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ABSTRACT

We present a new plasmon model for a cometary clump moving supersonically
in an environment with a non-zero gas pressure. We find that the environmental
pressure produces a cutoff in the wings of the cometary clump, therefore resulting
in quite “stubby” plasmons for a large range of flow Mach numbers. We derive a
relation between the length-to-width ratio of the plasmon and the Mach number
M of the flow, which could be used to directly derive M from observations of
(appropriate) cometary clumps.

RESUMEN

Presentamos un nuevo modelo de plasmón para un nudo cometario
moviéndose supersónicamente respecto de un medio ambiente con presión finita.
Encontramos que la presión del medio ambiente produce un corte en las alas del
nudo cometario, dando como resultado nudos “rellenitos” para un gran intervalo
de números de Mach del flujo. Derivamos una relación entre el cociente “largo a
ancho” del plasmón y el número de Mach M del flujo, el cual podŕıa ser usado para
derivar directamente M de observaciones de nudos cometarios apropiados.

Key Words: HII regions — ISM: jets and outflows — ISM: kinematics and dynamics
— planetary nebulae: general — shock waves

1. INTRODUCTION

De Young & Axford (1967) derived the so-called
“plasmon” solution, which consists of the balance
between the gas pressure within a decelerating (or
accelerating) isothermal clump of gas and the ram-
pressure of the environment into which it is travel-
ling. This simple solution still continues to be used to
model the dynamics of different astrophysical flows
involving cometary clumps (see, e.g., Rivera-Oŕız et
al. 2019a, b; Veilleux et al. 1999; De Young 1997).

Modified versions of the plasmon solution of De
Young & Axford (1967) have been obtained includ-
ing the effects of:

• the centrifugal pressure of the shocked environ-
ment (Cantó et al. 1998),

• the self-gravity of the clump (Lora et al. 2015),

• a clump with a polytropic equation of state
(Cantó & Raga 1995),

1Instituto de Astronomı́a, UNAM, México.
2Instituto de Ciencias Nucleares, UNAM, México.
3Inst. de Investigación en Ciencias F́ısicas y Matemáticas,

USAC, Guatemala.

• entrainment of clump material by the streaming
environment (Rivera-Ort́ız et al. 2019a, b).

The formation of “tails” by wind/clump interactions
was explored analytically by Dyson, Hartquist &
Biro (1993).

Numerical simulations show that plasmon-style
“interstellar bullet” flows are highly unstable, with
rather intense fragmentation of the plasmon config-
uration (see, e.g., Klein et al. 2003; Raga et al.
2007). It can be argued that if a high speed flow
rapidly disrupts a liquid droplet (see, e.g., Nicholls
& Ranger 1969), a gas cloud would be disrupted with
even greater ease.

On the other hand, it is clear that some astro-
physical flows (e.g., the Orion “fingers” around the
BN-KL object, see Rivera-Ort́ız et al. 2019a) do
show the characteristics predicted by the “braking
plasmon” analytic model. In a recent series of pa-
pers, Pittard et al. (2009, 2010) and Goldsmith &
Pittard (2017, 2019) show that clumps with high
clump to environment density ratios can be substan-
tially braked (or accelerated, depending on the ref-
erence system) before fragmenting and mixing with
the environment. This “dense clump regime” was
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182 CANTÓ & RAGA

also explored by Rivera et al. (2019b), who car-
ried out a comparison between an analytic plasmon
model and numerical simulations. At least for such
dense gas clumps, it appears that the plasmon model
of De Young & Axford (1967) is still relevant.

In the present paper we consider the effect of
the environmental gas pressure on the structure of
a plasmon. This pressure will of course have an im-
portant effect for a plasmon moving at a relatively
low Mach number (with respect to the environmen-
tal sound speed). Also, even in the case of a high
Mach number plasmon, the environmental pressure
will have an important effect in the plasmon “wings”,
where the bow shock becomes highly oblique.

The paper is organized as follows. In § 2, we
present the new plasmon model, and derive a full
analytic solution for the shape of the plasmon. In
§ 3 we derive the equation of motion for the modified
plasmon, and integrate it numerically to determine
the velocity and position of the plasmon as a function
of time. Finally, we present a discussion of the results
in § 4.

2. THE PLASMON MODEL

We consider the situation shown in the schematic di-
agram of Figure 1. In a cylindrical reference frame
moving with the plasmon, the surrounding environ-
ment (of density ρa, pressure Pa and isothermal
sound speed ca =

√
Pa/ρa) impinges on the plas-

mon with a velocity va (this is the relative velocity
between the environment and the plasmon).

In our model, we assume that the environment is
isothermal, with a position-independent sound speed
ca. We also assume that the plasmon is isothermal,
but allow it to have a different sound speed c0. This
choice is appropriate for a dense clump in an outflow
from a young star, travelling within a higher temper-
ature, neutral or partially ionized environment.

We assume that at any time in its evolution, the
internal pressure stratification of the decelerating (or
accelerating) plasmon instantaneously relaxes to the
hydrostatic equilibrium, so that:

P (z) = P0e
−z/H , (1)

for an isothermal gas, where

H ≡ c20
a
, (2)

with c0 being the isothermal sound speed and a the
acceleration/deceleration of the plasmon. An explo-
ration of the validity of equation 1 is presented in
Appendix B.

Fig. 1. Schematic diagram of a plasmon. In a frame
of reference at rest with the plasmon, the environment
(of density ρa and pressure Pa) impinges from the left,
along the symmetry axis of the (z, r) cylindrical coordi-
nate system. The thick curve represents the surface of
the plasmon, which is truncated at the position (zm, rm).
We show the angle α between the direction of the imping-
ing flow and the local normal to the plasmon surface.

As discussed in Appendix A, the pressure of the
shocked environment in contact with the plasmon is
approximately given by:

Ps = Pa + ρav
2
a cos2 α , (3)

where ρa, va and Pa are the ambient density, velocity
and pressure (respectively) and α = arctan(dz/dr) is
the angle between the impinging flow and the normal
to the surface of the plasmon (see Figure 1). There-
fore, the pressure P0 at the head of the plasmon (see
equation 1) is:

P0 = (1 + β)ρav
2
a , (4)

with

β ≡ Pa
ρav2a

=
1

M2
, (5)

where M is the Mach number calculated with the
velocity va of the plasmon and the isothermal sound
speed ca of the environment.

Now, setting P (z) = Ps (equations 1 and 3) and
considering that dz/dr = tanα (see Figure 1), we
obtain the differential equation

dz

dr
= tanα =

√
1

(1 + β)e−z/H − β
− 1 , (6)

with β given by equation (5).
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TRUNCATED PLASMONS 183

From the second equality of equation (6) we ob-
tain:

z = H ln

[
(1 + β)(1 + ω)

1 + β(1 + ω)

]
, (7)

with
ω = tan2 α . (8)

It is clear that the plasmon solution ends at a finite
zm, for which α = π/2 (so that also ω = tanα→∞).
From equation (7) we obtain:

zm = H ln

(
1 + β

β

)
. (9)

In order to obtain the z(r) solution, we first con-
sider the first equality of equation (6):

dr =
dz√
ω
, (10)

where ω is defined in equation (8). Also, from equa-
tion (7) we have:

dz =
H

(1 + ω) [1 + β(1 + ω)]
dω . (11)

Combining equations (10-11) we obtain the differen-
tial equation:

dr

dω
=

H

(1 + ω) [1 + β(1 + ω)]
√
ω
, (12)

which can be integrated to obtain:

r = 2H

[
tan−1

(√
ω
)
−

√
β

1 + β
tan−1

(√
βω

1 + β

)]
,

(13)
with ω given by equation (8). Equations (8) and
(13) are then the solution for the shape of a plasmon
interacting with an environment with a non-zero gas
pressure.

This solution has the following limiting cases:

• z � 1:

r ≈ 2

√
zH

1 + β
, (14)

• z → zm (see equation 9):

r → rm = πH

[
1−

√
β

1 + β

]
, (15)

• β → 0:

r = 2H tan−1
(√

ez/H − 1
)
. (16)

Fig. 2. The plasmon solution for different values of β.
The curves are labeled with the corresponding β values.

Equation (16) is the plasmon solution of De Young
& Axford (1967).

In Figure 2, we plot the r(z) solutions (equa-
tions 8 and 13) for different values of β. It is clear
that the length-to-width ratio of the plasmon grows
as a function of decreasing β. This effect can be
quantified by calculating the length-to-width ratio
L/W = zm/(2rm) from equations (9) and (15):

L/W =
1

2π

ln
(

1+β
β

)
1−

√
β

1+β

=
1

2π

ln
(
1 +M2

)
1− 1√

1+M2

, (17)

where for the second equality, we have used the
M2 = 1/β relation. This Mach number dependence
of the length-to-width ratio of the plasmon is shown
in Figure 3.

It is of interest to have an analytic expression for
calculating the Mach number M of the plasmon flow
as a function of the observed L/W length-to-width
ratio. As equation (17) does not have an analytic
inversion, we propose the fit:

Ma = π3/2

[
eπ(L/W )

(L/W )−1.5 + 5.18
− 0.16

]
. (18)

In Figure 3, we also show Ma vs. M/L solution,
as well as its relative deviation (Ma −M)/M (with
M given by equation 17) with respect to the exact
solution. In the bottom frame of Figure 3, we see
that for the M = 1 → 100 Mach number range, the
relative error of the interpolation of equation (18) is
smaller than 2%.

Finally, we calculate the mass of the plasmon.
To do this, we combine equations (1), (4) and (8) to
obtain

ρ(ω) = ρ0
1 + β(1 + ω)

(1 + β)(1 + ω)
, (19)

with ρ0 = P0/c
2
0 being the density at the head of the

plasmon. Now, using equations (19), (11) and (13)
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184 CANTÓ & RAGA

Fig. 3. Top plot: Mach numbers M (from the “ex-
act” equation 17) and Ma (from the approximate in-
version 18) as a function of the length-to-width ratio
L/W = zm/(2rm) of the plasmon. Bottom plot: rela-
tive error of the approximate inversion as a function of
L/W .

we can calculate the mass Mp of the plasmon:

Mp = π

∫ zm

0

ρ(z)r2dz = 4πρ0H
3m(β) , (20)

with

m(β) =

∫ ∞
0

[
tan−1 (

√
ω)−

√
β

1+β tan−1
(√

βω
1+β

)]2
(1 + β)(1 + ω)2

dω .

(21)
We have not been able to carry out this integral an-
alytically. However, in the limits of low and high β
one obtains:

m(β) ≈
(
π2 − 4

8

)
−
(

3π2 − 4

8

)
β ; β � 1 , (22)

m(β) =

(
9π2 − 16

192

)
1

β3
; β � 1 . (23)

Fig. 4. Top plot: Dimensionless mass m (solid line, ob-
tained from a numerical integration of equation 21) and
the approximate solution ma (dashed line, from equa-
tion 24) as a function of β = 1/M2 (where M is the
Mach number of the flow). Bottom plot: relative error
of the approximate, analytic solution as a function of β.

This latter, β � 1, limit corresponds to a highly
subsonic flow, for which our model is probably not
appropriate.

A good analytic approximation for β in the full
0→∞ range is:

ma(β) =
b0

1 + b1β + b2β2 + b3β3
, (24)

with

b0 =
π2 − 4

8
; b1 =

3π2 − 4

π2 − 4
;

b2 = 5.25367 ; b3 =
24(π2 − 4)

9π2 − 16
. (25)

Figure 4 (top) shows the dimensionless mass
m obtained from a numerical integration of equa-
tion (21) as a function of β, as well as the analytic
approximation ma. The bottom plot shows the rel-
ative deviation between these two solutions, and we
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TRUNCATED PLASMONS 185

can see that the approximate analytic solution has
deviations of less that 3% relative to the exact (i.e.,
numerical) solution.

3. THE EQUATION OF MOTION FOR THE
PLASMON

The plasmon’s equation of motion can be straight-
forwardly derived noting that the deceleration of the
plasmon is a = c20/H (see equation 2), and then
writing H in terms of the plasmon mass using equa-
tion (20). We then obtain:

a =
dva
dt

= −
[

4πρac
4
0(1 + β)v2am(β)

Mp

]1/3
, (26)

where we have also used equation (4). We note that
in this equation, β = c2a/v

2
a.

Equation (26) was derived assuming that the
plasmon has a time-independent mass. This is of
course not necessarily true, since

1. the plasmon could evaporate from the back side
(which is probably not an important effect in
the pressure confined plasmon tail that we are
modelling here),

2. the flow around the plasmon head could entrain
a substantial amount of plasmon material.

A parametrization of the “detrainment” of material
from a plasmon has been obtained by Rivera-Ort́ız et
al. (2019b) by comparing a mass-losing plasmon an-
alytic model with numerical simulations. Through
their combined analytic and numerical aproach,
these authors estimate a characteristic timescale

tm = 10.45
H

c0
(27)

for substantial mass loss from the plasmon. A mass
conserving plasmon model is therefore appropriate
only for evolutionary times < tm.

We first define dimensionless variables:

x′ =
x

l0
; v′ =

va
ca

; t′ =
tca
l0
, (28)

where x is the position of the plasmon, and

l0 ≡
(
Mp

4πρa

)1/3(
ca
c0

)4/3

. (29)

In terms of these dimensionless variables, equa-
tion (26) takes the form:

d2x′

dt′2
=
dv′

dt′
= −

[(
1 + v′2

)
m

(
1

v′2

)]1/3
. (30)

This is the equation of motion for the plasmon, and
a numerical integration is presented in § 3.

For v′ � 1, we can set 1 + v′2 ≈ v′2, and

m(1/v′) ≈ b0 =
π2 − 4

8
, (31)

(see equation 22 and 25) in the second equal-
ity of equation (30). With an initial condition
v′(t = 0) = M0 (the initial Mach number of the plas-
mon), we integrate this equation to obtain:

v′(t′) =

(
M

1/3
0 − b

1/3
0 t′

3

)3

. (32)

It is clear that v′ → 0 as t′ → t′0, with

t′0 ≡ 3

(
M0

b0

)1/3

. (33)

We can integrate again to obtain the dimensionless
position of the plasmon as a function of time:

x′(t′) =
3M0

4b
1/3
0

1−

(
1− b

1/3
0 t′

3M
1/3
0

)4
 , (34)

where we have assumed that x′(t′ = 0) = 0. This
solution has been previously derived, e.g., by Cabrit
& Raga (2000).

In Figure 5 we present a comparison of the “large
Mach number” analytical solution (equations 32 and
34) with a full, numerical integration of equation (30)
for a plasmon with a v′(t′ = 0) = M0 = 10 initial
Mach number. It is clear that initially the two solu-
tions are most similar, and that they start diverging
when the plasmon slows down to v′ ≈ 1. While the
analytic, high Mach number solution (which is really
not applicable in this low v′ regime) shows a plasmon
which stops at a time t0 (see equation 33), the full
solution gives a plasmon that gradually slows down
but does not stop at a finite distance.

Figure 5 also shows the axial extent zm (equa-
tion 9) and the length-to-width ratio (L/W , given by
equation 17) of the plasmon as a function of time.
The length zm initially grows with time, reaches a
peak (of ≈ 1.42 l0) and then slowly decreases for
times t > 4l0/ca. The length-to-width ratio de-
creases monotonically from a L/W ≈ 0.8 down to
an asymptotic value of ≈ 0.32.

4. DISCUSSION

We have derived an analytic solution for the prob-
lem of an isothermal plasmon travelling supersoni-
caly within an environment with a non-zero pressure.
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186 CANTÓ & RAGA

Fig. 5. Dimensionless position (top) and velocity (second
from top) as a function of time. The solid curves corre-
spond to the full (numerical solution of equation (30),
and the dashed curves to the “high Mach number” an-
alytic solution (equations 32 and 34). The two bottom
frames show the dimensionless axial extent zm/l0 and the
length-to-width ratio L/W of the plasmon as a function
of time.

For a hypersonic flow with M � 1, our model coin-
cides with the De Young & Axford (1967) plasmon
solution.

Interestingly, we find that even for large values
of M the non-zero environmental pressure produces

a cut-off for the plasmon, which is terminated at the
distance zm and cylindrical radius rm from the plas-
mon head given by equations (9) and (15). Thus cut-
off results in rather stubby plasmons (see Figure 2),
unless one goes to very high Mach number flows.

We find that the length-to-width ratio
L/W = zm/(2rm) of the plasmon solution (equa-
tions 17 and 18) has values ranging from ≈ 0.4
to ≈ 1.5 for Mach numbers M = 1 → 100 (see
Figure 3). Therefore, the extended wings of the
De Young & Axford (1967) solution will basically
never be formed in a real astrophysical flow, unless
it has an extremely high Mach number. We find
an analytical expression (equation 18) that can
be used to derive an estimate for the flow Mach
number from the observed length-to-width ratio of
a cometary clump.

We also integrated the equation of motion for the
new plasmon solution, and for high Mach numbers
we find (not surprisingly) a time-dependent position
and velocity which are similar to the ones found from
the De Young & Axford (1967) plasmon solution.
When the flow reaches a Mach number of ≈ 3, the
new solution starts to separate from the De Young &
Axford model, with the plasmon slowing down more
slowly, and never stopping completely (while the De
Young & Axford plasmon stops at a finite distance
along its direction of motion).

Finally, we would like to point out an important
qualitative result obtained from our new model. The
ratio between the extent along the symmetry axis of
the plasmon zm and the scale-height H (equation 9)
only has a logarithmic dependence on β = 1/M2 (see
equation 5). Therefore, for a wide range of possible
values of Ma, we will have H ≈ zm, so that the gas
within the plasmon will not be strongly stratified (as
for this, one would need many pressure scale heights
fitting within the length of the plasmon). This is a
feature that is found when one tries to fit clumps
obtained in numerical simulations with an analytic
plasmon solution (see, e.g., Raga et al. 1998).

This work was supported by the DGAPA
(UNAM) grant IG100218. We acknowledge an
anonymous referee for helpful comments which
(among other things) lead to the discussion in Ap-
pendix B.

APPENDICES

A. THE PRESSURE ON THE SURFACE OF
THE PLASMON

In § 2, we have assumed that the pressure of the
shocked environment at the surface of the plasmon
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TRUNCATED PLASMONS 187

is
Ps = Pa + ρav

2 , (A35)

where ρa and Pa are the pre-shock density and pres-
sure (respectively) and v is the component of the
pre-shock flow normal to the shock surface, see equa-
tion (3). This equation can be written as:

Ps
ρac2a

= M2 + 1 , (A36)

where M = v/ca is the Mach number calculated with
the normal velocity and the isothermal sound speed.

This form for the pressure on the plasmon has
the desired behaviour so that when the surface of
the plasmon becomes parallel to the direction of the
impinging flow (and therefore the normal velocity
is v → 0), the pressure on the plasmon is equal to
the environmental gas pressure Pa. It is not clear
whether or not equation (A35) gives the correct pres-
sure for other orientations of the flow relative to the
impinging flow.

To illustrate the kind of accuracy we obtain when
using equation (A35), let us consider the stagnation
region, where the environment flows normal to the
plasmom surface (see Figure 1). For an isothermal
shock, the postshock velocity vp and the density ρp
are given by:

vp =
c2a
va

; ρp =

(
va
ca

)
ρ , (A37)

where ca is the isothermal sound speed of the flow,
and va and ρa are the preshock velocity and density
(respectively). After going through the shock, the
material slows down, until it is at rest at the stagna-
tion point in contact with the head of the plasmon.
The conditions at the stagnation region can be calcu-
lated with the isothermal Bernoulli theorem, giving
the relation

v2p
2

+ c2a ln ρp = c2a ln ρstag , (A38)

where ρstag is the density at the stagnation point.
Using equations (A37-A38) we can calculate the
stagnation pressure

Pstag
ρac2a

= M2 e1/(2M
2) , (A39)

with M = va/ca.
The value of Pstag obtained from equation (A39)

clearly does not coincide with the pressure on the
head of the plasmon calculated with equation (A35)
or (A36). In order to show the differences between

Fig. 6. Top frame: the Ps (dashed curve) and Pstag (solid
curve) pressures (obtained from equations A36 and A39,
respectively) as a function of pre-shock Mach number M .
Bottom frame: the relative deviation (Ps − Pstah)/Pstag

between the two pressures as a function of M .

these two pressure values, we plot the two of them
(as well as their relative difference) as a function of
Mach number M in Figure 6. We see that the pres-
sure obtained from equation (A36) differs from the
correct stagnation pressure (given by equation A39)
by ≈ 22% for M = 1, and that it has smaller devia-
tions for increasing values of M .

From this, we conclude that the pressure on the
plasmon surface given by equation (A35) has an ac-
curacy that is appropriate for the simple, analytic
plasmon model derived in our paper.

B. THE ASSUMPTION OF A HYDROSTATIC
STRATIFICATION

Following De Young & Axford (1967), we have as-
sumed that the plasmon has a hydrostatic equilib-
rium internal pressure distribution (see equation 1).
This assumption is valid provided that the timescale
τa for changes in the acceleration (or deceleration) a
is smaller than the sound crossing time of the plas-



©
 C

o
p

y
ri

g
h

t 
2

0
2

1
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
1

.5
7

.0
1

.1
3

188 CANTÓ & RAGA

Fig. 7. The f(v/ca) function of the criterion for hydro-
static balance within the plasmon, see equations (B44-
B45).

mon:

τhb =
zm
c0

=
c0
a

ln

(
1 + β

β

)
, (B40)

where zm is the axial extent, c0 the sound speed and
β = (ca/v)2 (see equations 2, 5 and 9).

In order to estimate the timescale

τa =

∣∣∣∣ a

da/dt

∣∣∣∣ (B41)

for substantial changes in the acceleration we first
note that equation (30) can be written in an approx-
imate way as:

a =
dv

dt
≈ Av2/3 , (B42)

where A is a constant and we have assumed
m ≈ const. and v � ca. Taking the time derivative
of this equation, we obtain:

τa ≈
3

2
τv ; with τv =

v

|dv/dt|
=
∣∣∣v
a

∣∣∣ , (B43)

where τv is the timescale for changes in the plasmon
velocity v.

Finally. combining equations (B40) and (B43),
we find that the condition for hydrostatic balance
within the plasmon can be written as:

J. Cantó: Instituto Astronomı́a, Universidad Nacional Autónoma de México, Ap. 70-468, 04510 CDMX, México.
A. C. Raga: Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510

CDMX, México, (raga@nucleares.unam.mx).
A. C. Raga: Instituto de Investigación en Ciencias F́ısicas y Matemáticas, USAC, Ciudad Universitaria, Zona

12, Guatemala, (raga@nucleares.unam.mx).

τhb
τa
≈ c0
ca
f(v′) < 1 , (B44)

wiht v′ = v/ca and

f(v′) =
2

3v′
ln
(
1 + v′2

)
. (B45)

This function is shown in Figure 7, in which we
see that it has a maximum value f(v′p) = 0.536
at v′p = 1.981. Therefore, the hydrostatic balance
within the plasmon will be satisfied over all of its
deceleration history for the case of a “cold plasmon”
with c0 < 1.8ca (where c0 and ca are the isothermal
sound speeds of the plasmon and of the environment,
respectively).
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Raga, A. C., Cantó, J., Curiel, S., & Taylor, S. 1998,

MNRAS, 295, 738
Raga, A. C., Esquivel, A., Riera, A., & Velázquez, P. F.

2007, ApJ, 668, 310
Rivera-Ort́ız, P. R., Rodŕıguez-González, A., Hernández-
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