
©
 C

o
p

y
ri

g
h

t 
2

0
2

3
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
3

.5
9

.0
2

.0
2

Revista Mexicana de Astronomı́a y Astrof́ısica, 59, 171–175 (2023)

c© 2023: Instituto de Astronomı́a, Universidad Nacional Autónoma de México
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ABSTRACT

The Lyapunov characteristic exponents are a useful indicator of chaos in as-
tronomical dynamical systems. They are usually computed through a standard,
very efficient and neat algorithm published in 1980. However, for Hamiltonian sys-
tems the expected result of pairs of opposite exponents is not always obtained with
enough precision. We find here why in these cases the initial order of the deviation
vectors matters, and how to sort them in order to obtain a correct result.

RESUMEN

Los exponentes caracteŕısticos de Lyapunov constituyen un útil indicador de
caos en sistemas dinámicos astronómicos. Habitualmente se los calcula mediante
un algoritmo muy claro y eficiente publicado en 1980. Sin embargo, para sistemas
hamiltonianos, el resultado esperable de pares de exponentes opuestos no siempre
se obtiene con suficiente precisión. Aqúı encontramos por qué en estos casos es
importante el orden inicial de los vectores de desviación, y cómo deben distribuirse
a fin de obtener un resultado correcto.

Key Words: chaos — galaxies: kinematics and dynamics — methods: numerical —
planets and satellites: dynamical evolution and stability

1. INTRODUCTION

The importance of chaos in astronomical dynam-
ical systems is generally recognized nowadays and
a complete summary of this subject can be found
in the textbook of Contopoulos (2002). The algo-
rithms commonly used to determine the regularity
or chaoticity of a dynamical system can be grouped
into two categories: those based on the frequency
analysis of the orbits (e.g. Binney & Spergel 1982;
Laskar 1990; Šidlichovský & Nesvorný 1996; Carpin-
tero & Aguilar 1998; Papaphilippou & Laskar 1998)
and the so-called variational indicators, based on the
behaviour of deviation vectors (e.g. Voglis & Con-
topoulos 1994; Contopoulos & Voglis 1996; Froeschlé
et al. 1997; Voglis et al. 1999; Cincotta & Simó 2000;
Sándor et al. 2000; Skokos 2001; Lega & Froeschlé
2001; Fouchard et al. 2002; Cincotta et al. 2003;
Sándor et al. 2004; Skokos et al. 2007; Maffione et al.
2011; Darriba et al. 2012b,a; Maffione et al. 2013;
Carpintero et al. 2014). Among the methods of the
last group, the computation of the Lyapunov char-
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sidad Nacional de La Plata, Argentina.

2Instituto de Astrof́ısica de La Plata, UNLP–Conicet, Ar-
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acteristic exponents (LCEs) (Benettin et al. 1976,
1980) stands out not only for being the oldest of
them all but also for representing the very defini-
tion of chaos. They have been used to investigate
chaos in elliptical galaxies, among others, by Udry
& Pfenniger (1988), Merritt & Fridman (1996) and
by ourselves (see Carpintero & Muzzio (2016) and
its references to our previous work).

In the second part of a seminal paper, Benettin
et al. (1980) gave for the first time a thorough de-
scription of an algorithm to compute all the LCEs of
a system, which in turn was based on the theoretical
work of the first part (Benettin et al. 1976). This
algorithm quickly became a standard.

However, when dealing with a Hamiltonian sys-
tem, the expected result of paired opposite LCEs
is not always achieved with enough numerical pre-
cision, notwithstanding the neat procedure of the
above-mentioned algorithm. We find here the ori-
gin of the problem and an easy way out.

2. SETTING THE STAGE

We assume that we are dealing with a dynamical
system described by n differential equations of the
first order. To compute the LCEs of one of its or-
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bits with the algorithm of Benettin et al. (1980), one
obtains the orbit itself —which we will call the un-
perturbed orbit— by integrating the corresponding
equations of motion, plus the time evolution of n lin-
early independent vectors, the deviation vectors δwi,
i = 1, . . . , n, representing the phase space distance
between the orbit and n additional orbits —the per-
turbed orbits— that start near the former. The time
evolution of these vectors is obtained by integrating
the so-called variational equations, that is, the first
variation of the equations of the motion around the
original orbit (e.g. Tabor 1989, p. 148). To obtain
the LCEs λi, i = 1, . . . , n from the deviation vectors,
one computes (Benettin et al. 1980)

λi ≃
1

Nτ

N∑
k=1

lnαi(tk), (1)

where αi(tk) is the modulus of δwi after an orthogo-
nalization of the set {δwj}j=1,...,n at time tk, τ is the
step of integration, and N a positive integer which
has to be large enough to get a good approxima-
tion. If the orthogonalization is carried out using
the Gram-Schmidt method, the αi’s can be obtained
on the fly. Also, since the computation does not de-
pend on the initial moduli or initial orientation of
the δwi (Benettin et al. 1980), it is customary to set
initial deviation vectors of unitary modulus, each one
aligned with one of the Cartesian axes.

Let us now assume, to fix ideas, that the LCEs
are ordered in descending order according to their
values:

λ1 ≥ λ2 ≥ · · · ≥ λn. (2)

Now we may ask: can we determine which of the
δwi’s will give the αi with which λ1 is obtained?
Clearly, by equation (1), the deviation vector that
accumulates the largest modulus after the orthog-
onalizations will be the one that gives λ1. This
vector is identifiable thanks to three circumstances.
First, the orthogonalization at times tk includes a
normalization of all the resulting vectors, in order to
avoid numerical overflows due to their exponential
growth. Thus, all the deviation vectors start their
evolution always with the same modulus. Second,
all the vectors tend to align towards the direction of
maximum growth —the reason why an orthogonal-
ization is done periodically, thus avoiding very small
angles between vectors which would be numerically
intractable. Therefore, all vectors tend to go into a
direction with the same rate of growth; this reason,
together with the previous one, allows us to claim
that if the interval between tk and tk+1 is not too

large, all vectors will have similar moduli just be-
fore the orthonormalization step. Third, by using
the Gram-Schmidt method, the first vector entering
the algorithm will keep its modulus; the second one,
instead, will end up with a smaller modulus because
it is projected into the subspace orthogonal to the
first. The third, fourth, etc. vectors will end up
with even smaller moduli, each one being projected
into subspaces of lesser dimension. These three rea-
sons together allow us to answer the question posed
above: although at short times any vector could be
the largest, given enough time the first vector en-
tering the Gram-Schmidt algorithm will grow more
than the rest, and will be the one with which λ1 will
be computed.

By reasoning in the same way, one could claim
that the second vector entering the Gram-Schmidt
algorithm will always have the second-largest mod-
ulus and therefore will be the one with which λ2

will be computed, and so on for the rest of devi-
ation vectors and LCEs. Therefore, if we sort the
subindices of δwi in the order with which they enter
the Gram-Schmidt routine (i.e., δw1 the first one,
δw2 the second one, etc.), then each δwi should give
the corresponding λi —the latter sorted according
to inequation (2). Although this is to be expected,
it turns out that is not quite true in all cases.

3. THE PROBLEM: HAMILTONIAN SYSTEMS

If the dynamical system under study is Hamil-
tonian and autonomous, by Liouville’s theorem any
volume of the phase space will be conserved along
its evolution. From this is not hard to see (e.g.
Jackson 1989) that, for any direction of the phase
space that stretches exponentially (with correspond-
ing LCE positive), there must be another one that
shrinks at the same exponential rate (with an LCE
equal to the negative of the latter). Thus, Hamil-
tonian systems always have pairs of LCEs that are
negatives of each other. Also, one of those pairs is
always zero. These are strong restrictions that may
be used to control whether the computation of the
LCEs has been successful. But it turns out that
a näıve application of equation (1) does not always
achieve this. Figure 1 shows the absolute value of the
computed LCEs of an orbit in the two-dimensional
Binney potential (Binney 1982)

Φ(x, y)=
v20
2
ln

[
R2

c+x2+
y2

q2
+

1

Re

√
x2 + y2(x2 − y2)

]
,

(3)
where (x, y) are Cartesian coordinates and v0, q, Rc

and Re are parameters. Since the system is Hamilto-
nian and autonomous, we expect that λ1 = −λ4 and
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CORRECT COMPUTATION OF LYAPUNOV EXPONENTS 173

Fig. 1. LCEs of an orbit in the potential of equation (3)
with parameters v0 = 1, q = 0.9, Rc = 0.14 and
Re = 3, started at the phase space point (x, y, ẋ, ẏ) =
(0.1, 0.5, 0, 1). From top to bottom, the sets of dots
are generated by deviation vectors originally pointing
along the directions ex, ey, eẋ and eẏ, respectively. All
the computations were performed with double precision.
Since we are plotting the absolute value of the LCEs, if
two of them were the opposite of the other two —as ex-
pected for a Hamiltonian system— only two sets of dots
would be seen.

λ2 = −λ3, the latter tending to zero as time goes by.
However, although the computation was done with
double precision, we can see that the four LCEs are
not well paired in opposite pairs.

4. THE SOLUTION

An important property of Hamiltonian dynamics
is that Poincaré invariants are preserved along the
flow (e.g. Tabor 1989). Let q and p stand for the
coordinates and momenta of a canonical set, respec-
tively; in addition, let C1 be any closed curve in the
n-dimensional phase space encompassing a tube of
orbits, and C2 any other closed curve enclosing the
same set of trajectories. The first Poincaré invariant
can be expressed as∫

C1

p · dq =

∫
C2

p · dq. (4)

We note that C2 could be the curve C1 evolved in
time. Let us take, to fix ideas, n = 2 and Cartesian
coordinates (q,p) = (x, y, ẋ, ẏ). If we choose for
C1 the unit square in the plane (q1, p1) = (x, ẋ) at
t0, it will enclose the area spanned by δwx(t0) and
δwẋ(t0), and the Poincaré first invariant will have
only the term corresponding to ẋ · dx. Furthermore,
by virtue of Stokes’s theorem, the line integral will
be equal to the enclosed area. If we choose the ini-
tial deviation vectors as before (unit vectors pointing

along each Cartesian axis), this area will be equal to
one, and by the invariance of the integral the area of
the parallelogram spanned by δwx(t) and δwẋ(t) for
any t > t0 will remain unitary.

Now, the orthogonalization of the Gram-Schmidt
algorithm allows us to compute the area of the par-
allelogram spanned by δwx(t) and δwẋ(t) as simply
αx · αẋ, and since this area should be always equal
to 1, we should have

lnαx(t) = − lnαẋ(t) (5)

for all t. The same will happen with the y coordinate.
Looking at equation (1), we see that the deviation
vectors started on the x and ẋ axes will give a pair
of opposite LCEs, while those started on the y and
ẏ axes will give the other pair.

But here we see the problem. On the one hand,
as we have just seen, if for example δw1 = δwx,
then we must have δw4 = δwẋ in order to obtain
the pair of opposite LCEs. But, on the other hand,
this is not necessarily the order in which they are
entered into the Gram-Schmidt routine. If these vec-
tors are not the first and fourth, we are forcing the
algorithm to find an opposite value of λ1 with a vec-
tor that is not the expected one, thus compelling
the routine to give the correct modulus to a vector
that was not the one that formed a unitary parallel-
ogram with the first. This is numerically inefficient.
Therefore, since the first and last deviation vectors
inserted into the Gram-Schmidt routine should give
the maximum LCE and its opposite sibling, they
should be those originally pointing along a Cartesian
coordinate and its corresponding velocity (in any or-
der among them). The same occurs for the second
and penultimate vectors, etc.

Figure 2 shows the LCEs of the same orbit as in
Figure 1, but computed with the deviation vectors
ordered originally in the directions (ex, ey, eẏ, eẋ).
There are four sets of points plotted in the figure,
generated by the evolution of those vectors. But the
sets generated by ex and eẋ are superimposed, so
only one set is visible (the top one in the figure).
In the same way, the two sets generated by ey and
eẏ are superimposed (the bottom set in the figure).
Thus, we can see that the very same algorithm with
the same orbit used before gives now exact opposite
LCEs, as expected.

Besides, using the order of the initial vectors
that we propose has the additional and more prac-
tically useful advantage that it yields better de-
fined values of the computed LCEs. As an exam-
ple, we computed the LCEs of orbits in the per-
turbed cubic force model used by Muzzio (2017) with
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174 CARPINTERO & MUZZIO

Fig. 2. LCEs of the same orbit of Figure 1, but starting
with unitary deviation vectors δw1 = ex, δw2 = ey,
δw3 = eẏ and δw4 = eẋ. The top set of points were
generated by ex and eẋ, though they are the same, so a
unique set is seen. The same for the bottom set, which
is a superposition of the sets generated by ey and eẏ.

−0.166843 < e1 < −0.166507, −0.324941 < e2 <
−0.323994 and grid spacings ∆e1 = 2−17 and ∆e2 =
2−16 (see Muzzio, 2017, for details). The integra-
tions were done for 5×106 time units in all the cases.
Figure 3 presents the resulting λ1 versus λ2 with the
usual ordering (top panel), and the same with our
ordering (bottom panel). Clearly, the dispersion of
the λ2 values is smaller and their value better defined
with our ordering of the initial vectors.

5. CONCLUSION

The results obtained for the LCEs of a Hamil-
tonian autonomous system with the Benettin et al.
(1980) method depend on the order used for the ini-
tial deviation vectors. To obtain the expected oppo-
site pairs of LCEs, the deviation vectors should be
ordered by pairs, the first, second, etc. ones having
to be conjugate with the last, the penultimate, etc.,
respectively. The results obtained with such an or-
dering have the additional advantage of resulting in
better defined values of the computed LCEs.
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