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ABSTRACT

We present XookSuut, a Python implementation of the DiskFit algorithm,
optimized to perform robust Bayesian inference on parameters describing models of
circular and noncircular rotation in galaxies. XookSuut surges as a Bayesian alter-
native for kinematic modeling of 2D velocity maps; it implements efficient sampling
methods, specifically Markov Chain Monte Carlo (MCMC) and Nested Sampling
(NS), to obtain the posteriors and marginalized distributions of kinematic mod-
els including circular motions, axisymmetric radial flows, bisymmetric flows, and
harmonic decomposition of the LoS velocity. In this way, kinematic models are
obtained by pure sampling methods, rather than standard minimization techniques
based on the y2. All together, XookSuut represents a sophisticated tool for deriv-
ing rotational curves and to explore the error distribution and covariance between
parameters.

RESUMEN

Presentamos XookSuut, una implementacion en Python del algoritmo
DiskFit, optimizado para realizar inferencia Bayesiana robusta sobre parametros
que describen modelos cinemadticos de rotacién circular y no circular en gala-
xias. XookSuut es una alternativa Bayesiana para el modelado cinemdtico de
mapas dos dimensionales; el codigo implementa métodos de muestreo eficientes,
especificamente Markov Chain Monte Carlo y Nested Sampling, para obtener las
distribuciones posteriores de modelos cinematicos entre ellos: movimientos circu-
lares, flujos axisimétricos, flujos bisimétricos y una descomposicién en harménicos
del campo de velocidad. Asi, los modelos cinematicos son derivados por métodos de
muestreo en vez de adoptar técnicas de minimizacién basadas en la x2. XookSuut es
ideal para derivar curvas de rotacion y explorar la distribucién de errores y covarian

za entre parametros.
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1. INTRODUCTION

The rotation pattern observed on two-
dimensional velocity maps is the result of the
gravitational potential and the mass distribution
in a galaxy, together with environmental factors
and projection effects (e.g., Rubin & Ford 1970;
Binney 2008). In disk-like systems the rotation, or
azimuthal velocity, is the dominant velocity com-
ponent. When this velocity is plotted against the
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galactocentric distance it describes the rotational
curve of a galaxy (e.g. Rubin & Ford 1970; Rubin
et al. 1980).

Since early studies of the neutral hydrogen distri-
bution in nearby galaxies, it was possible to obtain
resolved velocity fields (e.g., Warner et al. 1973);
these HT velocity maps showed ordered kinematic
patterns that, in most cases, could be described by
pure circular rotation (e.g., Wright 1971; Begeman
1989; de Blok et al. 2008). Since then, many ef-
forts have been done for recovering rotation curves of
galaxies, not only with H I data, but also with molec-
ular and ionized gas observations. Begeman (1987,
1989) introduced a methodology to extract the rota-
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tional velocity curve from two-dimensional (2D) ve-
locity maps based on the so—called tilted rings. This
idea became the core of most of the algorithms fo-
cused on the determination of the rotation curves of
galaxies, for instance the GIPSY task ROTCUR (e.g.,
Begeman 1987). The tilted ring model assumes that
the observed velocity field can be described by pure
circular motions with possible variations in the pro-
jection angles. From it, several algorithms have been
developed to study the kinematic structures of galax-
ies. On one side are those who uses 3D data-cubes,
for instance 3DBarolo (e.g., Di Teodoro & Fraternali
2015), TiRiFiC (e.g., Jozsa et al. 2007), GalPak>®”
(e.g., Bouché et al. 2015), KinMSpy (Davis et al.
2013). In a second category are those which work on
velocity fields, such as RESWRI (e.g., Schoenmakers
1999), DiskFit (e.g., Sellwood & Spekkens 2015),
2DBAT (e.g., Oh et al. 2018), and KINEMETRY (e.g.,
Krajnovi¢ et al. 2006) among others.

3D algorithms have the advantages of extracting
all the information from the datacubes. These meth-
ods model the entire datacubes, which allows them
to correct for beam smearing effects and also to han-
dle projection effects. However, the inclusion of dat-
acubes usually involves the addition of extra param-
eters during the fitting process, which in most cases
involves longer computing times depending on the
dimensions of the datacube and the fitting routine.
On the other hand, 2D algorithms work on the pro-
jected line of sight velocity (LOSV); for this reason
they tend to be faster than 3D methods. If galaxies
are not severely affected by spatial resolution effects,
(i.e., the observational point spread function, PSF),
both methods show consistent results for rotational
velocities (e.g., Kamphuis et al. 2015).

Nevertheless, non—circular motions driven by
structural components of galaxies (such as spiral
arms, bars, bulge), or by angular momentum loss,
are not included within the circular rotation assump-
tion (e.g., Kormendy 1983; Lacey & Fall 1985; Wong
et al. 2004); nor are those motions induced by in-
ternal processes (stellar winds, H1II regions, shocks,
outflows). Altogether, and taking into account pro-
jection effects, the modeling of non—circular mo-
tions is a big challenge. Only a few algorithms take
into account deviations of circular motions, among
which are: TiRiFiC, ideal for modeling warped disks;
DiskFit, suitable to model bar-like and radial flows;
and KINEMETRY to model non—circular motions of any
order through harmonic decomposition.

For deriving rotational curves, most algorithms

adopt frequentist methods that minimize the residu-
als from a model function and the data, and those pa-

rameters that minimize the residuals are chosen for
creating the kinematic model that better describes
the data. This means that from a frequentist per-
spective, there is a single set of true parameters that
describes the data. Conversely, Bayesian methods
assume that model parameters are totally random
variables, and each parameter has associated a prob-
ability density function. In this way solutions are
based on the likelihood of a parameter given the
data; that is, on the posterior distribution of the
parameters.

These are two different perspectives to estimate
the parameters from a model. Rotational curves are
often described by several parameters, which makes
it a high-dimensional problem, and therefore suscep-
tible to find local solutions. Therefore, it is worth
exploring methods that survey the parameter space
of kinematic models to derive the best representation
of the observed rotation patterns of disk galaxies.

In this paper we introduce XookSuut?®(or XS for
short). This is a Python tool that implements
Bayesian methods for modeling circular and non-
circular motions on 2D velocity maps. The name
of this tool is a combination of two Mayan words:
Xook which means “study” and Suut which means
“rotation”.

This paper is organized as follows. In § 2 we
describe the different kinematic models included in
XookSuut. In § 3 we describe the algorithm, the fit-
ting procedure, and the error estimations. In § 4 we
show the performance of this code when it is applied
on simulated velocity fields of galaxies with oval dis-
tortions, as well as on real velocity maps. In § 5 we
discuss our results. Finally, in § 6 we present our
conclusions.

2. KINEMATIC MODELS

In this section we describe the kinematic models
included in XookSuut. We start with the simplest
model, which is the circular rotation model, then we
add a radial term for modeling radial flows. A bisym-
metric model is included for describing oval distor-
tions (i.e., bar-driven flows); finally, XookSuut in-
cludes a more general harmonic decomposition of the
line of sight velocity, for a total of three non—circular
rotation models. For constructing these models,
XookSuut assumes that galaxies are flat and circu-
lar systems and that they are viewed in projection,
with a constant position angle (¢/};.,)*, fixed inclina-

Shttps://github.com/CarlosCoba/XookSuut-code

4 Angles measured in the sky plane are marked with a prime
symbol ('), otherwise they are measured in the galaxy plane.
The disk position angle is measured from the north to east for
the receding side of the galaxy.
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tion (i), fixed kinematic center (zg,yo) and constant
systemic velocity throughout the disk. The flat disk
approximation represents the more suitable assump-
tion whenever the spatial resolution of the data, i.e.,
the point spread function, dominates over the typical
thickness of disks. With these assumptions, galax-
ies with strong warped disks are excluded. In addi-
tion, systems where the inclination or position angle
varies as a function of the galactocentric distance
are also excluded, since radial variations in these an-
gles induce artificial non-circular motions when ob-
served in projection, and such contributions to the
line-of-sight velocities would be difficult to discern
from true non-circular motions (e.g., Schoenmakers
et al. 1997).

XookSuut adopts the methodology introduced by
DiskFit (e.g., Sellwood & Spekkens 2015) for creat-
ing a two dimensional interpolated map of the re-
ferred kinematic models and described in the follow-
ing sections.

2.1. Circular Model

The simplest model included in XookSuut is the
circular rotation model, which is the most frequently
adopted for describing the rotation of galaxies. It
assumes no other movements than pure circular mo-
tions in the plane of the disk and describes the rota-
tion curve of disk galaxies.

Assuming that particles follow circular orbits on
the disk, the circular model is given by the projec-
tion of the velocity vector 1% along the line-of-sight
direction:

Veire,model = Vays + Vi(r) sinicos 6 . (1)

V; is the circular rotation or azimuthal velocity and
is a function of the galactocentric distance; Viys is
the systemic velocity and is assumed constant for all
points in the galaxy. In this equation and in the
following, r is the radius of a circle in the disk plane,
which projects into an ellipse in the sky plane. The
angle 0 is the azimuthal angle relative to the disk
major axis, and ¢ is the disk inclination angle.

2.2. Radial Model

When radial motions are not negligible, the disk
circular velocity is described by two components of
the velocity vector: the tangential velocity (V;) and
the radial one (V;.). In this way, the model including
radial velocities is described by the following expres-
sion:

‘/rad7model = ‘/;ys +Slnz(Vt(r) COSs 9+VT(7“) sin 9) (2)

Comparing with equation 1, the only difference is the
addition of the V. sin @ term. This term accounts for
axisymmetric radial flows (inflow or outflow) on the
disk plane.

2.3. Bisymmetric Model

The bisymmetric model describes an oval distor-
tion on the velocity field, such as that produced by
stellar bars (e.g., Spekkens & Sellwood 2007; Sell-
wood & Spekkens 2015), or by a triaxial halo poten-
tial. In the presence of an oval distortion particles
follow elliptical orbits elongated towards an angle
that in general differs from that of the disk position
angle (e.g., Spekkens & Sellwood 2007). This kine-
matic distortion shows a characteristic “S” shape in
the projected velocity field that makes the minor and
major axes not orthogonal (e.g., Kormendy 1983).
Given that this pattern has been mostly observed in
the velocity field of barred galaxies, we will refer to
the origin of the oval distortion to stellar bars, al-
though it is not necessarily the case, as mentioned
before. The model that intends to describe this pat-
tern is called bisymmetric model (e.g., Spekkens &
Sellwood 2007) since most of the perturbation is kept
in the second order of an harmonic decomposition on
the disk plane. The bisymmetric model is described
by following the expression:

Vbis,modcl = ‘/sys + sin g (Vvt (7“) cos
— V2,4(7r) cos 260y, cos 8

— Vi () sin 20y, sin 9) . (3)

Vo, and V, ;. are the nonaxisymmetric velocities in-
duced by the oval distortion and represent, respec-
tively, the tangential and radial deviations from V;,
where the latter describes the disk circular rotation.
The angular variable 6}, is the location relative to
the position angle of the bar (¢pay), in this way®:

obar =0- ¢bar . (4)

Note that in this expression both angles are mea-
sured on the disk plane. If ¢p,, represents the ma-
jor (minor)—axis position angle of a bar, then both
Va(r) and Vo, (r) have positive (negative) values.
Unlike the disk position angle ¢/, @bar is nOt a

5Note that the problem becomes degenerate when the bar
position angle is aligned to the galaxy major axis. When
Pbar = 0°, the terms cos2(0 — ¢par)cosf and sin2(6 —
@bar) sin 6 can be expressed as % ( cos 0+ cos 360 ) and% ( cos 0 —
cos 360 ), respectively. A similar relation occurs when the bar
is oriented along the minor axis, ¢pa, = 90°.
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variable than can be easily recognized from the ve-
locity field of barred galaxies; however, its projection
on the sky plane is related to ¢, and the disk in-
clination angle, as follows:

Ohar = Olisr + arctan(tan ¢gpa, cosi) , (5)

where ¢} is the position angle of the bar on the
sky plane. Computationally, it is more practical to
estimate ¢, instead of ¢;,,. When the oval distor-
tion is produced by a stellar bar, ¢y, is expected
to be aligned with the photometric position angle of
the bar, while the radial profile of Va,.(r) and Va(r)
should extend to the length of the bar.

2.4. Harmonic Decomposition

Similar to the photometric decomposition of
galaxy images into light profiles via Fourier expan-
sions, the line of sight (LoS) velocity field of a galaxy
can be expressed as a sum of harmonic terms as fol-
lows:

Vhrm,model = ‘/;ys

M
+ Z (em(1r) cosmb + sy, (r) sinmb) sini , (6)
m=1

where ¢, and s,, are the harmonic velocities, m is
the harmonic number, and 6 and r have the same
meaning as before. For convenience we have taken
the inclination angle out of the Fourier expansion;
also note that the 0*" order of the expansion co(r)
is assumed a constant equal to the systemic veloc-
ity. However, in addition to the expansion up to
M = 1, where we recover the radial model, note
that ¢; = V; and s; = V,; the expansion to higher
orders does not offer a direct interpretation of ¢,
and s, since these terms represent a mere decom-
position of the LoS velocities, although it is possible
to assign to these velocities a physical meaning. The
harmonic number is closely related to perturbations
of the gravitational potential; under the epicycle the-
ory, such perturbations will induce the appearance of
harmonic sectors in the LoS velocities in such a way
that if the gravitational potential contains a pertur-
bation of order m, the LoS velocities contain the
m + 1 and m — 1 harmonic terms of the Fourier ex-
pansion (see Schoenmakers et al. 1997, for a detailed
description). For instance, a bar-potential can be
described by a 2°¢ order perturbation, which means
that the LoS velocity field will contain the 15¢ and
3*4 harmonic terms of equation 6 (e.g., Wong et al.
2004; Fathi et al. 2005). Similarly, this analysis can
be extended for the case of spiral arms (e.g., van de
Ven & Fathi 2010).

In XookSuut the harmonic model, (equation 6),
can be expanded to any harmonic order, although,
most of the non-circular motions induced by spiral
arms or bars are captured by a third order expansion
(e.g., Trachternach et al. 2008).

The harmonic model was first included in the
GIPSY task RESWRI (e.g., Schoenmakers 1999) under
the assumption of a thin disk. Afterwards the har-
monic decomposition was generalized in KINEMETRY
(e.g., Krajnovi¢ et al. 2006) including not only disks
but also triaxial structures. The major difference be-
tween RESWRI and XookSuut is the assumption of a
flat disk. While RESWRI and KINEMETRY allow vary-
ing the disk position angle and inclination during the
fitting analysis, XookSuut keeps these angles fixed to
allow the residual velocities of a circular model to
be adjusted with non-circular motions and not ab-
sorbed by the variations of these angles, as explained
before. However, when large variations of ¢/, or ¢
are present throughout the disk, XookSuut will fail
in the interpretation of the harmonic velocities, even
when the fit is successful.

3. THE ALGORITHM

XookSuut works on 2D velocity maps, such as
those extracted from first moment maps from data-
cubes. As others codes that rely on 2D maps for
kinematic modelling, XookSuut assumes that the ve-
locity recorded in each pixel is representative of the
disk velocity. In this sense, there are a wide vari-
ety of methods for representing the velocity field of
a galaxy, and many of these depend on the spectral
resolution and the signal-to-noise of the data; going
from simple first moment maps, to modeling Gaus-
sian profiles in combination with Hermite polyno-
mials to better reproduce the shape of the emission
lines (see de Blok et al. 2008; Sellwood et al. 2021,
for a revision of different methods).

For XookSuut to obtain confident estimations
of the kinematic models, the data should not be
strongly affected by the point-spread-function. The
PSF contributes to increase the velocity dispersion
of the emission-lines and consequently to underesti-
mate the rotation velocities, particularly in the in-
ner gradient of the rotation curve. In such a case,
a 3D modeling of the datacubes should be a better
approach (e.g., Di Teodoro et al. 2016). Under the
previous assumptions the algorithm proceeds in the
following way.

Let (z,,yn) be the position of a data point in
the sky plane. The corresponding ellipse passing
through this point, with center (zg, yo) and rotated
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by an angle ¢/, is described by:

Te=—(—2, — o) sin ¢/disk+ (Yn — yo)cos %isk ,» (7)
Ye = —(2n — 20) €08 Pgigc — (Yn — Yo)sin dggc - (8)

The radius of the circle on the disk plane passing
through this point is then:

2 2 Ye \2

TL =T, + (—) . 9)
cosi

The azimuthal angle on the disk plane 6, is related

to the sky coordinates as follows:

—(—2p — 20) sin @iy + (Yn — Yo ) cOS P
cosf = n disk n dsk7

" (10)

_(xn - l‘o) COS ¢£1isk — (yn - Z/o) sin ¢£115k

Ty COS T
(11)

Therefore, # comprises both projection angles
O and i, as well as the kinematic center,
thus contributing with four more free variables in
each kinematic model (although it is represented
by a single variable for simplicity). Henceforth,
we define “constant parameters” as those vari-
ables that do not change with radius; they are:
(Dlisks & Tos Yo, Vasys, Obar). We will also refer as
“geometric parameters” to those variables that de-
scribe the orientation of the projected ellipse on the
sky plane, namely ¢, %, Zo, Yo-

sinf =

3.1. x? Minimization Technique

As we will see in further sections, Bayesian meth-
ods like MCMC require to start sampling around the
maximum a posteriori, or maximum likelihood, to
generate new samples also known as chains; this re-
quires necessarily to find those parameters that min-
imize the residuals from a given kinematic model and
the data. Therefore, in the following we describe
the method to solve for each of the different kine-
matic components of the models, and the constant
parameters. The first part corresponds to the anal-
ysis adopted in DiskFit (e.g., Spekkens & Sellwood
2007; Sellwood & Spekkens 2015), with minimum
changes.

A given set of initial conditions for the geomet-
ric parameters defines the projected disk with an el-
liptical shape on the sky plane. Ideally, the initial
conditions for the gaseous disk geometry should be
close to that of the stellar disk. This geometry will
be the starting configuration for the minimization
analysis; then, the field of view is divided into K
concentric rings of fixed width that follow the same

orientation as before. The maximum length of the
ellipse semi-major axis can be easily set-up as de-
scribed in Appendix A; this will create a 2D mask
and only those pixels inside this maximum ellipse
will be considered for the analysis. The geometry of
this mask will be adapted in subsequent iterations
until reaching the orientation that better describes
the observed velocity field.

The algorithm will solve for each ring a set
of velocities that will depend on the kinematic
model considered, namely equations 1-3 or equa-
tion 6 . Thus, the number of different veloc-
ity components to derive will be K velocities
in the circular model (V; k); 2K in the radial
model (Vi gk, V. k); 3K in the bisymmetric model
(Vik, Vork, Varx) and 2MK in the harmonic
model (¢1,k, -y CM.K s S1,K 5 s SM,K)-

The velocity map consists of a two—dimensional
image of size nx X ny, with N observed data points
D,, with individual errors o,,. Let be the set of
velocities that describe the corresponding kinematic
model (namely, 7 = <7t, 2.4 §2,r> for the bisym-
metric model and similarly for other models). Fre-
quentist methods adopt the chi-square x?2, to derive
from a model the set of parameters that describes the
data. In this case, the reduced x? for the different
kinematic models is given by:

Xz _ l i (Dn - Zf:l Wk,n7k>2 . (12)

14 oz
n=1 n

Here v is the total number of degrees of freedom
(i.e., ¥ = N — Nyarys, and Nyarys is the number of
parameters to estimate from the model ); Wy, ,, are a
set of weights that depend on the pixel position, and
will serve to define an interpolated model; and Vi
is the set of velocities in the k-th ring that describes
the considered kinematic model.

Each kinematic component from Vk would re-
quire different weights. For instance, for the circular
model the weights adopt the following expression:

Wy, = sini cos 6 « wy n, (13)

where the super-index ¢ makes reference to the circu-
lar rotation component. The radial model requires
two different weights for the different kinematic com-
ponents:

Wy, = sini cos 0  wy p, (14)
T
Wk,n

sinisin @ * wy, p. (15)
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Similarly, the bisymmetric model would require
three different weights:

Wy, = sinicos 0 x wy , (16)
W,?Cl = sin cos 0 cos 20ha, * Wi, (17)
W,?tn = sin ¢ sin 0 sin 20,4, * W p.- (18)

Finally, the harmonic decomposition model will have
2M weights given by:
M
Wi, = sinicosmf  wi.p, (19)
m=1
M
Wg., = Z sin i sin mé * wy . (20)
m=1
Note that for M =1 it reduces to the radial model.
The wy, , terms define the interpolation method
to be performed between the K-rings. As in
DiskFit, these weights adopt the form of a simple
linear interpolation given by the usual expression:

Tk+1 — Tn
n=| —2=), 21
W, ( 5 ) (21)

wk-i—l,n = (Tn — rk)v (22)

57‘k

where r; and rg41 are the position of the k" and
(k+1)t" rings respectively, and 67y, = rj41 —7} is the
spacing between rings. As the first ring (k = 1) can-
not be placed at the kinematic centre, XookSuut im-
plements different strategies for assigning velocities
to pixels down the first ring. Depending on the spa-
tial resolution of the data or the signal-to-noise ratio
(S/N), one may opt for one of the following extrap-
olation options.

The first method is to assume that velocities grow
linearly from zero to the velocities derived in the first
ring (71) This implies that 70 = 0 at r = 0; there-
fore, the kinematic center does not rotate. In the
second approach, the set of velocities and positions
( 1,r1) and ( 2, T2) are used to extrapolate veloc-

ities to pixels down r1; in this way 70 #0atr=0.
The third option allows the user to fix the velocity
at the origin to some value. Then 70 and V' are
linearly interpolated for sampling pixels down ry.
As Vi is linear in equations 1-3 and equation 6,

we can set the derivative with respect to V' ; in equa-
tion 12, giving as result:

ax; _ 2 i <Dn — Y Wk7n7k> Win _ .
n=1

On On

ov, v

(23)

' Starting

Daisk » & X0, Yo, Phar
Veys

Define mask
geometry
Analytic solution
for Vi

Built interpolated
velocity map

—>

Nested
sampling

Save
best model and
dataproducts

X2minimization for
q»)'diskr '1'1 X Yor q:)bar
Vi &V

Fig. 1. Flowchart of the fitting procedure to derive the
best kinematic model.

Rearranging this expression we obtain:

K N N
S (St 7, - Moo,

k=1 \n=1 In

The minimization technique from equation 24 was
first introduced by Barnes & Sellwood (2003), and
subsequently incorporated into DiskFit (Sellwood
& Spekkens 2015). Here, equation 24 is generalized
for the harmonic decomposition model. The latter
expression is a system of linear equations for the 7;€
unknowns; thus V' values are solved arithmetically.
As mentioned before, the number of velocity compo-
nents 71@ depends on the number of rings and the
adopted kinematic model; therefore the dimensions
of the matrix to solve will increase as more rings are
included in the analysis, and as the kinematic model
becomes more complex.

Given a set values for the constant parameters
and K rings positioned at r; on the disk plane, we

can solve for Vi in equation 24 by assigning uni-
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form weighting factors (wy, = 1). This way we
are obtaining a row-stacked velocities (ry vs. V).
In essence the row-stacked velocities represent the
average velocity of each ring; then, we use these ve-
locities as initial conditions to perform an iteratively
least squares analysis (LS) through equation 12, but
now with the proper weighting factors (namely equa-
tions 13-19). Note that if the initial geometric pa-
rameters passed to the algorithm are close the true
ones, then the arithmetic solutions to ?k should
be close the true velocities. This can speedup the
MCMC sampling as we will see in further sections.

The minimization procedure in equation 12 is
performed by constructing a 2D model from the in-
terpolation weights of equation 21. In each x? itera-
tion a new set of velocities V'} are obtained, together
with a new set of constant parameters. The latter
will define a new geometry for the mask, and new
row-stacked velocities will be obtained for the next
iteration. Multiple rounds of x? minimization will
be performed up to some maximum iteration defined
by the user, or until the difference in x2? evaluations
varies less that 10%. Commonly after three itera-
tions the disk geometry becomes stable and simul-
taneously V . Figure 1 summarizes all the fitting
procedure in a flowchart.

Rings not proper sampled with data may give
absurd values of V' when solving equation 24. To
avoid this problem, we define a covering factor to
guarantee a minimum number of data per ring. If
the covering factor is 1, it means that rings must be
100% occupied by data to estimate Vk, as described
in Appendix A. In addition, isolated pixels in the
image due to low S/N may not be desired during
the analysis; XookSuut allows to remove these pixels
by excluding those with velocity errors greater than
certain threshold defined by the user.

To perform the LS analysis in equation 12,
XookSuut adopts the Levenberg-Marquardt (LM)
algorithm included in the 1mfit package (e.g.,
Newville et al. 2014). This algorithm has the ad-
vantage that it is fast, although it is widely known
to be susceptible to getting trapped at a local mini-
mum. Note that DiskFit adopts the Powell method
since this method only performs evaluation of func-
tions with no derivatives performed.

So far the algorithm adopts an LS method for de-
riving the best parameters defined by the kinematic
models. In the following we use sampling methods to
infer the posterior distributions of the parameters.

3.2. Bayesian Analysis

The novelty of XookSuut resides in the estima-
tion of the posterior distribution of the non—circular
motions and the model parameters. Given the high-
dimension of the models, it is desired to perform a
thorough analysis of the prior space to obtain the
most likely solutions to the problem for each kine-
matic model regardless of its complexity. For this
purpose we adopt Bayesian inference methods for
sampling their posterior distributions. Other pack-
ages like 2DBAT and KINMSPY (i.e., Oh et al. 2018;
Davis et al. 2013) also use Bayesian approaches for
extracting rotational curves of galaxies. The differ-
ence is that KINMSPY is able to fit non—circular mo-
tions (radial and bisymmetric).

According to Bayes’ theorem, given a set of data
D described by a model function M with parameters
ad = a1, ag, .., «ay, the posterior distribution of &
given D follows the expression:

p(D|a, M)p(a)
p(D,M)

where p(&|D, M) is the joint posterior distribution of
the whole set of parameters; p(D|&, M) is the prob-
ability density of the data given the parameters and
the assumed model; p(&) is the prior probability dis-
tribution of the parameters and p(D, M) is a normal-
ization constant also know as marginal evidence or
evidence. It is common to find equation 25 expressed
in terms of the likelihood function £, as follows:

p(o‘z’\D,M) = (25)

R L(ad)p(a
plap, M) = AT (26)
with the evidence defined as:
z- [ c@paaa (27)
Qo

where the integral is computed over all the parameter
space defined by the priors, €,. The evidence can
be interpreted as the likelihood of the observed data
under the model assumptions; in other words, it is
the average of the likelihood over the priors.

The final goal of Bayesian inference is to obtain
the posterior distribution p(a@|D, M) of all param-
eters @ describing the model function M. Multi-
ple methods have been developed for this purpose.
For instance, Markov-Chain Monte Carlo (MCMC)
methods evaluate the unnormalized posterior distri-
bution (i.e., p(&|D, M) x L(&)p(&)), by generating
samples or chains from the likelihood function. One
of the main characteristics of Markov chains is that
the position of a point in the chain depends only
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on the position of the previous step. Different algo-
rithms with automating chain tunning have been de-
veloped to efficiently sample the posterior distribu-
tion. Among the most popular MCMC samplers are
those who implement affine-invariant ensemble sam-
pling and ensamble slice sampling (e.g., Foreman-
Mackey et al. 2013; Karamanis et al. 2021).

Other methods, such as nested sampling (NS,
Skilling 2006), are designed to compute the evi-
dence by numerical integration of equation 27, which
often makes them computationally more expensive
than MCMC methods. This integral is performed
from the priors space (or prior volume), and un-
like MCMC, does not require an initialization point.
Nevertheless, computing the evidence is crucial for
model comparison as it represents the degree to
which the data are in agreement with the model.
Although the main goal of NS is to compute the evi-
dence, the posterior distribution is obtained as a by-
product; because of that, NS methods are becoming
popular for the inference of parameters in astronomy
(see Ashton et al. 2022, for a thorough description
of the method).

One of the advantages of nested sampling with
respect to MCMC methods is regarding the con-
vergence criteria. There is no defined convergence
criteria among MCMC algorithms, although some
of them are based on the number of independent
samples in the chains, the so-called integrated au-
tocorrelation time (IAT); however this is often eval-
uated a posteriori. If the whole chain contains be-
tween 10-50 times the IAT, then it is a good indi-
cator that chains are converging (Foreman-Mackey
et al. 2013; Karamanis et al. 2021). In contrast, in
nested sampling the stopping evaluation criterion is
well defined, since sampling stops after the whole
prior space has been integrated.

A detailed discussion of these two sampling meth-
ods is, however, beyond the scope of this paper. Fol-
lowing we show the implementation of MCMC and
nested sampling methods for the parameter extrac-
tion of the kinematic models presented in Sec. 2.

3.2.1. Likelihood and Priors

Let a be all the parameters that describe any
of the kinematic models. Then, the log posterior
distribution of the parameters is given by:

Inp(&D,M) =InL(d) +Inp(@) —InZ. (28)
The likelihood function is a key term in Bayesian

inference, since it will define the shape of the pos-
terior distributions. The most common distribution

for the likelihood is Gaussian, but other distribu-
tions like Cauchy, T-student, or the absolute value of
the residuals are also adopted in the literature (e.g.,
Di Teodoro & Fraternali 2015; Bouché et al. 2015;
Oh et al. 2018). XookSuut adopts the Gaussian dis-
tribution as the main likelihood function, although
the Cauchy distribution is also included (see Ap-
pendix B). The individual likelihood for each data
point D,, with error o, is expressed as:

D,, — M,)?
L(ay,) = (270, —1/2 _(7’7" 29
(@) = (@r,) 1 exp (220l ) q29)
and the joint likelihood for the data set is the product
of individual likelihoods, in this way

N N 9
L= (27)"N/2 o ) exp [ = M )
a0 (oo (-5
(30)
It is easy to recognize from this expression that the
summation is the y? from Eq 12, with M, being
the kinematic model function, Viodel- In this way

the log posterior distribution of the parameters is
expressed as:

1
In p(&|D, Vinodel) = 5

zN: D Zk 1ann7 )2
)

—Ino, — g In(27) + Inp(la) —InZ , (31)
with N being the number of data points, or pixels,
to be considered in the model. We can redefine o
to include the intrinsic dispersion of the data, which
we assume constant for all pixels; namely, 02 = o2 +
Ui2nt‘

The priors are the constrain of our model func-
tion and enclose all we know about the data. Uni-
form or non-informative priors give the same prob-
ability to any point within the considered bound-
aries. This allows the likelihood function to sur-
vey the prior space without any preferred direction.
XookSuut adopts either uniform or truncated Gaus-
sians (T'G), with values shown in Table 1. TG priors
are of the form TG(u,0,tminstbmaz), With p and o
being the mean and standard deviation of the Gaus-
sian, and fi,in and fyq, represent the lower and up-
per boundaries, respectively. The mean values can
be chosen arbitrary, although good values are those
that maximize the likelihood function (i.e., equa-
tion 12). In most cases, choosing uniform or TG pri-
ors does not affect the posterior distributions. The
difference resides in the computational cost needed
to explore the prior space; narrow distributions like
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TABLE 1
TYPE OF PRIORS ADOPTED IN XookSuut

Parameter Uniform prior Truncated Gaussians®

Odisk 0 if —27 < ¢aisk < 27 TG(aisk,15°,F45)

i 0if30<i<75 TG(4,10°,30,75)

Brar 0if =7 < Ppar < T TG (par,20°,dpar F 45)

o 0if 0 < zg < nx TG(70,2" ,xo F 10")

%o 0if 0 < yo < ny TG(%0,2" 90 F 10”)

Vsys 0 TG (Viys,50 kms ™)

Vi 0 if —400 < Vi < 400 TG(‘7k,15O kms™*-250,250)
Ino?, 0if =10 <Ilno?,, < 10 TG(0.1,1,-10,10)

*Values with hat represent LS results. Vj refers to any of the different radial dependent velocities.

TG are sampled more efficiently than uniform distri-
butions.

In order to infer the posterior distribution of
the parameters, XookSuut adopts two well known
Python packages for Bayesian analysis; these are
the EMCEE package (e.g., Foreman-Mackey et al.
2013), and DYNESTY (e.g., Speagle 2020). EMCEE
is a Python implementation of the affine-invariant
method for MCMC with automatic chain tuning;
while DYNESTY is a Python implementation of dy-
namic nested sampling methods. MCMC and NS
are two robust sampling techniques to derive pos-
terior distributions in high dimensional likelihood
functions, such as the kinematic models described
before. Both packages have been extensively applied
in astronomy for making Bayesian inference, with
particular implementations in cosmology. For a de-
tailed description of these codes we suggest reading
their corresponding documentation. Both packages
require a set of configurations whose purpose is to
guarantee convergence of the sampling procedure.
XookSuut is optimized to pass a configuration file
to set up EMCEE and DYNESTY. The main setups in
these codes are the length of the join-chains and the
discarding fraction (burning period) in the case of
MCMC, and the integration limit for NS. For both
packages, XookSuut adapts the likelihood functions
and priors to make it compatible with MCMC or NS
methods.

As mentioned before, MCMC samplers like EM-
CEE sample from the likelihood; therefore the chains
need to be initialized at some position, for which
XookSuut chooses a random region around the max-
imum likelihood. For MCMC samplers the joint pos-
terior distribution is estimated up to a normalization
constant, here adopted equal to 1 (or zero in In). For
running DYNESTY XookSuut transform the priors
from Table 1 into a unit cube, in such a way that all

parameters vary from 0 to 1 and they are re-scaled
at the end of the sampling process.

Finally, representative values of the parameters
are taken as the 50% percentile of the marginalized
distributions. The uncertainty in the parameters is
addressed in the following section.

Although EMCEE makes use of frequentist meth-
ods for starting the sampling process, this could
be suppressed if relatively good initial positions of
the disk geometry are given. On the other hand,
DYNESTY does not require at all the LS initialization
as the numerical integration is performed over the
prior space.

3.2.2. Error Estimation

The true uncertainty in rotational velocities is
known to be underestimated with standard least
squares minimization techniques and even with
MCMC methods (e.g., de Blok et al. 2008; Oh et al.
2018). Errors estimated with these methods are usu-
ally of the order of the turbulence of the ISM (a few
kms~1) and do not represent the systematic errors.
Some works adopt the mean dispersion per ring as
a measure of the uncertainty in the rotation curve.
However, when non—circular components are added
to the model, this assumption is no longer valid since
each ring may contain multiple kinematic compo-
nents.

XookSuut provides different error estimates for
the derived parameters. The Levenberg-Marquardt
least-squares minimization automatically computes
errors from the covariance matrix; these represent
statistical errors and may be used for a quick anal-
ysis. However, the power of Bayesian inference re-
lies on the estimation of posterior distributions, from
which we can obtain uncertainties of the parameters.
XookSuut adopts the marginalized distributions to
quote the uncertainties in each parameter, includ-
ing the velocities. These uncertainties are in gen-



© Copyright 2024: Instituto de Astronomia, Universidad Nacional Auténoma de México
DOI: https://doi.org/10.22201/ia.01851101p.2024.60.01.03

28 LOPEZ-COBA ET AL.

eral smaller than simple Monte-Carlo errors since
marginalized distributions are not expected to con-
tain unstable (burn-in) chains. This necessarily re-
quires dropping an important fraction of the total
samples during a run, which is customized within
XookSuut. Therefore, it is common to report 20
credible intervals in Bayesian analysis. In fact, find-
ing “large” uncertainties in MCMC methods would
be an indication that chains are not fully converging;
either because a large fraction of samples are being
rejected, or chains are surveying complicated likeli-
hood functions, often multi-modal distributions, for
which NS would be a better solution.

Additionally, XookSuut also implements a boot-
strap analysis for error estimation. Our procedure
differs from the one described by Sellwood & Sanchez
(2010), as explained below. The residuals from the
best 2D interpolated model are used to generate new
samples. Instead of shuffling residuals at random lo-
cations on the disk, K rings of width §, are con-
structed with projection angles given by the best
values. Then, residuals in each ring are chosen to
resample the best 2D model in the same ring loca-
tions. In this way any residual pattern associated
to a bar or spiral arms remains around the same
galactocentric distance but not in the same pixel lo-
cation. The new re-sampled velocity map is used in
a least squares analysis for deriving a new set of ve-
locities and constant parameters. This procedure is
performed iteratively; finally the root mean square
deviation is taken as lo error; however, for consis-
tence with the Bayesian methods, we report 20 er-
rors throughout the paper.

In general, we find that the estimated uncertain-
ties of the parameters increase in the following order:
Bayesian methods > bootstraps > LS, with compu-
tational cost increasing in the same direction.

4. TESTING XookSuut

We now proceed to evaluate XookSuut in a series
of simulated velocity maps and real velocity fields.

4.1. Toy Model Example

As an example of its use, we run XookSuut on a
simulated velocity map. This is the velocity field
of a galaxy at 31.4 Mpc with a 32" optical ra-
dius. We model a velocity field with an oval dis-
tortion described by equation 3. For the rotation
curve we adopt the parameterization from Bertola
et al. (1991). The non—circular motions were mod-
eled using the Gamma probability density function;
Gamma(2,3.5) for describing the Vs ; component and
Gamma(2,3) for V5. The constant parameters were

set to Py = 77°, Pbar = 35°, @ = 55°, xg = 76.5,
Yo = 75.2 and Vs = 2142 kms~!. The field of view
(FoV) is defined as 64” x 74" and the pixel scale
was set to 0.5”. Finally we convolved the image for
decreasing its spatial resolution. We simulate a cir-
cular PSF with a 2D Gaussian function with a 1” full
width at half maximum (FWHM). We perturb the
velocity profiles by adding Gaussian noise centered
at zero and with a standard deviation of 5 kms™!.

We started XookSuut by assigning random val-
ues to each of the constant parameters, except for
@bar which is initialized around its maximum (i.e.,
Pbar = 45°). We set the initial and last ring ex-
ploration at 2.5” and 40" respectively; we also esti-
mate the radial velocities each 2.5”. A LS analysis
was performed with 3 round iterations before start-
ing the MCMC run. For comparison with Bayesian
methods we adopt 1000 bootstraps during the LS
analysis. For MCMC sampling, we run a total of
4000 iterations with 60 different chains, which rep-
resent twice the number of free variables for this case.
We discarded 50% of the joint chain, for a total of
120k posterior samples on each parameter. The TAT
for this run resulted in 127 which is superior to 50.

On the other hand, nested sampling only requires
the prior information, for which we adopted the uni-
form priors from Table 1. No initial LS was per-
formed for this case. We stopped the sampling pro-
cedure only when the remaining evidence to be inte-
grated was < 0.1.

We test all the different kinematic models, i.e.,
circular, radial, bisymmetric models and we arbi-
trarily expand the harmonic series up to M = 3.
MCMC and NS derive the posterior distribution for
each variable of the kinematic model; thus, we can
take advantage of corner plots to represent their
marginalized distributions and explore possible cor-
relations between parameters. The median values
and 20 errors for each parameter are shown in Ta-
ble 2, while in Figure 2 we show the marginalized
posteriors; for simplicity we only show the constant
parameters for the bisymmetric model, although
note this should be a 30 x 30 dimensions plot.

MCMC and nested sampling methods converge
to the same solutions found by the LS method; this
represents a great success for Bayesian methods to
derive kinematic parameters from an input velocity
map given the large dimension of the likelihood func-
tion. We note that the input parameters are recov-
ered in the bisymmetric model, which is not the case
for the circular, radial and harmonic, as expected;
this is better appreciated in the corner plot from Fig-
ure 2. MCMC and nested sampling recover the input
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TABLE 2

BEST FIT PARAMETERS FOR THE TOY MODEL EXAMPLE

29

Model Method APlick Ai Axg Ayo AViys Aodbar RMS BIC
) ) (pix) (piz) (kms™") ) (kms™")
circular LM -1.1+01 -04+01 00£00 01400 -0.0+0.2 8.5 4.5
MCMC -11401 -014+03 00+01 01401 -0040.2 9.3 4.5
NS -1.1+£01 -01+£03 00£01 01401 -0.0=£0.2 9.3 4.5
radial LM -0.1+£01 -02+£02 00£00 01400 0.0%0.2 9.3 4.4
MCMC -01+£01 01+£03 004+01 01401 -0.0+0.2 8.5 4.4
NS -01+£01 00+£03 00+£0.1 01401 -0.0=£0.2 8.5 4.4
bisymmetric LM 0.0 £ 0.1 014+02 00£00 01+£00 -004+£0.2 38=*8.0 8.5 4.4
MCMC 00+02 014+03 004+01 01+01 -00+02 37+738 8.5 4.4
NS 0.0 £ 0.2 014+03 00£01 01+£01 -004£0.2 3.6=%82 8.5 4.4
harmonic LM -01+£01 -00£03 00£00 01400 -0.0&£0.2 8.5 4.4
MCMC -0.1+£0.1 00+£03 004+01 01401 -0.0+0.2 8.5 4.4
NS -01+£01 00+£03 00£0.1 01401 -0.0&£0.2 8.5 4.4

A= Qrecovered — (true-
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Fig. 2. Marginalized distributions of the parameters describing the bisymmetric model for our toy model described in
§ 4.1. This corner plot shows only the parameters describing the disk geometry. Contours enclose 68% and 95% of
the data. Histograms of individual distributions are shown on top, together with the median values and 20 credible
intervals for each parameter. The orange straight lines represent the true values. As observed, all parameters but yo,
are recovered within the +1o0 region. The color figure can be viewed online.
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Fig. 3. XookSuut results for the toy model example, for the bisymmetric model case. Figures from left to right: simulated
velocity field; best two dimensional interpolated model from MCMC; residual map (input minus output). Overlaid on

these maps are iso-velocity contours starting at 0 kms™' with steps of 50 kms™'.

The fourth column shows the

radial variation of the different kinematic components included in the model. Here the input velocities are shown with
discontinuous lines while continuous lines represent the velocities derived by XookSuut using MCMC (green), nested
sampling (blue) and LM + bootstrap (red). The shadowed regions represent 20 errors. The color figure can be viewed

online.

parameters within the 1o credible interval, except for
yo which lies within 20; among the constant param-
eters, the position angle of the oval distortion shows
the largest uncertainty. From Table 2, we notice that
the uncertainties derived with Bayesian methods and
bootstraps are of the same order.

The different velocities, V;(r), Va,,(r) and Va4 (r),
are also recovered within the 20 errors as observed
from the rightmost panel of Figure 3. For consis-
tence, in Appendix C we include the results using
DiskFit; we notice that the XookSuut results are in
total agreement with those obtained with DiskFit.

Table 2 also shows the root mean square
(RMS) for each kinematic model; models includ-
ing non-circular rotation show a RMS value around
8.5 kms~!. This leads to the question of which
model is the preferred one for describing a par-
ticular velocity field. In a statistical sense, when
comparing different models one should choose the
one with fewer parameters, since more variables
in a model often reduce further the RMS, which
does not necessarily provide the best physical in-
terpretation of the data. Statistical tests such as
the Bayesian information criterion (BIC) penalizes
over the variables from the model; BIC is defined
in terms of the likelihood (or the chi-square) as,
BIC = —21In £(&) + Nyarys In(N), where & represents
the parameters that maximize the likelihood func-
tion and N is the number of data; thus, the model
with the lowest BIC should be preferred. Addition-
ally, the evidence Z computed from NS, is a measure
of the agreement of the data with the priors; in this
way large (small) Z values are more (less) compati-
ble with the priors.

However, when there is little information about
the data, or only the data itself, it is difficult to
select a model description of the data based on any
information other than statistical tests. Regardless
of the statistical method adopted, it is important to
have a physical motivation for accepting or rejecting
a model; otherwise, erroneous interpretations of the
velocity field could arise.

For the toy model example, Table 2 shows that
non-circular models have similar BIC values. Even
when the harmonic decomposition model seems to
perform a good fitting based on the residuals, the
physical interpretation of the m = 2 components are
meaningless for this example. Thus in a real sce-
nario the radial and bisymmetric model should be
compared. The Bayesian evidence for the radial and
bisymmetric models results in In Z = —36136 and
—36135, respectively. In a statistically sense both
solutions are equally probable; in other words, the
data are insufficient for making an informed judg-
ment. This is not surprising given the simplicity of
our velocity field model.

4.2. Simulations

We carried out a set of 1000 simulations with dif-
ferent inclination angles ranging from 30° < ¢ < 70°,
disk position angle 0° < ¢/, < 360°, and to
avoid degeneracy, the bar position angle varies from
5° < @par < 85°; velocity profiles and kinematic cen-
ter have the same values as in the toy example. We
also adopt the same sampling configurations as be-
fore. We notice that sometimes XookSuut detects
the minor-axis bar position angle instead of the ma-
jor one; in such cases, ¢p,, is found 90° away from
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Fig. 4. XookSuut results for the bisymmetric model on 1000 synthetic velocity maps with oval distortions. Values are
reported with respect their true value, namely Aa = Qrecovered — Qtrue, Where a is any of the parameters considered
in this example. Straight orange lines represent the true values (i.e., Aa = 0). Blue and lime colors show the results
for NS and MCMC methods, respectively. The inner and outer density contours contain 68% and 95% of the data,
respectively. The upper histograms represent the 1D distributions of the parameters on the x-axis, while the size of
the error bars represents the average value of the 20 credible interval for each parameter. Note that all parameters are
recovered within the reported error bars. Values on-top the histograms represent the 50% percentile of A«, together
with the +20 dispersion. The color figure can be viewed online.

TABLE 3
XookSuut BISYMMETRIC RESULTS FOR NGC 7321

Method ¢éisk 1 Zo Yo ‘/sys Pbar
) ) (pixels) (pixels) (kms~) )
LS+bootstraps 11+1 46 +1 35.5£0.0 33.6 £0.0 7123 +£1 46 + 4
NS 11£0 46 + 1 35.5£0.1 33.6 £0.1 7123 £1 46 + 6
MCMC 11£0 46+ 1 35.5£0.1 33.6£0.1 7123 £1 467
DiskFit" 12+1 46 + 2 7123 £3 47+ 6

“Results from Holmes et al. (2015). Errors in Holmes et al. (2015) represent 1o, so a factor of 2 should be considered
for comparison.

the minor axis. This result is also a totally ac- projected minor axis position angle is computed by
ceptable model since the difference resides only in shifting ¢pa,y by 90°.

the sign of the bisymmetric components, V5, and In Figure 4 we show the results of the analysis in
Va1, which for these cases both have negative val- corner plots; the derived values are shown relative to
ues. XookSuut computes the projected major axis the true ones, namely Aa = Qrecovered — Qtrue; for the

position angle of the bar via equation 5, while the radial dependent velocities, we subtract the velocity
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profile of each component from the derived veloci-
ties. These results show that the median values of
Aa lie around zero for all parameters describing the
bisymmetric model; furthermore, the scatter of the
differences is contained within the average value of
the 20 credible interval for each parameter. Results
from this analysis demonstrate that MCMC and NS
methods are able to recover the true parameters of
our simulated velocity maps, even when each model
is described by +30 free variables.

The final accuracy of the recovered parameters
would depend on the details of data themselves (res-
olution, S/N, spatial coverage etc.). Therefore, ad—
hoc simulations are encouraged.

4.3. NGC 7321

We proceed to evaluate XookSuut over the veloc-
ity field of a galaxy hosting a stellar bar. For this
purpose we adopt the galaxy NGC 7321 observed
as part of the CALIFA galaxy survey (e.g., Sdnchez
et al. 2012). This object has been previously ana-
lyzed by Holmes et al. (2015) using DiskFit. The
Ha velocity field of this object represents a good ex-
ample of a galaxy with a strong kinematic distortion,
most probably caused by the stellar bar. Holmes
et al. (2015) found the bisymmetric model as the best
model for reproducing the inner distortion observed
in this object; they found best fit values and lo
errors for the constant parameters given by ¢}, =
12+£1°,4 =46 +£2°, Vsys = 7123+ 3 kms~! and a
bar position angle oriented at ¢p,,= 47+£6°. We im-
plemented XookSuut on the Ha velocity map taken
from the CALIFA data products (e.g., Sdnchez et al.
2016). We adopted the same ring configurations as
before, excluding pixels from the error map with val-
ues larger than 25 kms™!; we proceed to explore the
non-circular motions up to r = 18", and set the max-
imum radius for the circular velocities up to 40”; this
leads to a total of 36 free variables that will be esti-
mated with Bayesian inference. We adopt 3 rounds
of iterations for the LS method, and also compute
the errors on the parameters with 1000 bootstraps.
For MCMC, we adopt 5000 steps and drop half of the
total samples to let the joint chain stabilize. For NS
we stop the sampling when the remaining evidence
to be integrated is 0.1.

Figure 5 shows the marginalized distributions of
the constant parameters. From the 1D histograms
we obtain ¢f; = 11 £0° ¢ = 46 £ 1°, Vsys =
7123 £ 1 kms™! and ¢p.,,= 46 + 6°; addition-
ally we compute the intrinsic scatter of the data as
~ 16 kms~!. Table 3 shows a summary of these
results. As can be read from this table, the con-

stant parameters derived by XookSuut are in con-
cordance with those previously reported by Holmes
et al. (2015), although our uncertainties are smaller
when comparing the errors at 20, probably due to
differences in methods. The bottom figure shows the
best model and residual map obtained from nested
sampling. The kinematic distortion observed in the
central region is well reproduced with the bisym-
metric model. The bisymmetric motions, i.e., the
bar-like flows, are oriented at 46 4+ 8° on the sky
plane. The rightmost panel shows the radial pro-
file of the different velocity components derived from
NS, MCMC and LS+bootstrap methods. Again, the
uncertainties reported from NS and MCMC are of
similar magnitude, and these are larger than those
obtained with bootstrap methods.

In Appendix D we show the implementation of
XookSuut on other data with different instrumental
configurations.

5. DISCUSSION

Our simulations and toy example show that sam-
pling methods are able to produce results similar to
those obtained with frequentist methods based on
the x? minimization. The widely used Levenberg-
Marquardt algorithm is able to obtain solutions to
the kinematic models in a fast way, although errors
from the covariance matrix are always small. On
the other hand, our resampling implementation pro-
duces larger uncertainties compared with the covari-
ance matrix. We notice that the magnitude of the
errors increases with the number of bootstrap itera-
tions; however, increasing the number of bootstrap
samples increases the total execution time, since at
each iteration a new LS analysis is performed.

Bayesian methods, i.e., MCMC and NS, provide
the largest uncertainties on the parameters com-
pared to the two other techniques. The major disad-
vantage is the computational cost needed to sample
the posterior distributions. For the toy model exam-
ple presented, the execution times on an 8 core ma-
chine are ~ 1 hour for LM+1k bootstraps, ~ 1 hour
for MCMC with 4k steps and = 2.5 hours with NS.

If Bayesian methods and LS+bootstrap provide
similar solutions for the parameters, then in princi-
ple one could choose either of the two methods to
quote the uncertainties. However, the most inter-
esting cases are when Bayesian methods differ from
the frequentist ones. XookSuut has the advantage
that both bootstrap and Bayesian methods can be
executed in parallel. This can drastically reduce the
execution times depending on the number of CPUs
available during the running.
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Fig. 5. XookSuut results for NGC 7321 for the bisymmetric model. Top figure shows the marginalized distribution for
the constant parameters with MCMC methods in green colors and NS in blue. As in Figure 2, the quoted values on
top the histograms represent the median and 20 errors obtained from the posterior distributions. Bottom figure shows
from left to right the Ha velocity map; the two-dimensional model from NS; the residual map; and the radial profile
of the different velocities. Shadow regions represent the 20 credible intervals obtained from each method (bootstrap in

red colors). The color figure can be viewed online.

6. CONCLUSIONS

We have presented a tool for the kinematic
study of circular and non—circular motions of galax-
ies with resolved velocity maps. This tool named
XookSuut (or XS for short), is an adaptation of the
DiskFit algorithm, designed to perform Bayesian
inference on parameters describing circular rota-
tion, radial flows, bisymmetric motions and an ar-

bitrary harmonic decomposition of the LoS veloc-
ities. XookSuut implements robust Bayesian sam-
pling methods to obtain the posterior distribution
of the kinematic parameters. In this way, the “best-
fit” values, and their uncertainties are obtained from
the marginalized distributions, unlike frequentist
methods where best values are obtained at a single
point from the likelihood function. XookSuut adopts
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Markov Chain Monte Carlo methods and dynamic
nested sampling to sample the posterior distribu-
tions. In particular, XookSuut makes use of the EM-
CEE and DYNESTY packages developed to perform
Bayesian inference.

XookSuut is a free access code written in Python
language. The details about running the code, as
well as the required inputs and the outputs are de-
scribed in Appendix A.

XookSuut is suitable to use on velocity maps not
strongly affected by spatial resolution effects, i.e.,
when the PSF FWHM is smaller than the size of
structural components of disk galaxies, such as stel-
lar bars. In addition, disk inclination should range
from 30° < i < 70°. The fundamental assumption of
the code is that galaxies are flat systems observed in
projection on the sky with a constant inclination an-
gle, constant disk position angle and fixed kinematic
center. This makes XookSuut suitable for studying
the kinematics of galaxies within dynamical equilib-
rium, but not for highly perturbed disks.

Applying XookSuut over a set of simulated maps
with oval distortions we showed that Bayesian meth-
ods are able to recover the input parameters despite
the high dimension of the likelihood function. True
parameters are recovered within 1o credible interval,
with the position angle of the oval distortion being
the parameter with the larger scatter. We tested
XookSuut over a well known galaxy with an oval dis-
tortion in the velocity field, NGC 7321, and found
results similar to those obtained with DiskFit.

Regarding the uncertainty of the parameters,
Bayesian methods provide the largest uncertainties
compared with resampling methods like bootstrap.
However, the computational cost for sampling the
joint posterior distribution is in general more expen-
sive than, for instance 1k bootstraps. Fortunately,
a fraction of time can be saved when these methods
are run in parallel.

We also tested XookSuut on velocity maps from
different galaxy surveys. Despite the instrumental
differences in these data, XookSuut is able to build
kinematic models of circular and non-circular mo-
tions.

Finally, XookSuut is ideal for running on in-
dividual objects, or in galaxy samples since it is
easy to systematize for use in large data sets.
XookSuut is a free access code available at the
following link https://github.com/CarlosCoba/
XookSuut-code.
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APPENDIX
A. RUNNING XOOKSUUT

XookSuut is designed to run directly from the
command line by passing a number of parameters
whose purpose is to guide the user through a suc-
cessful fit.

After a successful installation and typing
XookSuut on a terminal the code will display the en-
trance required for starting the analysis. The mean-
ing of each parameter is described in Table 4, while
the output files are described in Table 5.

B. CAUCHY DISTRIBUTION

Although a Gaussian distribution is mostly as-
sumed for the likelihood function, there is no restric-
tion to use other distributions. In fact, multiple algo-
rithms adopt arbitrary parameterization of the resid-
ual function (e.g., Di Teodoro & Fraternali 2015). In
addition to a Gaussian distribution, XookSuut also
includes the Cauchy distribution in the likelihood
function. It assumes a unique form of the errors pa-
rameterized with . The Cauchy log-posterior dis-
tribution for our models adopts the following form:

In p(@|D, Vimodel) = —N Inmy—

2
v (- W T)
Z In|1+
n=1

,)/2

_|_

Inp(a) —InZ. (B32)

An example using the Cauchy distribution is shown
in Figure 6. As noted, there can be differences in the
results depending on the election of the likelihood
function. There is no a general rule on when to use
the Cauchy distribution; often, it is used when the
data contain many outliers.
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Fig. 6. Results for Gaussian and Cauchy likelihood functions for the circular model of NGC 7321. In this example we
used nested sampling for the Bayesian analysis. We found the width of the Cauchy distribution at v = 7.6+ 0.3 kms™*'.
The color figure can be viewed online.
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Fig. 7. Results of the fitting analysis using DiskFit for the simulated velocity map described in Sec 4.1. Black empty
circles and error bars show velocities and uncertainties derived by DiskFit; 1000 bootstraps were adopted in DiskFit for
this purpose. Colored lines represent results from XookSuut using LM+bootstrap in red, MCMC in green and NS in
blue. Results for the constant parameters using DiskFit are the following, ¢4 = 77.02 £ 0.13°, i = 55.06 & 0.48°,

(zo, Yo) =

(77.51 £0.09, 76.26 £ 0.09) pixels, Vays = 2141.98 +0.20 kms™* and ¢par = 39.47 & 15.60°, x* = 72.5. In

all cases error bars represent 20 errors. The color figure can be viewed online.

C. DiskFit RESULTS

Figure 7 shows the results of the bisymmetric
model using DiskFit applied on the simulated ve-
locity map described in Section 4.1; 1000 bootstraps
were adopted in DiskFit to quote the uncertain-
ties of the parameters. The median values estimated
with Bayesian methods and LM+bootstraps are in
concordance with those obtained with DiskFit. In
addition, the uncertainties of the velocities reported
by DiskFitare comparable to or lower than those
obtained with Bayesian methods. This figure shows
that XookSuut produces results similar to DiskFit.

D. IMPLEMENTATION ON DATA WITH
DIFFERENT CONFIGURATIONS

We apply XookSuut to a sample of galaxies ob-
served with different instrumental configurations and

different redshifts. We obtain Ha velocity maps from
different integral field spectroscopy (IFS) galaxy sur-
veys, namely MaNGA (e.g., Bundy et al. 2015),
AMUSING++ (e.g., Lépez-Cobd et al. 2020), SAMI
(e.g., Allen et al. 2015); these objects correspond to
manga-9894-6104, IC 1320 and SAMI511867, respec-
tively. These objects were chosen for showing rich
emission in Ha. The velocity maps were obtained
from the public dataproducts.

For each galaxy we run circular, radial, bisym-
metric and harmonic decomposition models up to
M = 3. However we only report the model with
the lowest BIC value. The initial position angle and
inclination angles were adopted from those reported
in Hyperleda or by our own previous analysis (e.g.,
Walcher et al. 2014; Lépez-Cobéa et al. 2020). The
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TABLE 4
XookSuut INPUT PARAMETERS

Input Type

Description

name

str

vel_map.fits fits
error_map.fits fits
SN float
pixel_scale float
PA float

INC float

X0 float

YO0 float
VSYS float
vary_PA bool
vary INC bool
vary_X0 bool
vary_Y0 bool
vary_VSYS bool
ring_space float
delta float
Rstart,Rfinal float
cover float
kin_model str
fit_method str
N._it float
Rbar_min,max float
config_file file
prefix str

Name of the object.

Fits file containing the 2D velocity map in kms™*.

Fits file containing the 2D error map in kms™!.

Pixels in the error map above this value are excluded.

Pixel scale of the image (”/ pixel).

Kinematic position angle guess (°).

Disk inclination guess (°).

X—coordinate of the kinematic centre (piz).

Y—coordinate of the kinematic centre (pix).

Initial guess for the systemic velocity in kms™*. If no
argument is passed, it will take the weighted mean value
within a 5" aperture centered in (X0, YO0).

Whether ¢}, varies in the fit or not.

Whether i varies in the fit or not.

Whether g varies in the fit or not.

Whether yo varies in the fit or not.

Whether Vgys varies in the fit or not.

Spacing between rings in arcsec. The user may want to use
FWHM spatial resolution.

The width of the ring is defined as 2delta. The user may
want to use 0.5 ring_space if independent rings are desired.
Starting and initial position of the rings on disk plane. (arcsec)
Fraction of pixels in a ring needed to compute the row
stacked velocities. If 1 the ring area must be 100% sampled.
Choose between: “circular”, “radial” flows, “bisymmetric”
(oval distortion) or “hrm_M”, where M is the harmonic number.
Minimization technique used in the least-squares analysis.
Options are “Powell” or “LM” (Levenberg—Marquardt).
Number of round iterations for the least-squares analysis.
Minimum and maximum radius for modeling the non—circular
flows. If only one value is passed, it will be considered as the
maximum radius to fit.

Configuration file to access high configuration settings
including the Bayesian sampling methods, bootstrap errors,
and other general model configurations. See the documentation
for a detailed description of this file.

Extra string passed to the object’s name. This prevents
overwriting the outputs in case multiple analyses of the

same object are performed.

coordinates of the kinematic center were set by eye
from the velocity maps. When available we used the
error maps to exclude pixels with large uncertainties
(namely > 25 kms™!). The width of the rings was
set to the size of the PSF for each dataset (ranging
from 1” — 2.5"”). For these objects we only adopt

NS methods. To speed up the analysis we adopted
truncated Gaussian priors, for which we performed
an LS analysis to set the mean values of the Gaussian
priors.

The best fit models are shown in Figure 8, while
results of the constant parameters are shown in Ta-
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TABLE 5
XookSuut DATA PRODUCTS

Output

Description

name.model.vlos_model.fits.gz
name.model.chisq.fits.gz
name.model.chain. fits.gz
name.model.2D_Vmodel fits.gz
name.model.marginal _dist.fits.gz

name.model.residual.fits.gz
name.model.2D_R.fits.gz

name.model.1D_model.fits.gz
name.model.2D _theta.fits.gz

Two dimensional representation of the

adopted kinematic model (equations 1,2,3 or 6).
Fits file containing the chi-square map defined
as (obs-model)? /error®.

Fits file containing the marginalized samples

(i.e., the joint chain), explored in the Bayesian analysis.

Two dimensional representation of each velocity

component from the model.

Fits file containing the 50 percentile distribution for each
parameter, together with the £10 and +20 credible intervals.
Map containing the residuals of the model, i.e., obs - model.
Deprojected distance map in arcsec, obtained from the best
fit disk geometry.

Values for the best fit parameters together with the 20 errors.
Two dimensional representation of the azimuthal angle 6.

TABLE 6

XookSuut APPLIED TO DIFFERENT DATA WITH DIFFERENT INSTRUMENTAL CONFIGURATIONS

Object Survey Model Dok i 2o 9o Viys
) (°) (pixels) (pixels) (kms™!)
9894-6104 MaNGA Eq1 296 £ 0 35 +1 272+ 0.1 26.7 + 0.1 10696 £+ 1
511867 SAMI Eq 2 206.0 £ 2 46 £ 1 24.9 + 0.1 24.5 £ 0.2 16493 £ 1
IC 1320 AMUSINGH++ Eq 6 85+ 0 57 £ 3 165.4 + 0.1 168.7 = 0.0 4950 £ 0

ble 6 for each object. Figure 8 shows the observed
velocity, the best model from NS methods, the resid-
ual maps and the radial profiles of the different kine-
matic components for each considered model. Each
row in this figure represents the outputs for a differ-
ent galaxy.

The manga-9894-6104 galaxy is well described
by the circular model. It shows a symmetric ve-
locity field with orthogonal major and minor axes.
The circular model describes well the observed ve-
locities and produces small residuals of the order of
+10 kms~!. The rotation curve is flat within the
FoV, with Viax ~ 248 kms™1.

The velocity field of SAMI511867 shows a slight
twist along the minor axis, which is well reproduced
by the radial flow model. Significant contributions
of radial motions of the order of 40 kms™! are ob-
served across the SAMI FoV. However, because of its

small FoV | large PSF = 2" and the physical spatial
resolution (FWHM = 2 kpc), parameters derived in
Table 6 could be affected by these effects.

Finally, IC 1320 is part of the AMUSING++
galaxy compilation. This object was observed with
the modern instrument MUSE (e.g., Bacon et al.
2010). The IFU of this instrument has the small-
est spaxel size (0.2”) and the best spatial resolution
(seeing limited) of the data analyzed here; as a con-
sequence, 1C 1320 shows a velocity field rich in de-
tails. Among the different kinematic models, the
harmonic model showed the lowest BIC value The
c1 component, which is a proxy of the circular rota-
tion, is mostly flat across its optical extension with
Umax ~ 200 kms~!. Non-circular terms are domi-
nant within the inner 10”. The c3 and s3 coefficients
may indicate the presence of stream flows associated
with spiral arms or a stellar bar.
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Fig. 8. Implementation of XookSuut on different velocity maps. Each set of panels, from top to bottom, corresponds to a
different galaxy taken from different IFS galaxy surveys (i.e., MaNGA, SAMI and AMUSING++ from top to bottom).
In each row, from left to right: (i) the Ha velocity field; (ii) best two—dimensional model from NS; (iii) residual map of
the fitting; (iv) radial variation of the different velocities in the considered model. Shadow regions in this plot represent
the 1o credible interval obtained from NS. Note that each map has different instrumental configurations and FoVs.
Iso-velocity contours spaced by 50 kms™' are overlayed on each velocity map. The color figure can be viewed online.
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