), so it is not necessary
to consider additional harmonics corrections into the
fitting model.

We note that the theoretical, calculated and pub-
lished values for the beaming amplitude and ra-
dial velocity are always in disagreement, the only
exceptions being the planetary systems KOI-13b
and TrEs-2b, whose values are in agreement within
10 percent (O’Donovan et al. 2006; Santerne et al.
2012). For KOI-13b, taking into consideration the
dilution effect (binary host star), its phase curve is
quite well modeled, giving a value for the Doppler
amplitude close to that expected. Consequently, the
radial velocity that we have obtained is also close to
values already published by other authors using the
radial velocity method. In the case of the TrES-2b
exoplanet, adding the 3φ harmonic, our results are
in agreement with those published by Esteves et al.
(2013) for the Doppler beaming estimation and ac-
cording to the theory.

On the other hand, we see that for the exoplanet
HAT-P-7b (with well defined transits and occulta-
tions) the amplitude and the radial velocity are dou-
ble the values found in the literature, which were ob-
tained using the radial velocity method (see Table 3).
Moreover, for the planets Kepler-423b, Kepler-5b
and Kepler-75b, our results are far from the theo-
retical predictions but they are quite similar to the
values obtained by other authors, who also have used
the planetary light curves. There is no publication in
the literature concerning Doppler beaming for these
objects.

Finally, with Kepler-8b the sign of the reflection
effect is wrong, but the experimental value of the
beaming amplitude is closer to its theoretical pre-
diction, much better than the estimations given by
other authors. This planet, with a weak Doppler
beaming effect (less than that of the other planets)
has been studied by other authors, who have ob-
tained a tiny value for the amplitude ABeam of about
10−7.
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(a) HAT-P-7b (b) Kepler-423b

(c) Kepler-5b (d) Kepler-75b

(e) Kepler-8b (f) Tr-ES-2b

Fig. 4. Light curve, phase curve, fit model, and residual for the different planets we found with coherent effect sign.
The color figure can be viewed online.

We do not understand the reasons for these dis-
agreements in determining the beaming amplitude
and consequent radial velocity. They could be a con-
sequence of the different approaches proposed, linked
to the intrinsic development of the study methods

of exoplanets, which give rise to different results as
theory and experimental methods become more pre-
cise. A second reason could be that we use the full
Kepler data, while other teams conducted their re-
search a few years ago and with fewer data available.
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Alternatively, they may be related to the different
instruments used in the observations, with different
sensitivity and precision.

The method for the estimation of the radial ve-
locity via the Doppler beaming effect proposed in
the current contribution yields good results exclu-
sively for KOI-13b and TrES-2b. This fact is closely
related to the sensitivity of the current instrumenta-
tion and to the strong variability of the stars, which
limit our ability to obtain well-defined light curves.
The suggestion to add an offset, as described by Es-
teves et al. (2015), does not improve the results. The
current and emerging exoplanet science depends on
the capability and photometric sensitivity of the next
generation of space-based instruments. New instru-
ments and missions, including the TESS (recently
launched), CHEOPS, JWST and PLATO missions,
are expected to provide brighter and more nearby
planet samples, opening up exciting new opportuni-
ties for developments in their characterization.
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