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ABSTRACT

The isothermal gas sphere is a particular type of Lane–Emden equation and
is used widely to model many problems in astrophysics, like the formation of stars,
star clusters and galaxies. In this paper, we present a computational scheme to
simulate the conformable fractional isothermal gas sphere using an artificial neural
network (ANN) technique, and we compare the obtained results with the analytical
solution deduced using the Taylor series. We performed our calculations, trained
the ANN, and tested it using a wide range of the fractional parameter. Besides the
Emden functions, we calculated the mass-radius relations and the density profiles
of the fractional isothermal gas spheres. The results obtained show that the ANN
could perfectly simulate the conformable fractional isothermal gas spheres.

RESUMEN

La esfera isotérmica de gas es un caso particular de la ecuación de Lane-
Emden y se usa ampliamente para modelar problemas en astrof́ısica, como los
relacionados con la formación estelar, los cúmulos estelares y las galaxias. Pre-
sentamos un esquema de cómputo para simular la esfera gaseosa fraccionalmente
isotérmica utilizando una técnica de malla neuronal artificial (ANN) y comparamos
los resultados con la solución anaĺıtica obtenida mediante series de Taylor. Real-
izamos los cálculos, entrenamos a la ANN y la probamos usando un gran intervalo
del parámetro fraccional. Además de las funciones de Lane-Emden, calculamos
las relaciones masa-radio y los perfiles de densidad de las esferas fraccionalmente
isotérmicas. Los resultados muestran que la ANN fue capaz de simular perfecta-
mente las esferas gaseosas fraccionalmente isotérmicas conformables.

Key Words: equation of state — methods: analytical — stars: interiors — stars:
neutron

1. INTRODUCTION

In the last decade, fractional differential equations
played a very important role in the advancement
of science and engineering. One of the most in-
teresting fractional differential equations, utilized in
physics, astrophysics, engineering, and chemistry,
is the Lane-Emden (and Emden-Fowler) equation.
Many methods were proposed to solve these equa-
tions. The fractional polytropic models were inves-
tigated by El-Nabulsi (2011) for white dwarf stars,
Bayin and Krisch (2015) for the incompressible gas
sphere, Abdel-Salam and Nouh (2016) and Yousif
et al. (2021) for the isothermal gas sphere. Ana-

1Astronomy Department, National Research Institute of
Astronomy and Geophysics (NRIAG), Cairo, Egypt.

2Department of Mathematics, Faculty of Science, New Val-
ley University, Egypt.

lytical solutions to the fractional Lane-Emden equa-
tions using series expansion and Adomian decompo-
sition methods were introduced by Nouh and Abdel-
Salam (2018a), Abdel-Salam and Nouh (2020), Nouh
and Abdel-Salam (2018b), and Abdel-Salam et al.
(2020).

Artificial Neural Networks (ANNs) have proved
to be a very promising tool that has been used in
wide areas of scientific research and has found many
applications to solve problems related to geophysics,
engineering, environmental sciences, and astronomy
[e.g., Weaver (2000), Tagliaferri et al. (1999), Tagli-
aferri and Longo (2003), Faris et al. (2014), Elminir
et al. (2007), El-Mallawany et al. (2014), Leshno et
al. (1993), Lippmann (1989), Zhang (2000)]. The
great potential of ANNs is the high-speed process-
ing provided by their massive parallel implementa-

189

https://doi.org/10.22201/ia.01851101p.2021.57.01.14


©
 C

o
p

y
ri

g
h

t 
2

0
2

1
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
1

.5
7

.0
1

.1
4

190 AZZAM, ABDEL-SALAM, & NOUH

tions (Izeboudjen et al. 2014). Nowadays, ANNs are
mostly used for universal function approximation in
numerical paradigms because of their excellent prop-
erties of self-learning, adaptability, fault tolerance,
nonlinearity, and advancement in input to output
mapping (Wang et al. 2018). In addition, ANNs are
effective, efficient and successful in providing a high
level of capability to handle complex and noncom-
plex problems in many spheres of life. Besides, ANNs
are appropriate for modeling many physical phenom-
ena and have been used widely to solve fractional
and integer differential equations problems with dif-
ferent patterns for the ANN architecture [Raja et
al. (2010), Raja et al. (2011), Raja et al. (2015),
Hadian-Rasanan et al. (2020), Pakdaman et al.
(2017), Zuniga-Aguilar et al. (2017)]. In addition,
Ahmad et al. (2017) used artificial neural networks
(ANNs) to compute the solution of Lane-Emden type
equations. Recently, Nouh et al. (2020) presented a
solution to the fractional polytropic gas sphere (first
kind of the Lane-Emden equation); the results indi-
cated that the ANN method is precise when com-
pared with other methods.

In the current work, we shall solve the fractional
isothermal gas sphere equation using the Taylor se-
ries and train the ANN algorithm by using tables
of the fractional Emden functions, mass-radius re-
lations, and density profiles. For the sake of com-
putational simulation, the normal feed-forward neu-
ral network is used to approximate the fractional
Emden function solution, mass-radius relations, and
density distributions which are in good agreement
with other analytical schemes. The architecture used
in this research is a feed-forward neural network
that has three-layers and is trained using the back-
propagation algorithm based on the gradient descent
rule.

The rest of the paper is organized as follows: § 2
is devoted to the definition of the conformable frac-
tional derivative. § 3 deals with the Taylor expan-
sion solution of the fractional isothermal gas sphere
equation. The mathematical modeling of the neural
network is performed in § 4. In § 5, the results are
introduced with discussions. The conclusion reached
is given in § 5.

2. CONFORMABLE FRACTIONAL
DERIVATIVE

Khalil et al. (2014) introduced the conformable frac-
tional derivative using the limits in the form:

Dαf(t)= lim
ε→ 0

f(t+ ε t1−α)− f(t)

ε
,∀ t > 0, α ε(0, 1]

(1)

fα(0) = lim
t→ 0+

fα(t). (2)

Herefα(0) is not defined. This fractional derivative
reduces to the ordinary derivative when α = 1. The
following properties are found for the conformable
fractional derivative:

Dαtp = ptp−α, pεR, Dαc = 0, ∀f(t) = c, (3)

Dα (a f + b g) = aDα f + bDα g, ∀ a, b εR, (4)

Dα (f g) = f Dα g + g Dα f, (5)

Dα f(g) =
df

dg
Dα g, Dα f(t) = t1−α

df

dt
, (6)

where f, g are two α-differentiable functions and c
is an arbitrary constant. Equations (4) to (6) are
demonstrated by (Khalil et al., 2014). The corre-
sponding fractional derivative of certain functions
could be given by:

Dα (c ect) = c t1−α et, Dα sin (c t) = c t1−α cos (c t),

Dα cos (c t) = − c t1−α sin (c t), (7)

Dα ec t
α

= α c ec t
α

, Dα sin(c tα) = α c cos c tα,

Dα cos(c tα) = −α c sin c tα. (8)

3. TAYLOR EXPANSION OF THE
FRACTIONAL ISOTHERMAL GAS SPHERE

EQUATION

Let us consider the isothermal equation of state given
by

P = K ρ

where K is the pressure constant. By implement-
ing the principles of the conformable derivatives,
Yousif et al. (2021) derived the conformable second-
order nonlinear differential equation that describes
the isothermal gas sphere as

1

x2α

dα

dxα

(
x2α d

αu

dxα

)
= e−u. (9)

The mass contained in the sphere is given by

M(xα) = 4π

[
K

4πG

] 3
2

ρ
− 3

2
c

(
x2α d

αu

dxα

)
, (10)

the radius is given by

Rα =

[
K

4πG

] 1
2

ρ
− 1

2
c xα, (11)
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and the density is given by

ρ = ρc e
−u, (12)

where ρc is the central density.
Equation (9) can be written as

Dαα
x u +

2α

xα
Dα
x u− e−u = 0, u(0) = 0, Dα

x u(0) = 0.

(13)
The fractional Taylor series solution for any function
u(x) can be written as

u(xα) =u(0) +
Dα
xu(0)

α
xα +

Dαα
x u(0)

2!α2
x2α +

Dααα
x u(0)

3!α3
x3α +

Dαααα
x u(0)

4!α4
x4α + · · · .

Equation (13) can be written in the following form

xαDαα
x u = −2αDα

xu + xα e−u. (14)

Differentiating Equation (14) with respect to α, we
get

αDαα
x u+xαDααα

x u=−2αDαα
x u+αe−u−xαe−uDα

xu,

⇒ 3αDαα
x u+ xαDααα

x u = α e−u − xα e−uDα
x .

(15)

Putting x = 0 in the last equation, we have

3αDαα
x u(0) = α e−u(0), ⇒ Dαα

x u(0) =
1

3
.

Differentiating equation (15) with respect to α, we
get

4αDααα
x u+ xαDαααα

x u = −2αe−uDα
xu+

xαe−u(Dα
xu)2 − xαe−uDαα

x u. (16)

When x = 0 ,we have

4αDααα
x u(0) = 0, ⇒ Dααα

x u(0) = 0.

Differentiating Equation (16) with respect to α, we
have

5αDαααα
x u + xαDααααα

x u = 3α e−u(Dα
xu)2−

xα e−u(Dα
xu)3 + 3xα e−uDα

xuD
αα
x u−

3α e−uDαα
x u − xα e−uDααα

x u. (17)

When x = 0 we have

5αDαααα
x u(0) = −3α e−u(0)Dαα

x u(0),

⇒ Dαααα
x u(0) = −3

5
e0 1

3
= −1

5
,

Fig. 1. ANN Architecture developed to simulate the frac-
tional isothermal Emden function, mass-radius relation,
and density profiles.

and so on. Finally, we have

u(xα) =u(0) +
Dα
xu(0)

α
xα +

Dαα
x u(0)

2!α2
x2α +

Dααα
x u(0)

3!α3
x3α +

Dαααα
x u(0)

4!α4
x4α + · · · .

Thus the solution of Equation (13) is given by

u(xα) =
1

6α2
x2α − 1

120α4
x4α + · · · .

4. NEURAL NETWORK ALGORITHM

4.1. Mathematical Modeling of the Problem

The neural network architecture used to model
the equation of conformal fractional isothermal gas
spheres is shown in Figure 1. We write equation (9)
as

Dαα
x u+

1

x2α
Dα
xu = e−u. (18)

Along with the initial conditions u(0) = 1 and
Dα
x u(0) = 0, we generate a neural network solu-

tion, and we go through the following scheme: First,
we suppose that the solution of Equation (18) is
ut(x, p)which can be approximated by

ut(x, p) = A(x) + f(x,N(x, p)), (19)

where A(x) fulfills the initial conditions and
f(x,N(x, p)) indicates the feed-forward neural net-
work, and N(x, p) is the output of the neural net-
work. The vector x is the network input and p is
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192 AZZAM, ABDEL-SALAM, & NOUH

the analogous vector of adaptable weight parame-
ters. Then N(x, p) can be written as

N(x, p) =

H∑
i=1

viσ(zi), (20)

where zj =
∑n
i=1 wijxj + βi and wij represents the

weight from unit j in the input layer to unit i in the
hidden layer, vi symbolizes the weight from unit i in
the hidden layer to the output, βi is the bias value
of the ith hidden unit and σ(zi) is the sigmoid acti-
vation function which has the form σ(x) = 1

1+e−x .
Taking the fractional derivative N(x, p) for input

vector, xj gives

Dα
xjN(x, p) =Dα

xj

(
H∑
i=1

viσ

(
zi =

n∑
i=1

wijxj + βi

))

=

h∑
i=1

viwijσ
(α), σ(α) = Dα

xσ(x),

(21)

the nth fractional derivative of N(x, p) gives

D
n times
α ...α
xj N(x, p) =

n∑
i=1

vi Pi σ
(nα)
i , Pi =

n∏
k=1

wαkik ,

σi = σ(zi). (22)

Then, the approximate solution is given by

ut(x, p) = xN(x, p). (23)

This satisfies the initial conditions as:

ut(0, p) = 0 .N(0, p) = 0, (24)

and

Dα
xut(x, p) = x1−αN(x, p) + xDα

xN(x, p), (25)

so that

Dα
xut(0, p) = (0)1−αN(x, p) + 0. Dα

xN(x, p) = 0.
(26)

4.2. Gradient Computations and Parameter
Updating

Assuming that Equation (23) represents the approx-
imate solution, the problem will be turned into an
unconstrained optimization problem and the amount
of error will be given by

E(x) =
∑
i

{
Dαα
x ut(xi, p) +

2

xα
Dα
xut(xi, p)−

f(xi, ut(xi, p))

}2

. (27)

Here:

f(xi, ut(xi, p)) = e−ut(xi,p),

Dα
xut(x, p) = x1−αN(x, p) + xDα

xN(x, p), (28)

and

Dαα
x ut(x, p) =(1− α)x1−2αN(x, p)+

2x1−αDα
xN(x, p) + xDαα

x N(x, p),
(29)

where Dα
xN(x, p)and Dαα

x N(x, p) are given by equa-
tions (21, 22).

We computed the fractional derivative of the neu-
ral network input, as well as network parameters,
to update the network parameters and use the opti-
mized parameter values to train the neural network.
We set up the network with the optimized network
parameters after training of the network, and calcu-
late ut(x, p) from ut(x, p) = xN(x, p).
The conformable fractional derivative is considered
at par with a feed-forward neural network N with
one hidden layer for each of its inputs, with the
same weight values w and thresholds βi with each
weight vi being exchanged with vi Pi where Pi =∏n
k=1 w

αk
ik . Furthermore, the transfer function of

each hidden unit is exchanged with the fractional
derivative of the sigmoid function in the nth order.
Consequently, with regard to the parameters of the
original network, the conformable fractional gradient
N of the original network is

Dα
viN =Pi σ

(nα)
i ,

Dα
βiN =viPi σ

((n+1)α)
i ,

Dα
wijN =xiviPi σ

((n+1)α)
i +

viαjw
1−αj
ij

 ∏
k=1, k 6=j

wαkik

σ
(nα)
i . (30)

The updating rule of the network parameters can be
specified as

vi(x+ 1) = vi(x) + aDα
viN, (31)

βi(x+ 1) = βi(x) + bDα
βiN, (32)

wij(x+ 1) = wij(x) + cDα
wijN, (33)

where a, b, c are learning rates, i = 1, 2, ... , n, and
j = 1, 2, ... , h.
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4.3. Back-Propagation Training Algorithm

The back-propagation (BP) training algorithm is a
gradient algorithm aimed to minimize the average
square error between the desired output and the ac-
tual output of a feed-forward network. Continuously
differentiable non-linearity is required for this algo-
rithm. The gradient algorithm mathematics must
assure that a specific node has to be adapted in a
direct rate to the error in the units it is connected
to. This algorithm has been described in detail in
our previous paper (Nouh et al. 2020). Figure 2
shows a flow chart of an off-line back-propagation
training algorithm, see Nouh et al. (2020), Yadav et
al. (2015).

The back-propagation (BP) learning algorithm is
a recursive algorithm starting at the output units
and working back to the first hidden layer. A com-
parison of the desired output tj with the actual out-
put uj at the output layer is executed using an error
function which has the following form:

δj = uj(tj − uj)(1− uj). (34)

The error function for the hidden layer takes the fol-
lowing form:

δj = uj(1− uj)
∑
k

δkwk, (35)

where δj is the error term of the output layer, and
wk is the weight between the output and hidden lay-
ers. The update of the weight of each connection is
implemented by replicating the error in a backward
direction from the output layer to the input layer as
follows:

wji(t+ 1) = wji(t) + ηδjuj + γ(wji(t)− wji(t− 1)).
(36)

The learning rate η is chosen such that it is nei-
ther too large leading to overshooting nor very small
leading to a slow convergence rate. The last part
in Equation (36) is the momentum term which is
affixed with a constant γ (momentum) to acceler-
ate the error convergence of the back-propagation
learning algorithm, and also to assist in pushing the
changes of the energy function over local increases
and boosting the weights in the direction of the over-
all downhill, Denz (1998). This part is used to add a
portion of the most recent weight values to the cur-
rent weight values. The values of the η and γ terms
are set at the beginning of the training phase and de-
termine the network speed and stability, see Basheer
and Hajmeer (2000). The process is repeated for
each input pattern until the output error of the net-
work is decreased to a pre-specified threshold value.

 

 

Initialize biases and weights  

Introduce input and target output 

Compute actual output of hidden 

and output neurons 

Weights are adjusted by:  

( 1) ( ) ( ( ) ( 1))ji ji j j ji jiw t w t u w t w t        

If unit j is an output unit: 

( )(1 )j j j j ju t u u     

If unit j is a hidden unit: 

(1 )j j j k k

k

u u w     

Change the learning pattern 

Learning pattern: 

End 

 
2

1 1

1 P J

rms pj pj

p j

E t u
PJ  

   

>= 

End 

Increment the number of iterations 

Start 

≠ 

Fig. 2. Flowchart of an off-line back-propagation training
algorithm.

The final weight values are frozen and utilized to get
the precise values of the desired output during the
test phase. The quality and success of training of
ANN are assessed by calculating the error for the
whole batch of training patterns using the normal-
ized RMS error that is defined as:

Erms =
1

PJ

√√√√ P∑
p=1

J∑
j=1

(tpj − upj)2
, (37)

where J is the number of output units, P is the num-
ber of training patterns, tpj is the desired output
at unit j, and upj is the actual output at the same
unit j. A zero error denotes that all the output pat-
terns computed by the isothermal gas spheres ANN
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perfectly match the values expected, and that the
isothermal gas spheres ANN is fully trained. Sim-
ilarly, internal unit thresholds are adjusted by sup-
posing that they are connection weights on links from
the input with an auxiliary constant-value.

5. RESULTS AND DISCUSSIONS

5.1. Data Preparation

We developed a MATHEMATICA routine to calcu-
late the fractional Emden function and the phys-
ical characteristics of the conformable isothermal
gas spheres, like mass (equation 10), radius (equa-
tion 11), and density (equation 12). Equation (17)
represents the series solution of fractional isother-
mal gas spheres, which is similar to the power series
solution developed by Yousif et al. (2020), where
we used only 10 series terms. As pointed out by
Yousif et al. (2020), this series expansion (like equa-
tion 17) diverges for x > 3.2. We used the acceler-
ated scheme developed by Nouh (2004) to accelerate
the series. Our calculations are done for a range of
fractional parameters (0.75 ≤ α ≤ 1) with a step of
0.1. For the integer case (α = 1), the Emden func-
tion computed according to the series solution, and
the numerical one, are in good agreement, Yousif et
al. (2021). Fractional models for the isothermal gas
sphere can be computed using Equations (10) to (12)
for the mass, radius, and density. So, we can inves-
tigate the mass-radius relations and density profiles
at different fractional parameters.

In Table 1, we list the mass-radius relations for
some fractional isothermal gas spheres models. The
designations in the table are: R∗ and M∗ represent
the radius and mass of the fractional star, R0 and
M0 are the radius and mass of a typical neutron
star with the physical parameters M0 = 1.4MΘ,
central density ρc = 5.75 × 1014 g cm−3, pressure
P = 2× 1033 par, and radius R0 = 1.4 × 106 cm.
As seen in the table, as the value of the fractional
parameter decreases the volume and mass of the star
decreases.

5.2. Network Training

To train the proposed neural network used to simu-
late the conformable fractional isothermal gas sphere
equation, we used data calculated in the previous
subsection. The data used for training of the ANN
are shown in the first column of Tables (2-3). The
architecture of the neural network (NN) we used in
this paper for the isothermal gas sphere function

TABLE 1

MASS-RADIUS RELATIONS FOR THE
FRACTIONAL ISOTHERMAL GAS SPHERE.

α R∗/R0 M∗/M0

1 1 1

0.99 0.956 0.915

0.98 0.915 0.838

0.97 0.875 0.768

0.96 0.838 0.703

0.95 0.802 0.644

0.94 0.767 0.591

0.93 0.735 0.514

0.92 0.703 0.495

0.91 0.673 0.464

0.9 0.644 0.415

TABLE 2

TRAINING, VALIDATION, AND TESTING
DATA FOR THE FRACTIONAL ISOTHERMAL

EMDEN FUNCTION.

Training phase Validation phase Testing phase

α α α

0.8, 0.85, 0.9, 0.96, 0.99 0.91, 0.92,

0.95, 0.97, 0.98, 1 0.93, 0.94

TABLE 3

TRAINING, VALIDATION, AND TESTING
DATA FOR MASS-RADIUS RELATIONS AND

DENSITY PROFILES.

Training phase Validation phase Testing phase

α α α

0.75, 0.90, 0.92, 0.95, 0.98 0.80, 0.85, 0.91

0.93, 0.94, 0.96,

0.97, 0.99

is 2 − 120 − 1, where the input layer has two in-
puts, which are the fractional parameter α and the
dimensionless parameter x (x takes values from 0
to 80 in steps of 0.1), while the output layer has 1
node for the isothermal gas sphere function u com-
puted for the same values of the dimensionless pa-
rameter x and input fractional parameter α. For
the mass-radius relation, we used the architecture
2 − 120 − 2, where the input layer has two individ-
ual inputs, which are the fractional parameter α and
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(a) The convergence of weights of the input layer (wi) 

 

(b) The convergence of bias (βi) 

 

(c) The convergence of output layer weights (vi) 
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Fig. 3. Convergence of input, bias, and output weights
for the fractional isothermal Emden function. The color
figure can be viewed online.

the radius of the star R, while the output layer has
2 nodes, which are the mass and density at the same
values of the input fractional parameters.

The choice of 120 neurons in the hidden layer
of the NN was decided according to the findings we
reached in our previous research (Nouh et al., 2020)
after testing 80,120 and 200 neurons in one hidden
layer of NN (shown in Figure 1), which gave the least
RMS error and the best model for the network com-
pared to the other two configurations for both the
isothermal and mass-radius relation cases.

After multiple modifications and adjustments to
the parameters of the NN, it converged to an RMS
error value of 0.00002 for the training of the isother-
mal case, and to a value of 0.000025 for the training
of the mass-radius relation and density profile case.
During the raining of the NN, we used a value for
the learning rate (α = 0.03) and for the momentum
(α = 0.5). These values for the learning rate and
momentum proved to quicken the convergence of the
back-propagation training phase without exceeding
the solution. In this research, we have programmed
our algorithms using the C++ programming lan-
guage running on Windows 7 of a CORE i7 PC.
The network training typically took around 3 hrs.

 

(a) The convergence of input layer weights (wi) 

 

(b) The convergence of bias (βi) 

 

(c) Convergence of output layer weights (vi) 
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Fig. 4. Convergence of the weights of input, bias, and
output layers for the fractional mass-radius relation. The
color figure can be viewed online.

to converge for each case of the training previously
mentioned. The trainings were implemented concur-
rently on different windows of the same machine. Af-
ter network training, the frozen saved weights were
utilized to get the values of the desired output during
the validation and test phases in a very short time
(about 1 second), as described in the next section.

For the demonstration of the convergence and
stability of the values computed for the weight pa-
rameters of the network layers the behavior of the
convergence of the input layer weights, bias and out-
put layer weights (wi , βi and vi) for the isothermal
gas sphere case is as displayed in Figure 3. Moreover,
the convergence behavior and stability of the val-
ues computed for the weight parameters of network
layers (weights of the input layer, bias, and output
layer) for the mass-radius relation case are shown in
Figure 4. As these figures indicate, the values of the
weights were initialized to random values and after
many iterations they converged to stable values.
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Fig. 5. The fractional Emden functions of the isothermal
gas sphere obtained in the validation phase. The ana-
lytical and the ANN solutions are plotted with different
colors. The maximum relative error is 1%. The color
figure can be viewed online.

5.3. Validation and Test of the Training Phase

To ensure the training of the NN, we used two val-
ues for the fractional parameter α, not being used
in the training phase as a validation and verification
of the goodness of that phase. These two values are
shown in the middle column of Table 2 and Table 3
for the isothermal Emden function, and mass-radius
relations and density profiles cases, respectively. The
obtained results for those two validation values are
as shown in Figure 5 for the isothermal Emden func-
tion, in Figure 7 for the fractional density profiles,
and in Figure 9 for the fractional mass-radius rela-
tions. As shown in these figures, there is a very good
coincidence between the NN prediction and the an-
alytical results for the Emden function, mass-radius
relations, and density profiles, where the maximum
absolute error is 1%, 2.5%, and 4%, respectively. We
plotted the analytical solution and the NN predic-
tion for the Emden function and the density profile
with different colors, but due to the overlapping of
the two curves, they appear as one. The big differ-
ence comes from the region near the center of the
sphere, for x ≤ 10. In the case of the mass-radius re-

 

Fig. 6. The fractional Emden functions of the isothermal
gas sphere obtained in the test phase. We plot the analyt-
ical and the corresponding ANN solutions with different
colors to show the accuracy of the calculations. Also, the
complete curve is included in the graph. The color figure
can be viewed online.

lation (Figure 9), the noticeable difference between
the analytical solution and the NN is larger than
that of the Emden function and density profiles due
to the nature of the equation relating the mass to
the radius (equation 10).

In Figures (6), (8), and (10), we plotted the pre-
dicted values of Emden functions, density profiles
and mass-radius relations for some values of the frac-
tional parameters listed in Tables 1 and 2. In these
figures, due to the small change of the Emden func-
tion and density with the fractional parameter, and
also the negligible difference between the analytical
solution and the NN solution, we truncated the x-
axis at a smaller value for more clarity. Again, there
is a somewhat noticeable difference between the an-
alytical solution and the predicted NN values in the
case of the mass-radius relation (Figure 10) which
is larger than the other two predicted NN values for
the Emden functions and the density profiles (Fig-
ure 6 and Figure 8). This large difference may be
attributed to the instability during performing and
accelerating the series expansion of the fractional
derivative of the Emden function (equation 10). It
should be noted, here again, that the time taken
to get the results of the validation and test phases,
using the frozen saved values of the weights of the
trained NN, is negligible (around 1 second). This
proves the high efficiency and high-speed processing
of the ANN when compared with the numerical and
analytical methods.

6. CONCLUSION

The ANN modeling of the nonlinear differential
equations shows a high efficiency when compared
with the numerical and analytical methods. In the
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Fig. 7. The fractional density profiles obtained in the
validation phase. There is a very low error except for the
range of the radius ratio R/R0 ≤ 0.015. The maximum
relative error is 2.5%. The color figure can be viewed
online.

 

Fig. 8. The fractional density profiles obtained in the
test phase for the fractional parameters α = 0.8, 0.85.
The color figure can be viewed online.

present work, we aimed to introduce a computational
approach to the fractional isothermal gas sphere via
ANN. We solved the second type of Lane-Emden
equation (the isothermal gas sphere) using the Tay-
lor series, then we accelerated the resulting series to
reach a good accuracy. The analytical calculations
are performed for the Emden functions, mass-radius
relations, and density profiles.

We obtained a good accuracy through the use of
the ANN technique by using some calculated data to
train the NN in the training phase, then validating
the trained network by some other values, where we

 

 

 

 

Fig. 9. The fractional mass-radius relations obtained in
the validation phase. The maximum relative error is 4%.
The color figure can be viewed online.

 

 

Fig. 10. The fractional mass-radius relations obtained in
the test phase. The differences between the analytical
and NN solutions are remarkable. The color figure can
be viewed online.

obtained maximum error values of 1%, 2.5%, and 4%
for the isothermal fractional Emden function case,
the density profile case, and the mass-radius rela-
tion case, respectively. To test the ANN technique
in predicting unknown values, we used the trained
network and ran the routine for the fractional test
parameters listed in Tables 2 and 3. The comparison
between the analytical and the ANN solution gives
a very good agreement, as shown in Figures (6, 8,
and 10) with a maximum error of 4%. The results
obtained reflect the applicability and efficiency of
using ANN to model stellar physical characteristics
(i.e., radius, mass, and density) using the fractional
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isothermal gas sphere. In our opinion, the present
results, besides the results obtained in Nouh et al.
(2020), are an important step toward the composite
modeling (e.g., isothermal core and polytropic enve-
lope) of various stellar configurations using ANN.

We thank the referee for his/her valuable com-
ments which improved the paper. The authors ac-
knowledge the Academy of Scientific Research and
Technology (ASRT), Egypt (Grant no. 6413), under
the project Science Up. (ASRT) is the 2nd affiliation
of this research.
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