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https://doi.org/10.22201/ia.01851101p.2023.59.02.15

LATE ACCELERATED EXPANSION OF THE UNIVERSE IN DIFFUSIVE
SCENARIOS

Eduard Fernando Piratova Moreno1 and Luz Ángela Garćıa2
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ABSTRACT

We present a diffusion model in a cosmological framework to describe the
accelerated expansion of the Universe at late times. We first introduce a scalar field
in Einstein’s field equations to account for the effect of diffusion as the driver of
today’s expansion. We also study a second option for the diffusion source: a perfect
fluid with a barotropic equation of state. We establish the equations that relate
the fluid evolution with the cosmic budget and find analytical solutions of the field
equations with different diffusion coefficients: constant, redshift-dependent, and σ
proportional to the Hubble parameter. Our main finding is that diffusive processes
in the Universe are viable scenarios to effectively describe the expansion dynamics
once the model’s free parameters are gauged. The choice of the diffusion coefficient
and the equation of state of the cosmic fluid determines the solutions of the density
fractions and the transition to an accelerated expansion of the Universe at present.

RESUMEN

Presentamos un modelo de difusión en un marco cosmológico para describir
la expansión acelerada del Universo en la época actual. Primero exploramos un
campo escalar en las ecuaciones de campo para explicar el efecto de la difusión
como el generador de la expansión actual. Además, estudiamos el efecto de un fluido
perfecto con una ecuación de estado barotrópica, y encontramos las soluciones de
las ecuaciones de campo para coeficientes de difusión: constante, dependiente del
redshift y σ proporcional al parámetro de Hubble. Nuestro principal hallazgo es que
procesos de difusión en el Universo son escenarios viables para describir la dinámica
de la expansión una vez que los parámetros libres del modelo son calibrados. La
elección del coeficiente de difusión con corrimiento al rojo y la ecuación de estado del
fluido cósmico determinan la forma de las soluciones de las fracciones de densidad
y la transición a una expansión acelerada del Universo en la actualidad.

Key Words: cosmology: theory — dark energy — diffusion

1. INTRODUCTION

Observations of the luminosity distances of su-
pernovae Ia at the end of the last century allow us to
establish that the Universe is experiencing an accel-
eration in its expansion (Riess et al. 1998; Perlmutter
et al. 1999), meaning that galaxies are receding from
each other faster and faster. Suppose that our the-
ory of gravity is correct and gravitational interaction
is always attractive. In that case, the only way to
explain the expansion speeding up is by introduc-
ing a negative pressure that overcomes the effect of
gravity at large scales.

1Fundación Universitaria Los Libertadores.
2Universidad ECCI.

When astronomers confirmed today’s accelerated
expansion of space-time, it was proposed that the
standard cosmological model was missing an ele-
ment: the so-called dark energy, a dilute component
of the matter-energy budget, not yet detected by our
instruments. But its very nature was unknown; thus,
the first proposal was that dark energy was the mani-
festation of the quantum fluctuations of the vacuum,
and it was linked to the cosmological constant Λ,
an old idea that Einstein introduced in the twenties
(Krauss & Turner 1995; Carroll 2001; Peebles & Ra-
tra 2003).

With the introduction of the idea of dark en-
ergy, our current standard model ΛCDM accounts
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390 PIRATOVA & GARCÍA

for three main components: 5% of ordinary matter
(matter formed by baryons; in other words, all the
elements of the Periodic Table); ≈25% of cold dark
matter (CDM): matter that does not interact with
electromagnetic radiation, therefore, invisible to our
telescopes (Planck Collaboration et al. 2020). If dark
matter is cold, then the particles that formed it de-
coupled from the cosmic fluid at a very early stage
of the Universe, and it only interacts with ordinary
matter through gravity; ≈70% of dark energy, man-
ifested in the cosmological constant Λ.

Nonetheless, there is no explanation for the con-
nection between Λ and the fluctuations around the
ground state of the vacuum (Padmanabhan 2003).
Also, a discrepancy of no less than 120 orders of mag-
nitude between the prediction of the energy density
calculated with cosmological methods and the same
quantity from high-energy physics is still unsettled.
Thus, it seems appropriate to consider other forms of
dark energy, apart from the cosmological constant,
or to contemplate modified gravity models instead
(Joyce et al. 2016; Nojiri et al. 2017; Lonappan et
al. 2018; Böhmer & Jensko 2021). The latter ap-
proach is outside the scope of this work, but it is an
extensive and prolific field.

To date, there are countless candidates for dark
energy: quintessence scalar fields (Ratra & Peebles
1988; Caldwell et al. 1998; Carroll 1998), tachyons
and phantom fields (Bagla et al. 2003; Cai et al.
2010), topological defects and branes (Chowdhury
et al. 2023), etc. Further attempts to describe this
dark component of the cosmic budget include extra
degrees of freedom in the Hubble parameter through
sterile neutrinos (Garćıa et al. 2011), evolving early
dark energy models as presented in Garćıa et al.
(2021) -with an effective parameterization of the
equation of state- or Benaoum et al. (2023) -as a
modified version of the Chaplygin gas-.

Our lack of knowledge of what is causing today’s
increased expansion is not the only open question in
modern cosmology. The so-called Hubble tension is a
critical issue in the era of precision astronomy (Riess
et al. 2022; Kamionkowski & Riess 2022). The ten-
sion arises because of the discrepancy between the
Hubble constant Ho estimated from the early Uni-
verse (with proxies such as the cosmic microwave
background or the baryon acoustic oscillations) and
local measurements based on the distance ladder (as
luminosity distances of SN1a, variable Cepheid stars,
among others). The difference between the early and
late Universe estimates has reached 5σ. One candi-
date to resolve this tension that has gained momen-
tum in the community is the inclusion of early forms

of dark energy. For instance, Garćıa & Castañeda
(2022) use different statistical methods to calculate
the best value for today’s expansion rate, Ho.

In this document, we propose an alternative to
a generic dark energy model paradigm: what if the
expansion rate increases in time due to diffusion that
transfers energy from a cosmic solvent to galaxies?
In physics, diffusion is an effective and macroscopic
process that explains many phenomena, ranging
from heat conduction, Brownian motion, fluid mix-
ing, viscosity, etc. At the microscopic level, diffusion
results from collisions among molecules due to ther-
mal motions. The collisions scatter the molecules,
and this movement occurs in the direction where con-
centration decreases. However, this behavior must
be interpreted by its macroscopic effects, because lo-
cal variations of the medium may generate flows re-
versing in short dynamical times (Callaghan 2010;
Katopodes 2018).

The diffusion coefficient σ is of special interest in
this investigation. The quantity σ is a scalar that
depends on both the solvent and the solute proper-
ties. It provides insights into the speed at which the
solute disperses within the solvent at each point at
a given instant. The diffusion coefficient could often
depend on the space-time coordinates, thus showing
anisotropies or time evolution of the solvent-solute
system. But σ could also depend on the solute, sol-
vent, (or both) concentration.

Despite the great scope of this phenomenological
description, there is still no consistent theory of dif-
fusion in general relativity. Numerous efforts have
been made in recent years in search of this formula-
tion (Bonifacio 2012; Faccio et al. 2013). However,
there are a few works in the literature regarding dif-
fusion processes that could explain cosmic expansion
at late times. Calogero (2011, 2012) explored intro-
ducing a scalar field ϕ in Einstein’s field equations
to describe the evolution of the diffusion coefficient,
the scale factor, and the entropy of the system. The
authors set constraints on the dynamics of the mat-
ter field where galaxies are immersed. In Calogero et
al. (2013), they extended their study by performing
a perturbative analysis to understand the structure
formation in a Universe with diffusion as the driver of
the cosmic accelerated expansion. Moreover, Velten
et al. (2014) defined some invariants and used them
as parameters to study the behavior of the Hubble
parameter and the matter density fraction over time.
Finally, Alho et al. (2015) presented a complete dy-
namical system, based on the equations of motion
discussed in Calogero (2011, 2012) and provided at-
tractor solutions for this dynamical system.
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ACCELERATED EXPANSION OF THE UNIVERSE WITH DIFFUSION 391

More recently, Perez et al. (2021) and Linares
Cedeño et al. (2021) presented different cosmologi-
cal diffusion models to alleviate the current Hubble
tension through different models to recreate the in-
stantaneous diffusion process and unimodular grav-
ity, respectively.

This paper is presented as follows: Section 2 in-
troduces the main assumptions, the metric, and the
energy-momentum tensor we use to treat diffusion
in the Universe. In § 3, we modify the canonical
field equations to account for a scalar field ϕ as the
diffusion source. We solve the differential equations
in this system. Also, we derive the conditions for
the solvent and solute density fractions in terms of
the diffusion coefficient and the effective equation of
state of the cosmic fluid. § 4 is devoted to study-
ing a diffusive perfect fluid introduced in the energy-
momentum tensor. Once again, we solve the dif-
ferential equations to recover the evolution of the
density fractions and consider three different func-
tional forms for the diffusion coefficient σ. Finally,
we summarize the main findings of this work in § 5.
We compare our results with similar works in this re-
search topic and present the caveats and limitations
of our model. Unless stated differently, we assume
the Planck Collaboration et al. (2020) cosmological
parameters and set c = 1.

2. DIFFUSION IN THE FRIEDMANN-
LEMAITRE-ROBERTSON-WALKER

UNIVERSE

In this investigation, we explore the possibility
that the ongoing accelerated expansion of the Uni-
verse is due to diffusion in space-time. Along this
work, we consider galaxies as particles of a matter
solute that are receding apart under the influence of
a dilute solvent, uniformly distributed and delivering
its energy to generate the speed-up of such expan-
sion.

Our theoretical model obeys the cosmological
principle, i.e., the Universe is homogeneous and
isotropic at large scales, as observed by recent wide
galaxy surveys and large-scale structure probes.

A Universe under the latter assumptions is de-
scribed by the line element of the Friedmann-
Lemaitre-Robertson-Walker (FLRW) with a flat spa-
tial curvature (K = 0); the geometry favored by
CMB results from Planck Collaboration et al. (2020):

ds2 =dxµdxνgµν

=− dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
,
(1)

with a(t) the scale factor that only depends on the
temporal component because of the space-time ho-
mogeneity. This metric is the solution of Einstein’s
field equations in the cosmological case:

Gµν = Rµν − 1

2
gµνR = 8πGTµν . (2)

Following the original interpretation of (2), the ge-
ometry of the space-time is completely defined by
the distribution of matter-energy in the momentum–
energy tensor Tµν , on the right-hand side of the equa-
tion:

Tµν = (ρ+ p)uµuν + pgµν , (3)

where the four-velocity uµ defines the direction of the
fluid’s flow. The terms ρ and p are the energy density
and pressure of each constituent in the cosmological
plasma.

Unlike the standard cosmological model, where
diffusion is nonexistent, we allow the inclusion of
diffusion in our treatment to explain the accelerated
cosmic expansion. Thus, the covariant derivative of
the energy-momentum tensor is related to the diffu-
sive coefficient σ and the number density of the fluid
n, such that:

∇µT
µν = σnuν . (4)

The Bianchi identity ∇µGµν = 0 implies that the
covariant derivative of the energy-momentum tensor
∇µTµν must be exactly zero in the canonical cosmic
scenario, which contradicts (4). Hence, an additional
term needs to be plugged into the Einstein equations
(2) to account for the presence of diffusion.

3. DIFFUSION DUE TO A SCALAR FIELD ϕ

The first attempt to induce diffusion in Einstein’s
field equations is by introducing a scalar field, a
mathematical prescription extensively explored by
Calogero (2012); Calogero et al. (2013); Velten et
al. (2014); Alho et al. (2015). With a scalar field ϕ,
the field equations change as follows:

Gµν + ϕgµν = 8πGTµν . (5)

Equation (5), along with (4) , lead to a homogeneous
wave equation ∇µ∇µϕ = 0 and:

∂tϕ = −σn. (6)

On the other hand, the conservation of the fluid num-
ber density condition ∇µ(nu

ν) = 0 implies that

n(t) · a(t) = constant ∴ n(t) =
noa

3
o

a3(t)
. (7)
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392 PIRATOVA & GARCÍA

The FLRW metric (1) in combination with the mod-
ified field equations presented in (5), lead us to the
following conditions:

3H2 − ϕ = 8πGρm, (8a)

−2
ä

a
−H2 + ϕ = 8πGpm. (8b)

where H = da
dt

1
a is the Hubble parameter, ϕ is the

scalar field, and ρm and pm are the energy density
and pressure of the matter field (galaxies of the Uni-
verse). Plugging the Hubble parameter H in eqs. (8)
gives

H2 =
8πG

3
ρm +

ϕ

3
, (9a)

ä

a
= −4πG

3
(ρm + pm) +

ϕ

3
. (9b)

We define the density fractions for matter and the
scalar field, Ωm and Ωϕ, such as:

Ωm =
8πG

3H2
o

ρm and Ωϕ =
ϕ

3H2
o

. (10)

Rearranging eqs. (9a) and (9b) in terms of the den-
sity fractions Ω and using the relations 1+z = ao

a =
1
a and conditions (6) and (7), we obtain a set of dif-
ferential equations:

Ω̇m − 3(1 + ω)
Ωm

1 + z
= −Ω̇ϕ, (11)

Ω̇ϕ =

(
8πGno

3H3
o

)
σ

(1 + z)2√
Ωm +Ωϕ

. (12)

Here, the symbol · denotes a derivative with respect
to the redshift z, no is the number density of particles
today, and ω, the equation of state of the background
fluid.

3.1. Solution in the ϕCDM Model with a Constant
Diffusion Coefficient σ

Under the assumption of a constant diffusion co-
efficient σ, the solution of the system of differential
equations defined in (11) and (12) is given by:

Ωm(z) = Ωm,o(1 + z)2, (13)

Ωϕ(z) = Ωϕ,o(1 + z)2 (14)

where Ωm,o and Ωϕ,o are today’s density fractions.
This solution agrees with the derivation presented
in Calogero et al. (2013). It exhibits a quadratic
evolution with redshift of the energy fractions of the

matter and the scalar field component, Ωm and Ωϕ,
respectively.

The parameter of the equation of state follows
the constraint:

ω =
2

3

Ωm,o +Ωϕ,o

Ωm,o
− 1.

If we assume known values for Ωm,o and Ωϕ,o, the
diffusion coefficient σ in this scenario is given by:

σ =
3Ωϕ,oH

3
o

4πGno
.

3.2. Solution in the ϕCDM Model with a Variable σ
Term

Let us consider a solution for the system of equa-
tions (11)-(12) that allows us to keep the quadratic
form of the solutions found in the previous subsec-
tion and avoid any restriction on ω. In such a case, σ
is a function of z, and the density fractions are given
by:

Ωm(z) = Ωm,o(1 + z)3Ωm,o(1+ω), (15)

Ωϕ(z) = Ωϕ,o(1 + z)3Ωm,o(1+ω). (16)

The diffusion coefficient has the following behavior:

σ(z)=

(
9H3

o · Ωm,o · Ωϕ,o

8πGno

)
(1 + ω)

(1 + z)3−(9/2·Ωm,o(1+ω))
,

(17)

= σo
(1 + ω)

(1 + z)3−(9/2·Ωm,o(1+ω))
. (18)

Figure 1 showcases the deceleration parameter
q(z) and the density fractions Ω/E2(z) of both mat-
ter and scalar field ϕ as a function of redshift. Fol-
lowing results from the latest surveys, the x-axis is
displayed up to z ≈ 9 since very few galaxies had
been formed before that redshift. An additional as-
sumption has been made here: that the cosmic fluid
always has an equation of state that follows the con-
dition ω > −1/3 to satisfy the weak energy condi-
tion. We study cases such as the pure-radiation fluid
in navy blue (ω = 1/3), matter-only in pink (ω = 0),
or the adiabatic limit (ω = − 1/3) for which the
weak energy condition holds.

The top panel of Figure 1 reveals interesting in-
sights into the dynamics of the Universe under the
presence of the scalar field: only values of ω larger
than 1/2 have a transition from matter to the De-
Sitter-dominated Universe (accelerated expansion of
the Universe). Smaller values of the effective equa-
tion of state either have a very early turnover from
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1+z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ω
(z
)/
E
2 (
z)

Ωm

Ωφ

ω = 2

ω = 1

ω = 1/3

ω = 0

ω = -1/3

Fig. 1. Deceleration parameter and density fractions vs.
redshift, (respectively, on the top and bottom panels), in
the presence of a scalar field ϕ. The top panel shows the
trend followed by the deceleration parameter q(z) with
different effective equations of state ω associated with
the cosmic fluid. The horizontal dashed line represents
q(z) = 0; below that, the Universe experiences an ac-
celerated expansion. On the bottom panel, we display
the density fractions for matter Ωm (solid lines) and the
scalar field Ωϕ (dashed lines) for different equations of
state of the effective cosmic fluid. Today’s energy frac-
tions, Ωm,o and Ωϕ,o, have been set to Planck Collabo-
ration et al. (2020) cosmology. The color figure can be
viewed online.

one domination era to the other, or the Universe is
always subjected to a cosmic accelerated expansion
under the influence of this field.

On the other hand, the bottom panel of Figure 1
displays the evolution of the normalized energy den-
sity fractions for matter (solid lines) and the scalar
field (dashed lines) as a function of the cosmic fluid
equation of state ω. All cases confirm that energy is
being released from the field to matter through dif-
fusion. Values of ω smaller than −1/3 (grey line) do
not present diffusion from the scalar field to the cos-
mic fluid, so we leave them aside from this analysis.

Finally, it is worth noting that neither of these
plots directly depends on the value of σo. Instead,
the strong dependence lies on ω, which also deter-

10−1 100 101

1+z

0.0

0.2

0.4

0.6

0.8

1.0

σ
(z
)

σo =0.2

ω = 1

ω = 1/2

ω = 1/3

ω = 0

ω = -1/3

ω = -1

10−1 100 101

1+z

0.0

0.2

0.4

0.6

0.8

1.0

σ
(z
)

σo =0.5

ω = 1

ω = 1/2

ω = 1/3

ω = 0

ω = -1/3

ω = -1

Fig. 2. Diffusion coefficient σ as a function of the red-
shift, when a scalar field ϕ is imposed in Einstein’s field
equations to be the source of the diffusion. We include a
brown line representing the ΛCDM model in which dif-
fusion does not occur at any point during cosmic history
(σ = 0). The black dashed line indicates the present (i.e.,
z = 0). Cases with σo = 0.1, 0.2, and 0.5 are displayed
in the upper, center, and lower panels, respectively. The
color figure can be viewed online.

mines the evolution of the diffusion coefficient σ, ac-
cording to equation (17).

Figure 2 shows different trends for the diffu-
sion coefficient σ(z) with redshift, with an increasing

value of σo =
9H3

o ·Ωm,o·Ωϕ,o

8πGno
from top to bottom.

As expected, Figure 2 shows that large values of
σo lead to a prompter energy release from the scalar
field through diffusion. We emphasize that the phys-
ical mechanism by which the energy is exchanged be-
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tween the field and galaxy flow is outside this paper’s
scope. Nonetheless, the trends in Figure 2 indicate
that diffusion in this model occurs continuously and
not as a sudden (instantaneous) event.

To conclude this section, we perform a sanity
check. Given an equation of state that is exactly
−1, no diffusion occurs. The accelerated expansion
is due to the dynamics of the field -and a possible
link to Λ- rather than a diffusive process driven by
ϕ itself.

4. DIFFUSIVE PROCESSES DRIVEN BY A
PERFECT FLUID

In this section, we study a different type of
solution of the Einstein equations that consider
a term ϕgµν on the left-hand side of the equa-
tion (2). Instead, we introduce a perfect fluid with a
barotropic equation of state pD = ωDρD (we use the
subscript D to identify this fluid, which is driving
the diffusion).

In this case, the energy-momentum tensor is
given by:

T ′
µν = (ρm+ρD+pm+pD)uµuν+(pm+pD)gµν . (19)

With this choice of T ′
µν , the solutions of the Einstein

equations are:

3H2 = 8πG(ρm + ρD), (20a)

−2
ä

a
−H2 = 8πG(pm + pD). (20b)

The latter equations lead to the relations:

H2 =
8πG

3
(ρm + ρD),

ä

a
= −4πG

3
(ρm + ρD + pm + pD).

In addition to the Friedmann equations above, we
present a modified version of the continuity equation
that comes from eq. (4):

∂tρi + 3H(ρi + pi) = σnm. (22)

The right term of equation (22) is positive (negative)
for matter (diffusive) fluid. As before, we define the
density fraction of the diffusive fluid ΩD as:

ΩD =
8πGρD
3H2

o

. (23)

Re-writing the derivatives in terms of the redshift
z in eq. (22) and setting the system of first-order

differential equations from (23) and (22) with the
density fractions Ωm and ΩD, we obtain:

(1+z)Ω̇m−3(1+ωm)Ωm=−
(
8πGno

3H3
o

)
σ

(1 + z)3√
Ωm +ΩD

,

(24a)

(1 + z)Ω̇D − 3(1 + ωD)ΩD=

(
8πGno

3H3
o

)
σ

(1 + z)3√
Ωm +ΩD

.

(24b)

We stress that the system of differential equations
in (24) satisfies the Bianchi identity and introduces
an additional perfect fluid in the momentum-energy
tensor in eq. (4). As discussed by Calogero (2011),
one can add an extra term in the stress tensor Tµν

on the right-hand side of Einstein’s field equations
and re-interpret the inclusion of the scalar field in
the geometry side (see § 3).

4.1. Solutionwith aConstantDiffusionCoefficientσ

The solution of the system of equations (24) with
constant diffusion coefficient σ is given by:

Ωm(z) = Ωm,o(1 + z)2, (25)

ΩD(z) = ΩD,o(1 + z)2. (26)

The solutions above must satisfy the following con-
ditions:

ωD = −Ωm,o +ΩD,o

3ΩD,o
, (27)

σ =
3H3

oΩm,o

8πGno
. (28)

Given these solutions, both σ and ωD have fixed
values in cosmic history.

4.2. Solutions with aVariableDiffusionCoefficientσ

Now, if we allow σ to have evolution with red-
shift, the solution of the set of differential equa-
tions (24) is given by:

Ωm(z) = Ωm,o(1 + z)3+3ωDΩD,o , (29a)

ΩD(z) = ΩD,o(1 + z)3+3ωDΩD,o . (29b)

On the other hand, the diffusion coefficient is de-
scribed by the following relation:

σ(z)=ωD

(
−9H3

o ·Ωm,o ·ΩD,o

8πGno

)
(1 + z)(3/2+9/2ωDΩD,o),

(30)

=σo(1 + z)(3/2+9/2ωDΩD,o). (31)
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ωD = -1.0

Fig. 3. Deceleration parameter and density fractions vs.
redshift, respectively, on the top and bottom panels, in
the presence of a perfect fluid with a barotropic equation
of state p = ωDρ. On the top, we show the decelera-
tion parameter q(z) with different values for equations
of state ωD, such that ωD < 0, therefore σ is strictly
positive. The horizontal dashed line represents q(z) =
0; below that, the Universe experiences an accelerated
expansion. On the bottom panel, we display the density
fractions for matter Ωm (solid lines) and the perfect fluid
ΩD (dashed lines) for different equations of state that
lead to a negative deceleration parameter. As before, we
assume Planck Collaboration et al. (2020) cosmological
parameters for the density fractions at z = 0. The color
figure can be viewed online.

with:

σo = −ωD

(
9H3

o · Ωm,o · ΩD,o

8πGno

)
. (32)

Equation (32) reveals that ωD must be strictly neg-
ative such that σ > 0, and diffusion is a feasible
process. Figure 3 shows the resulting evolution of
the Universe with the solutions of the density frac-
tions presented in eq. (29) and the condition found
for ωD.

One can notice from Figure 3 that not every neg-
ative value of ωD would lead to an accelerated ex-
pansion of the Universe. Values of ωD greater than

−1/2 conduct to a positive deceleration parameter;
hence, introducing a diffusive fluid does not cause the
effect we are looking for. We rule out these solutions
in the rest of the analysis.

However, we also highlight that solutions with
ωD < −1/2 lead to an accelerated expansion in all
the redshift range considered. The latter is a con-
sequence of the solutions of eq. (29) not depending
explicitly on the diffusion coefficient but on the equa-
tion of state of the diffusive fluid.

The bottom panel of Figure 3 shows the evolution
of the density fraction only for the values of ωD that
lead to an accelerated expansion of the Universe, i.e.,
equations of state that are smaller than −1/2.

Figure 4 presents the behavior of the diffusion
coefficient as a function of redshift for different values
of σo.

It is worth noting that a particular value of ωD

leads to a σ(z) = σo, as seen in the blue lines in Fig-
ure 4. This specific value is determined by eq. (27),
i.e., a diffusive perfect fluid with a constant coeffi-
cient.

4.3. Solution for Diffusive Processes with
σ = σ̃oE(z)

This subsection assumes that the diffusion coef-
ficient is proportional to the function E(z). We re-
mind the reader that H(z) = HoE(z), and Ho is the
Hubble constant that can be measured with different
cosmological proxies.

When diffusion occurs in physical scenarios, it is
customary to assume that the diffusion coefficient is
proportional to the density of the solute. However,
the cosmological case is much more complex; thus, it
is perfectly natural to explore a case where σ depends
on the density fraction of both the solute Ωm and the
solvent ΩD. A function that relates both densities is
E(z). With this choice for σ(z), the set of differential
equations (24) are decoupled and its solution is given
by:

Ωm(z) =Ωm,o(1 + z)3 − 8πGnoσ̃o

3H3
o

(1 + z)3 ln(1 + z),

ΩD(z) =

(
ΩD,o +

8πGnoσ̃o

9H3
oωD

)
(1 + z)3(1+ωD)−

8πGnoσ̃o

9H3
oωD

(1 + z)3.

Rearranging the terms, it is easy to see that our so-
lutions could be interpreted as a perturbative term
on σo to the background solutions in a generic dark
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Fig. 4. Diffusion coefficient σ as a function of the redshift,
in the presence of a diffusive perfect fluid. The black
dashed line indicates the present (i.e., z = 0). Cases
with σo = 0.1, 0.2, and 0.5 are shown from top to bot-
tom. Regardless of the value of σo, ωD ≈ −1/2 leads
to a constant diffusion coefficient, exactly the prediction
made in equation (27). The color figure can be viewed
online.

energy model ωCDM.

Ωm(z) =Ωm,o(1 + z)3 − σo(1 + z)3 ln(1 + z), (33)

ΩD(z) =ΩD,o(1 + z)3(1+ωD)+
σo

ωD

(
(1 + z)3(1+ωD) − (1 + z)3

)
. (34)

Notice that if σo → 0, we recover the density frac-
tions for non-interactive fluids: Ωi ∝ (1 + z)3(1+ωi).
Another striking point of this set of solutions is that

2 4 6 8 10
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0.0
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q(
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ωD = -1.2

2 4 6 8 10

1+z

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

q(
z)

σo =0.1

ωD = -2/5

ωD = -1/2

ωD = -0.9

ωD = -1.0

ωD = -1.2

2 4 6 8 10
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0.0
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q(
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σo =0.2

ωD = -1/3

ωD = -2/5

ωD = -1/2

ωD = -0.9

ωD = -1.0

ωD = -1.2

Fig. 5. Deceleration parameter as a function of red-
shift, when a diffusive fluid is imposed on the energy-
momentum tensor. The horizontal dashed line represents
q(z) = 0; below that, the Universe experiences an acceler-
ated expansion. Although there are no mathematical re-
strictions on the values for ωD, values greater than −1/2
lead to a positive deceleration parameter, independent of
the value of σo. We assume Planck Collaboration et al.
(2020) cosmological parameters for the density fractions
at z = 0. The color figure can be viewed online.

they do not impose any constraint on the parameters
ωD and σo.

Figure 5 shows the deceleration parameter as a
function of redshift for different values of ωD and σo

(from top to bottom).
Due to the nature of these solutions and the ex-

plicit dependence of the density fractions (therefore,
the deceleration parameter) on σ, there is an un-
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expected outcome that needs further investigation:
values of σ(z) larger than 0.25 exhibit a very sharp
(discontinuous) transition from a negative to a pos-
itive deceleration parameter q(z). This trend can
be anticipated with the inflection of the indigo line
at high redshift (ωD = −1/2) in the lower panel of
Figure 5.

Finally, we show the density fractions of both
matter and diffusive fluids as a function of redshift
in Figure 6.

The perturbative nature of these solutions is ex-
hibited in Figure 6. When σo is small (0.001; upper
panel), the density fractions look alike to the cos-
mic scenario with non-interactive fluids. This is also
true in the middle panel when σo increases by one
order of magnitude over the previous σ, but it is still
smaller than Ωm,o by a factor of ≈ 1/30. Neverthe-
less, if σo and Ωm,o are of the same order of magni-
tude (lower panel), the energy transfer from the dif-
fusive fluid to the matter component is much more
complex, and the process does not follow the order
of the domination eras as known: first the matter
domination-epoch, and subsequently, when the dif-
fusive fluid overcomes the matter density fraction,
a stage of accelerated expansion of the Universe oc-
curs.

5. DISCUSSION AND CONCLUSIONS

In this work, different scenarios for diffusion have
been explored, one driven by a scalar field ϕ(t), but
also with a perfect fluid with a barotropic equation of
state, with ωD. The former case has been extensively
covered by Calogero (2011, 2012); Calogero et al.
(2013); Velten et al. (2014); Alho et al. (2015), and
their results were used as our primary comparison of
the solutions presented in § 3.

As opposed to Calogero et al. (2013), we estab-
lish exact expressions for the density fractions of the
cosmic fluid and the scalar field as a function of red-
shift, and the effective equation of state ω of the
background fluid. We also present two proposals for
the evolution of the diffusion coefficient that mostly
depend on today’s density fractions and the equa-
tion of state ω: constant or redshift-dependent. In
the latter case, ω is a free parameter of our theoreti-
cal model. Still, effective values of ω ∼> 1 reproduce a
smooth transition from a positive to a negative decel-
eration parameter at z ≈ 1 (the most likely scenario
according to a large set of observations).

The second part of the document is devoted to a
diffusive perfect fluid that is included in the energy-
momentum tensor. This fluid is not only stress-
free (perfect fluid condition), but also there is a
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Fig. 6. Density fractions vs. redshift when a perfect
fluid with a barotropic equation of state p = ωDρ is in-
troduced as a diffusion source. The matter and diffusive
fluid density fractions are presented in solid and dashed
lines. Notably, the diffusion coefficient can be used as a
perturbative parameter in this set of solutions. There-
fore, we display the evolution of the density fractions
with increasing values of σ in descending panels. We have
assumed Planck Collaboration et al. (2020) cosmological
parameters for today’s density fractions. The color fig-
ure can be viewed online.

barotropic equation of state p = ωDρ that defines
its evolution. This is a completely original treat-
ment for diffusion that could explain the Universe’s
accelerated expansion at late times.

Three cases are considered for the diffusion coef-
ficient: a constant value, redshift dependent, or pro-
portional to the normalized Hubble parameter E(z).
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With this assumption for σ, we find the solutions for
the density fractions Ωm (matter) and ΩD (diffusive
fluid), as well as the restrictions for ωD.

Our main findings are summarized as follows:

• Constant σ: the solutions of the differential
equations are quadratic in redshift and exhibit
trends similar to the scalar field density fraction.
However, as expected, the expressions found for
σo and ωD differ from the results presented in
§ 3.

• σ = σ(z): the evolution of the density frac-
tions is less restricted compared to that with
a constant diffusive term. In order to have a
positive σo, the equation of state of the fluid
ωD is strictly negative. In addition, ωD <
−Ωm,o+ΩD,o

3ΩD,o
to have a negative deceleration pa-

rameter (in other words, an accelerated expan-
sion of the Universe at this time). With the
inferred cosmological parameters from Planck
Collaboration et al. (2020), the threshold for
ωD ≈ −1/2.

• σ(z) ∝ E(z): this proposal is physically moti-
vated by the fact that the diffusion coefficient
can be described as proportional to the sol-
vent’s density. Nonetheless, in the cosmological
case, the energy fraction of matter is intrinsi-
cally linked to the other fluids’ density fraction;
thus, we can recover all of this dependence as a
function of E(z). Interestingly, this theoretical
model offers a solution for the energy fractions
that explicitly depends on the diffusion coeffi-
cient. Even more importantly, diffusion is a per-
turbation to the cosmological solutions to non-
interactive fluids in a ωCDM cosmology.

This work offers a new perspective to explain
the Universe’s accelerated expansion at late times
through diffusion, either caused by a scalar field ϕ
or by a perfect barotropic fluid. But as any novel
model it is not free of open questions and caveats
that need to be addressed in future investigations.

One limitation of our model is that it does not
consider the internal structure of galaxies, and all
collapsed systems are assumed to have the same mass
as in a classical statistical distribution. Also, we
adopt a description of galaxies as particles in the so-
lute and neglect any feedback with the intergalactic
medium. All of the above could be correct at large
cosmological scales but could not hold at the galaxy
groups level.

In line with the previous caveat, we highlight that
we only consider the Hubble flow, and peculiar ve-

locities are not examined. If perturbations to the
FLRW metric are calculated, transverse velocities
should change the diffusion scheme presented here.

Our solutions are also restricted to the Planck
Collaboration et al. (2020) cosmological parameters.
However, there is no reason to assume the values of
the energy fractions of the fields today have to match
the ones in Planck cosmology. The next step for this
work will be to calculate the free parameters of our
model with the large set of cosmological proxies that
are publicly available and provide an estimate for the
Hubble constant Ho. Thus, we will be able to com-
ment on the Hubble tension, and also set constraints
on the diffusion coefficient σ.

The most pressing matter is that diffusive pro-
cesses are still incompletely formulated in curved
space-time. This theoretical diffusion scheme is a
macroscopic effective description built on our lim-
ited knowledge of the energy transfer processes from
the solvent to the solute. Needless to say, this is an
extremely challenging problem at a microscopic level
in general relativity.

On the other hand, if one could propose an ex-
periment to quantify the value of σ, then it would
be possible to rule out from the scenario the exis-
tence of the scalar field ϕ, or the perfect fluid with
the equation of state ωD. Even if we set upper limits
for the value of σ, we could formulate experiments to
estimate the effects of this solvent at a perturbative
level.

Assuming that the solvent is a scalar field ϕ, in-
troduced in the field equations in the same way as
the cosmological constant Λ, does this mean that the
field has finite energy to deliver to the matter field?
If so, what will eventually occur when the diffusion
mechanism suddenly stops?

This phenomenological model is based on the as-
sumption that a diffusive solvent exists, but what
is the nature and origin of such an agent? Is there
another fundamental interaction experienced by the
solvent (scalar field or perfect fluid) one can use to
study its physical properties?

The authors thank Universidad ECCI and Fun-
dación Universitaria Los Libertadores for granting
them resources to develop this project.
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